
A Meta-Language for Hardware Testbench

Michael Katelman and José Meseguer

University of Illinois at Urbana-Champaign

March 21, 2010

1 / 32



“Implied needs are in: (1) verification, which is a
bottleneck that has now reached crisis proportions . . . ”

“. . . due to the growing complexity of silicon designs,
functional verification is still an unresolved challenge,
defeating the enormous effort put forth by armies of
verification engineers and academic research efforts.”

“Multiple sources report that in current development
projects verification engineers outnumber designers, with
this ratio reaching two to one for the most complex
designs.”

(ITRS 2009)

2 / 32



some things that designers do:

code RTL

optimization

rudimentary testing

3 / 32



some things that verification engineers do:

write testbenches

write checkers

measure coverage

file bug reports

4 / 32



some things that verification engineers do:

write testbenches

write checkers

measure coverage

file bug reports

about 95% of bugs are found through simulation (ITRS 2009)

4 / 32



goal: make the life of a verification engineer better.

5 / 32



some possibilities:

smarter testing algorithms (Magellan, DeNibulator)

language-level improvements (OOP, temporal assertions)

management tools (coverage statistics)

6 / 32



our approach: a new language for building testbenches

7 / 32



our approach: a new language for building testbenches

currently: testbench is an environment for DUT

7 / 32



our approach: a new language for building testbenches

currently: testbench is an environment for DUT

our language: testbench operates at a higher-level

testbench = meta-program analyzing DUT via simulation
DUT-level simulation = programming facility

7 / 32



a Verilog module:

9 / 32



a testbench in our meta-language:

11 / 32



a testbench in our meta-language:

11 / 32



a testbench in our meta-language:

11 / 32



a testbench in our meta-language:

11 / 32



a testbench in our meta-language:

11 / 32



our motivation, by way of analogy: from Edinburgh LCF (Gordon,
Milner, and Wadsworth; 1979):

“Two extreme styles of doing proofs on a computer have
been explored rather thoroughly in the past.”

“The first is ‘automatic theorem proving’; typically a
general proof-finding strategy is programmed, and
the user’s part is confined to first submitting some
axioms and a formula to be proved, secondly
(perhaps) adjusting some parameters of the strategy
to control its method of search, and thirdly
(perhaps) responding to requests for help from the
system during its search for a proof.”

substitute constrained randoms for “automatic theorem proving”

12 / 32



“The second style is ‘proof checking’; here the user
provides an alleged proof, step by step, and the
machine checks each step. In the most extreme form
of proof checking each step consists in the
application of a primitive rule of inference, though
many proof checking systems allow complex
inferences (e.g. simplification of logical formulae) to
occur at one step. One feature of this style is that
the proof is conducted forwards, from axioms to
theorem . . . ”

substitute directed testing for “proof checking”

13 / 32



“There are no doubt many ways of compromising
between these two styles, in an attempt to eliminate the
worst features of each - e.g. the inefficient general search
strategies of automatic theorem provers, and the tedious
and repetitive nature of straight proof checking.”

just as was the case for LCF, we want to find some middle ground

14 / 32



“There are no doubt many ways of compromising
between these two styles, in an attempt to eliminate the
worst features of each - e.g. the inefficient general search
strategies of automatic theorem provers, and the tedious
and repetitive nature of straight proof checking.”

just as was the case for LCF, we want to find some middle ground

solution for LCF: ML

14 / 32



main features of our meta-language:

simulation context of design under test is a first-class object

simulation context is symbolic

simulation = function from sim. context to sim. context

integration with very general, efficient bit-level SMT solver

embedded in a high-level declarative language

15 / 32



our tool: vlogmt, a work in progress

16 / 32



the primary data-type is a “state-monad”

type (VSI a) = (StateT Context IO a)

just (essentially) a function from contexts to contexts

Context -> IO (a,Context)

18 / 32



configuration: information needed to carry out Verilog simulation

data Context = Ctxt {
clk :: identifier,

guard :: symbolic expression,
state :: identifier → symbolic expression,

activeQ :: list of processes,
waitingQ :: list of processes,
inputs :: list of identifiers,
· · ·

}

20 / 32



key operation: symbolic simulation

delta :: VSI Int
delta = do
done <- epsilon
if not done
then delta
else tickClock

epsilon :: VSI Bool
epsilon = do
xs <- gets activeQ
if (not . null) xs
then do
mapM evalP xs
return False

else do
xs <- gets inactiveQ
...
...
else return True

22 / 32



our maze example again:

01: module maze(i,clk);
02: input i,clk;
03: reg [2:0] loc ;
04:
05: always @(posedge clk)
06: case (loc)
07: 0 : loc <= i ? 3 : 1;
08: 1 : loc <= i ? 2 : 0;
09: 2 : loc <= i ? 7 : 3;
10: 3 : loc <= i ? 4 : 2;
11: 4 : loc <= i ? 4 : 5;
12: 5 : loc <= i ? 6 : 7;
13: 6 : loc <= 6;
14: 7 : loc <= 7;
15: endcase
16: endmodule

24 / 32



fully automatic solution:

25 / 32



fully automatic solution:

25 / 32



fully automatic solution:

25 / 32



mixture of concrete and symbolic (like Magellan):

26 / 32



mixture of concrete and symbolic (like Magellan):

26 / 32



mixture of concrete and symbolic (like Magellan):

26 / 32



backtracking (very complex control):

testbench = runContT (callCC $ \exit -> g [] exit) return
where g xs exit = do

p <- lift (valOfId "loc")
when (p == expConst 6) $ exit []
if p ‘elem‘ xs
then return xs
else do
ctxt <- lift get
lift (sim 1 $ fromList [mkI 0 ("i",exp1)])
xs’ <- g (p:xs) exit
lift (put ctxt)
lift (sim 1 $ fromList [mkI 0 ("i",exp0)])
g xs’ exit

28 / 32



does any of this make the life of a verification engineer better?

29 / 32



does any of this make the life of a verification engineer better?

can program testing strategies, don’t have to do it by-hand

29 / 32



does any of this make the life of a verification engineer better?

more information available to make decisions

know future state now, other worlds, etc.

29 / 32



does any of this make the life of a verification engineer better?

measured approach to automatic input resolution with SMT

29 / 32



does any of this make the life of a verification engineer better?

benefits of modern declarative languages

type checking, algebraic data types, pattern matching, etc.

29 / 32



summary:

empower verification engineers when building testbenches

testbench = meta-program to analyze DUT via simulation

many novel strategies enabled under this paradigm

integrate with SMT and embed in declarative language

working on a tool, vlogmt

30 / 32



future work:

continue to build up vlogmt!

substantial case studies

explore the idea of interaction

31 / 32



Thanks!

32 / 32


