
A Prototype Embedding of

Bluespec SystemVerilog in the

SAL Model Checker

Dominic Richards and David Lester

Advanced Processor Technologies Group

The University of Manchester

Introduction

• Bluespec SystemVerilog (BSV) is a language for high
level hardware design

• Developed from Term Rewriting Systems (TRS)

– A language for designing and formally verifying
hardware

• Elegant semantics => well suited for formal verification

• To date, a number of BSV designs have been verified with
hand proof, but little work conducted on the application of
automated reasoning.

• We have investigated automated reasoning for BSV, in
the SAL model checker, and also the PVS theorem prover

Why Use Automated Reasoning?

• Hand proofs are convenient, but:

– Can contain errors (analogy - doing arithmetic by hand
v.s. on a calculator)

– Proofs for large systems can be time consuming and
tedious

• Automated reasoning has the potential to provide rigorous
and efficient verification for some classes of systems...

– … and these classes are ever expanding

Automated Reasoning for BSV

 Two approaches:

– Verifying BSV designs with a model checker:

• Presented today

– Verifying BSV designs with a theorem prover:

• A Prototype Embedding of Bluespec SystemVerilog
in the PVS Theorem Prover, Second NASA Formal
Methods Symposium, Washington D.C. April 13 – 15,
2010

• Currently compile by hand

In This Presentation...

 Introduce BSV

 Introduce the SAL language

 Outline key challenges of embedding BSV in SAL

 Outline of our approach

 Experimental results: verifying a BSV implementation
of Peterson's Protocol

Take Home Information

 Basic understanding of BSV SAL languages

 How to embed BSV in SAL

– Surprisingly simple

 Understanding of advantages of verifying the
embedding

– Makes proof more rigorous

 Motivation to look at the paper for a strategy for
verifying the translation

Bluespec SystemVerilog

 A Hardware Description Language based on the guarded
action model of concurrency

 Hardware specified with modules, which associate
elements of state with:

– Rules: guarded actions that spontaneously change the
state

– Methods: functions that return values from the state
and/or transform it

• Methods from one module can be used to compose
the rules and methods of other modules

Rules in BSV

rule my_rule (rl_guard);

 statement_1;

 statement_2;

 ...

endrule

The Semantics of a BSV Module

 Behaviour of a module can be understood with a
simple semantics called Term Rewriting System
(TRS) semantics

– Also called one-rule-at-a-time semantics

 In a given state, a module chooses one rule for
which the guard evaluates to `true' and applies the
associated action

 If more than one guard is true, a non-deterministic
choice is made

Bluespec SystemVerilog

 Reg module:

– A register with 1 element of state and 2 methods:
_read and _write

• Other modules can create instances of Reg, and
use _read and _write in their rules and methods. Eg:

 rule request_rl (!request._read && !acknowledge._read));

 request._write(True);

 endrule

The SAL Language

 Also a guarded action language, but simpler

 Guarded action systems defined in contexts that
define:

– Type of state

– An initial state

– A transition relation

The SAL Language

TRANSITION

[

 guarded_action_1 : guard_1 --> action_1

[]

 guarded_action_2 : guard_2 --> action_2

[]

 ...

]

The Challenges of Embedding BSV in

the SAL Language
 BSV is a guarded action language

 Similar to specification languages of several proof tools:

– Model checkers: SAL, SPIN etc.

– Model checkable subset of the PVS theorem prover

 However, BSV is a more complex language in some
respects...

The Challenges of Embedding BSV in a

Automated Proof Tools

 Complex language constructs:

– Modules and methods

 Widespread presence of data paths:

– Can't always directly apply model checking to designs
with data paths due to state space explosion

– In SAL etc., we can build a specification that excludes
data paths...

– … but with BSV, the design is the specification

The Challenges of Embedding BSV in a

Guarded Action Language
 Bridge the semantic gap

– Express the constructs of BSV with the more limited
constructs of the target language

 Bridge the abstraction gap

– Abstract away from data path complexity to give
abstract specifications that can be efficiently verified

 Our work concentrates on bridging the semantic gap

Bridging the Semantic Gap

 Translate BSV to SAL specifications that can be
efficiently model checked, but bear little resemblance to
the original BSV

– Problematic, because difficult to rule out false
positives and false negatives

 Verify the BSV-to-SAL translation with deductive proof

– Currently performed in the PVS theorem prover

– Simple proof, could possibly be done with an SMT
solver

An Example Rule

rule p_critical (pcp._read == Critical && fifo.notFull);

 fifo.enq (True);

 pcp._write (Sleeping);

 turn._write (False);

endrule

A Primitive Embedding in SAL

Reg {T : type} : CONTEXT = BEGIN

 State : type = [# data : T #];

END

FIFOF1 {T : type} : CONTEXT = BEGIN

 State : type = [# notFull : bool, notEmpty : bool, data : T #];

END

A Primitive Embedding in SAL

PC: TYPE = {Sleeping, Trying, Critical};

...

pcp : Reg{PC}!State,

pcq : Reg{PC}!State,

turn : Reg{bool}!State,

fifo : FIFOF1{bool}!State

Rules in BSV

p_critical : pcp.data = Critical and fifo.notFull

 --> fifo’ = (# data := true,

 notFull := false,

 notEmpty := true #);

 pcp’ = (# data := Sleeping #);

 turn’ = (# data := false #)

BSV-to-SAL Translation

p_critical : pcp.data = Critical and fifo.notFull

 --> fifo’ = (# data := true,

 notFull := false,

 notEmpty := true #);

 pcp’ = (# data := Sleeping #);

 turn’ = (# data := false #)

rule p_critical (pcp._read == Critical && fifo.notFull);

 fifo.enq (True);

 pcp._write (Sleeping);

 turn._write (False);

endrule

AST Expanded AST

BSV-to-SAL Translation

AST Expanded AST

BSV Code Primitive SAL Embedding

Monadic PVS Embedding Primitive PVS EmbeddingProof

Currently in PVS, but might be possible in SMT Solver

A Module's State in PVS

Peterson : type = [# pcp : Reg [PC],

 pcq : Reg [PC],

 turn : Reg [bool],

 fifo : FIFOF1 [bool]

 #]

Primitive Embedding in PVS

p_critical_primitive (pre, post : Peterson) : bool

 = pre‘pcp‘data = Critical ∧ pre‘fifo‘notFull

 ∧ post = pre with [(fifo) := (# data := true,

 notFull := false,

 notEmpty := true #),

 (pcp) := (# data := Sleeping #),

 (turn) := (# data := false #)]

A Monadic Embedding in PVS

p_critical = rule (pcp‘read = Critical ∧ fifo‘notFull)

 (fifo‘enq (true) ≫

 pcp‘write (Sleeping) ≫

 turn‘write (false))

Rules in BSV

 p_critical = rule (pcp‘read = Critical ∧ fifo‘notFull)

 (fifo‘enq (true) ≫

 pcp‘write (Sleeping) ≫

 turn‘write (false))

 rule p_critical (pcp._read == Critical && fifo.notFull);

 fifo.enq (True);

 pcp._write (Sleeping);

 turn._write (False); endrule

Experimental Results: Peterson's

Protocol
 Verified a BSV implementation of 2 process Peterson's

Protocol

 50 lines of BSV code (extracts provided in paper)

 Hand embedded BSV code in SAL

 Verified the BSV translation in PVS

 All code will shortly be on sourceforge

– Search on sourceforge for “Bluespec”

Example: Peterson's Protocol

mutex: THEOREM

 System |- G(NOT(pcp.data = Critical AND pcq.data = Critical))

“The two processes will never be in critical mode at the same time”

liveness: THEOREM

 System |- (G(F(pcp.data = Trying)) => G(F(pcp.data = Critical)))

 and (G(F(pcq.data = Trying)) => G(F(pcq.data = Critical)))

“A Trying process will always (eventually) gain access to the Critical
mode”

Conclusion

• BSV is a semantically elegant HDL

– Well suited for formal reasoning

– But little work carried out on application of
automated reasoning

• We have carried out investigations into the application of
model checking and theorem proving for verifying BSV
designs

• Today, I presented a strategy for embedding a subset of
BSV in SAL model checker, where BSV-to-SAL
translation is verified in PVS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

