Functional programming and
hardware design: where to now??

Wouter Swierstra, Koen Claessen,
Carl Seger, Emily Shriver,

Mary Sheeran

1980 1990 2000 2010
e
ForSyDe
| Xilinx
nFP = Ruby ——= Classir:""ﬁ va - Kansas

Lava HChalmers-”"”_’” Lava
Lava \\\a.\"nrk

Lava
Deep DSL of
Circuits as Functions Addressing Mud_ern
: Observable Functional
Relations Overloading of Sharing Programming
Interpretations KU

Andy Gill, at. al. Introducing Kansas Lava September 23, 2000 4 /20

with thanks to Andy Gill (U Kansas)

Behavioural

» Hawk (Cook, Launchbury, Matthews)

> Chalk

> Lava (Bjesse, Claessen, Sheeran, Singh)

» Wired (Axelsson, Claessen, Sheeran)

Structural

data Gate c where
And :: c->c -> Gate
Or :c->c->Gate
Not :: c-> Gate

data Lava where
Circuit :: Ref (Gate Lava) -> Lava

Lava

Lava

Key FP idea is use of higher order functions (combinators)

j i
bitBlock i j comp

sorter

sorter

itSort n = compose [blockBit (n-j) (j-k) comp | j <- [0..n], k <-[0..j]]

Lava

Things really take off when you use the host
language in sophisticated ways

For example, searching for prefix networks

(I didn’t do this in Lava but could have.
We connected the work to Wired and produced
layout.)

recursive pattern

P |
B I R P
P i
I-I-""I ---------- I-I
| | i [T T

This sequence of numbers
characterises one
decomposition

10

need a measure function (e.g. number of operators)

Need the idea of a context into which a network should fit

Search!

type Context = ([Int],Int)

delays in

Need to find a network that fits in here

max delay
out

11

parpre3 :: Int -> Int -> ([Net] -> Int) -> Context -> ANW
parpre3 f g opt ctx = maybe (error "no fit") unWrap (prefix ctx)
where
prefix = memo pm

pm ([i],0) = try wire ([i],0)
pm (is,0) | 2*(maxd is 0) < length is = Nothing
pm (is,0) | fits bser (is,o0) = Just (Wrap bser)
pm (is,0) = bestOn is opt S mapMaybe makeNet (tops3 permsUp (is,0) f g)
where
makeNet ds = do let sis = split ds is
let js = map (last.(ser delF)) S init sis
pr <- prefix' S last sis
p <-prefix'js
return S build1 ds pr p
prefix' ins = prefix (ins,o0-1)

parpre3 :: Int -> Int -> ([Net] -> Int) -> Context -> ANW
parpre3 f g opt ctx = maybe (error "no fit") unWrap (prefix ctx)
where
prefix = memo pm

pm ([i],0) = try wire ([i],0)
pm (is,0) | 2*(maxd is 0) < length is = Nothing
pm (is,0) | fits bser (is,o0) = Just (Wrap bser)
pm (is,0) = bestOn is opt S mapMaybe makeNet (tops3 permsUp (is,0) f g)
where
makeNet ds = do let sis = split ds is
let js = map (last.(adladF delF)) S init sis
pr <- prefix' S last sis
p <-prefix'js
return S build1 ds pr p
prefix' ins = prefix (ins,o0-1)

(NSI)

-

- va

J]

Hawk

type Hawk a = [a] -- (called Signal a in Hawk papers)

constant :: a -> Hawk a
constant X = X : constant x

lift :: (a -> b) -> Hawk a -> Hawk b
lift f (x : xs) =f x : lift f xs

delay :: a -> Hawk a -> Hawk a
delay x xs = x : xs

Hawk

mux :: Hawk Bool -> Hawk a -> Hawk a -> Hawk a
mux (c:cs) (t:ts) (e:es) = x : mux cs ts es
where
X = if cthen t else e

command srcRegA srcRegB

L

BegisterFile

|, inpautl

|, inputd

writeRag

writeContents

RO

} e

Hawk

destReg data Reg=RO | R1 | R2 ... |R7

Delay

input

Delay

gt

M|t

data Cmd = Add | SUB | INC

diagram from "Microprocessor Specification in Hawk”

command srcRegA

|, inpautl

|, inputd

ALU

sicRegB desiReg
RO
i\ i | mit
writeRag input
= Delay |~
BegisterFile
writeContents gt
= Delay |=
|\ mit
0

Hawk

shaml :: [(Signal Cmd.Signal Reg,
Signal Reg.Signal Hegl ->
(Signal Reg.Signal Int)
shaml (ewmd . destReg . evcRegh. ercRegll =
(destheg’ ,alulutput)
whera
alulnputd,alnlnputh] =
reghile (destReg”, alullutput®]
erchegh erchHegH
alunlntput = aln cmd alnlnpuntd alulnpntH
alnlntput’ = delay O alnlntput
destheg® = delay RO destheg

diagram and code from “Microprocessor Specification in Hawk”

Hawk

Now you just have the whole of Haskell

Beautiful descriptions e.g. using transactions
to ease description of control parts

implementation a bit clunky to use (the one time |
tried)

Problem is that it is hard to do anything with these
descriptions (though there was some work on
verification with Isabelle).

Chalk

Aim to get the best of both worlds

Use “modern functional programming”
GADTs
Applicative Functors
etc.

pure :: a-> Circuit a

Examples
zero = pure False
invertor = pure not

adder = pure (+)

Chalk

Chalk

<*> :: Circuit (a -> b) -> Circuit a -> Circuit b

mux :: Circuit Bool -> Circuit a -> Circuit a -> Circuit a
mux cs ts es = pure cond <*> ¢cs <*> ts <*> es
where
condcte=ifcthentelsee
delay :: a -> Circuit a -> Circuit a

component :: String -> Circuit a -> Circuit a

loop :: Circuit (s -> (a,s)) -> s -> Circuit a

Generalised Abstract Data Type (GADT)

Sort of poor man’s dependent types (!)

now commonly used in DSELs. One nice example is use in

Yampa (functional reactive programming) to permit more
optimisations

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a->Term a->Term a
Pair :: Term a -> Term b -> Term (a,b)

Generalised Abstract Data Type (GADT)

eval :: Terma->a

eval (Liti) =i

eval (Succ t) =1+ evalt

eval (IsZerot) = eval t ==

eval (If b el e2) = if eval b then eval el else eval e2
eval (Pair el e2) = (eval el, eval e2)

 The key point about GADTSs is that pattern matching causes type
refinement. For example, in the right hand side of the equation

eval :: Terma->a
eval (Liti) = ...

the type a is refined to Int. That's the whole point!

(from ghc documentation)

Applicative functor

generalised monad
7)) V4
somewhere between a monad and an arrow

class Functor f where
fmap :: (a->b)->(fa->fb) --alsocalled <S>

class Functor f => Applicative f where
pure :: a->fa
<*>uf(a->b)>fa->fb

Chalk data type

data CircuitF circ a where
Pure :: a -> CircuitF circ a
App :: circ (b ->a) -> circ b -> CircuitF circ a
Delay :: a -> circ a -> CircuitF circ a
Component :: Name -> circ a -> CircuitF circ a
Input :: Name -> CircuitF circ a

data Circuit a where
Circuit :: Ref (CircuitF Circuit a) -> Circuit a deriving (Typeable)

instance Applicative Circuit where
pure x = Circuit (ref x)
cl <*> c2 = Circuit (ref (App c1 c2))

simulate

simulate :: Circuit a -> [a]
simulate (Circuit c) = sim (deref c)
where

sim :: CircuitF Circuit a -> [a]
sim (Pure x) = repeat x
sim (App f x) = zipWith id (simulate f) (simulate x)
sim (Delay x xs) = x : simulate xs
sim (Component nm c) = simulate c

e p— p— p—

Use of GADT necessary to get this to typecheck (App case)

Chalk example

Main point is that it looks nearly as nice as Hawk!

data Reg = RO | R1 | R2 | R3 deriving (Show, Eq)
type Regs = (Int, Int, Int, Int)
data Cmd = ADD | SUB | INC deriving (Show, Eq)

type Operand = (Reg, Maybe Int)

data Transaction =
Transaction {dest :: Operand, cmd :: Cmd, src :: [Operand]}
deriving (Show, Eq, Typeable)

setDest :: Transaction -> Int -> Transaction
setDest (Transaction (r,_) cmd srcs) i = Transaction (r, Just i) cmd srcs

Chalk Examples

regFile :: Signal Transaction -> Signal Transaction -> Signal Transaction
regFile writes reads = loop (regStep <S> writes <*> reads) initRegs

regStep :: Transaction -> Transaction -> Regs -> (Transaction , Regs)
regStep write@(Transaction wrOp _) read regs
= let regs' = updateReg wrOp regs
read' = updateTransaction regs read
in (read', regs')

updateTransaction :: Regs -> Transaction -> Transaction
updateTransaction regs t = t {srcs = map (updateOperand regs) (srcs t)}

updateOperand regs (r, _) =(r, Just (lookupReg r regs))
lookupReg RO (a,b,c,d) = a
lookupReg R1 (a,b,c,d) =b
lookupReg R2 (a,b,c,d) =c
lookupReg R3 (a,b,c,d) =d

Chalk example

alu :: Signal Transaction -> Signal Transaction
alu cmds = interpret <S> cmds
where
interpret :: Transaction -> Transaction
interpret trans@(Transaction dest cmd srcs) =
setDest trans (eval cmd (map (fromJust . snd) srcs))
eval :: Cmd -> [Int] -> Int
eval ADD [x, y] =x+vy
eval SUB [x, y] =x-y
eval INC[x]=x+1

sham :: Signal Transaction -> Signal Transaction
sham instrs = aluOutputD
where
alulnput = regFile aluOutputD instrs
aluOutput = alu alulnput
aluOutputD = delay nop aluOutput

Analysis?

Applicative functor also makes non-standard interpretation (NSI) straight-forward
e.g. estimating costs

data Ticked a = T {val :: a, cost :: Double}
typed Tcircuit a = Circuit (Ticked a)

instance Functor Ticked where
fmap f (T x cost) = T (f x) cost

instance Applicative Ticked where
purex=Tx0.0
(Tfcl)<*>(Txc2)=T(fx)(c1+c2)

Can now specify costs of components and count uses. Could form the basis for more
sophisticated analyses.
There is a simple framework there to bring order to manipulations of the circuit data

type.

Current state

Have tried various Hawk examples in Chalk
Have developed a series of analyses.

Aiming to mimic analyses from the literature on early power and performance
analysis

Also need a way to do refinement. (See Steve Hoover’s talk (given by John OL at
an earlier DCC.) and Andy Martin’s work)

Current state

No major stumbling blocks as yet but larger examples might reveal fundamental
limitations!

Aiming for level of abstraction well above the sham examples. The “uncore” now
seems to be a big worry. Example question: What is the effect of this cache organisation on

power and performance?

BUT project is stalled because it has no manpower

Current state

No major stumbling blocks as yet but larger examples might reveal fundamental
limitations!

Aiming for level of abstraction well above the sham examples. The “uncore” now
seems to be a big worry. Example question: What is the effect of this cache organisation on

power and performance?

BUT project is stalled because it has no manpower

and because we are not sure what the right next step is!

Related work on getting the benefits of
both deep and shallow embedding

Recipe (Naylor, York)

Layer on top of Lava that provides behavioural programming
constructs (mutable vars, parallel and sequential composition

etc.)
based on Claessen and Pace (Flash)
also used to control Lego Mindstorms!

Feldspar (Axelsson, Sheeran, Svenningsson et al)
(DSEL for DSP algorithm design)

Discussion

* We need to decide where to go next

 Experimenting with what we can do in very high
level architectural modelling and refinement with
fancy types and other modern PL goodies is fun.
But is it wise?

 Would it be worthwhile making a joint effort in
high level architectural modelling?? The work
would have to be done in collaboration with
industrial colleagues (Intel, ...).

	Functional programming and hardware design: where to now??
	Slide Number 2
	Slide Number 3
	Lava
	Lava
	sorter
	sorter
	Lava
	recursive pattern
	Slide Number 10
	Search!
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Hawk
	Hawk
	Hawk
	Hawk
	Hawk
	Chalk
	Chalk
	Chalk
	Generalised Abstract Data Type (GADT)
	Generalised Abstract Data Type (GADT)
	Applicative functor
	Chalk data type
	simulate
	Chalk example
	Chalk Examples
	Chalk example
	Analysis?
	Current state
	Current state
	Current state
	Related work on getting the benefits of both deep and shallow embedding
	Discussion

