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Outline

Challenges for Formal Verification imposed by
Weakly-Programmable IPs (WPIP)

Interval Property Checking

m Specification Methodology
m Gap-Free Specifications

Operational ISA model

m Operation-oriented specification
m Software Constraints
m Completeness considerations

Applications
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Example WPIP FlexiTreP

Dynamically Reconfigurable Channel Code Control
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Example WPIP FlexiTreP

Dynamically Reconfigurable Channel Code Control

m Deep pipelines

= hard to control operations in
uppermost stages

m Out-of-order memory access

m Implicit use of software constraints for
optimization of the pipeline

= Huge number of configurations

m ISA model not available
SAT WB
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Standard design flow for ASIPs

SW Generic
Algorithm Processor
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Bottom-up Design Flow for WPIPs
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WPIP FlexiTreP
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SAT-based Property Checking

Iterative Circuit Model: fromi=t to i=t+ k
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Boolean function to represent property /—> '

Boolean satisfiability problem (SAT)
SAT modulo Theory (SMT) problem

29.03.2010 Slide-8



SAT-based Property Checking

Xi Yi X Yt ) A Y.,
St O Mt St = st+1‘ Opr1r Aert S'ti1= Sti2 Oetkr Ak
v . v [ v v [‘ v p _ 1?
Boolean function to represent property ——

Unsatisfiability guarantees unbounded validity of G(p)

p is specified by a timed Boolean predicate (TBP) in terms of
design signals consisting of:

= Boolean connectives (Av,...)

m Generated next state operator X!

A TBP p refers to bounded inspection interval of time [t;t,]
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RT-level module verification: operation by operation

Typical methodology for Property Checking
of SoC modules:

- Adopt an operational view of the design

- Each operation can be associated with
certain important control states in
which the operation starts and ends

- Specify a set of properties for every
operation, i.e., for every important
control state

- Verify the module operation by
operation by moving along the
important control states of the design

- The module is verified when every
operation has been covered by a set of
29.03.2010 properties
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Property Checking of processor pipeline

Goal: Prove that instructions are performed correctly

Spec: Safety properties of type: G(a—>c¢) with bounded
inspection interval

Example: Property in ITL (Interval Language)

property instr XYZ

assume:
f at t: next instr can be issued();
at t: command dec (XYZ,res,opl,op2);
'HSSUWWHDHSW< during[t,t+3]: no reset;
during[t,t+3]: no interrupt;
\.
prove:
at t+3: res == compute res (XYZ,opl,op2);
"commitments* at t+3: stable other regs(res);

at t+l: next instr can be issued();
end
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CPU verification: instruction by instruction

PrOperty 1: G(acontrol 1 = Ceontrol 2)

/ data_path_control_signals
—/

\4

—— data path [

PrOperty 2: G(acontrol 2 ™ Ccontrol )
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RT-level module verification: operation by operation

Typical methodology for property checking
of SoC modules:

- Adopt an operational view of the design
\Ciated with

How to guarantee
that every
scenario is

covered?

- The module is verified when every
operation has been covered by a set of
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Mutation coverage

A set of (operational) properties P is complete for a design
C with respect to a set of mutations M={C,,...,C,}, if C

satisfies the properties in P and for every mutation C; at
least one property fails.

Problems:
Criterion design-dependent

Do the mutations reflect designer mistakes?
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Completeness

A set of (operational) properties P is complete if every two

designs C;, C, satisfying the properties in P are sequentially
equivalent.

1! K. Claessen: “A Coverage
Analysis for Safety Property

Lists”, FMCAD 2007

empty model for

- Dl-
empty model for

C, J. Bormann and H. Busch:
~Method for determining the
quality of a set of properties”
European Patent Application,
Publication Number
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Completeness
\ 1!
Practical extensions: —
m Allow explicit constraints on empty model
inputs of designs for ¢
m Weaken sequential equivalence empty model
condition by introduction of for &2
determination requirements _i

Decompose proof with respect to the given properties peP.

m Sucessor /Case-Split Test:
Every input trace can be covered with a uniquely
determined sequence of properties (p; | i € N) such that
the determination intervals match without gaps.

m Determination Test:

Every property uniquely determines the outputs within
its determination interval.
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Completeness
state (_) H (_) Hﬁ
o | —

Decompose proof with respect to the given properties peP.

m Sucessor /Case-Split Test:
Every input trace can be covered with a uniquely
determined sequence of properties (p; | i € N) such that
the determination intervals match without gaps.

m Determination Test:

Every property uniquely determines the outputs within
its determination interval.
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Operational ISA model

Due to specific programming models WPIPs often lack a
classical ISA model

m Instructions correspond to hundreds of classical RISC
instructions (referred to a nuclei)

m Semantics often implicitly given by functional blocks
(operations) involved in the execution

How to specify functional behavior of a WPIP?
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Operational ISA model

The operational ISA model for a WPIP consists of:

m A relation OISA € I x O between the set of instructions I
and the set of (pipeline) operations O

m Timed Boolean predicates:

o instrFetched(): determines whether the instruction
ie;/iz/issued into the pipeline at a time-point t

o op,(): specifies functionality of the operation 0 € O

—
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T
=
B
(D
O
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Operational ISA model

Manual specifications given by the verification engineer

OISAcIxO

instr;Fetched(): determines whether the instruction
i € Iis issued into the pipeline at a time-point ¢t

op,(): specifies functionality of the operation o € O

Everything else will be generated automatically!
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Operational ISA model

Timed Boolean predicates that are automatically generated
from operational ISA model:

= instrPerformed() = A\ orsa 0Po()

= op,Triggered() = V ;o orsa instr,Fetched()

m Per-Instruction properties:
o instr;Exec()= nextInstrState() A instrFetched()
- instr,Performed() /\{XW) nextInstrState()

|
Just another

= Per-Operation properties: operation
o op,Exec()= nextInstrState() A op,Triggered() = op,()
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Hazards imply software constraints

on
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=
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Determine every pair of op,, op; k # j
that refer to the same resource with
time slack t

For all related instructions iy, i; store (iy, i;, op,, op;,t) in
conflict list
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Hazards imply software constraints

on

=3

m Store automatically generated constraint that forbids
sequences where i, follows i; after t clock cycles

—
-
n
Tt
=
—
(D
a

For every conflict (i, i;, op,, op;,t)
in conflict list decide:

= Manually find weaker constraint
o swConstraint; ()= instr,-kFetched()9flags,k()
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Software compliance with constraints

on
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Strong abstraction feasible for checking compliance of
software with detected and now explicitly specified
constraints
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Software compliance with constraints

1 1 |
OP; I opP3 opy

0op,

D9JJ]SUT

OPy4

OPsg
FE OPp; OPp,\ OP3 OpP4 OPy

op,abstr()

Strong abstraction feasible for checking compliance of
software with detected and now explicitly specified
constraints
= Empty models for operations (only signal names)
m TBPs op,abstr() describe abstracted behavior

o Consider behavior of flags; () only
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Completeness by construction

Case split and successor tests obviously hold and this can
easily be verified by a completeness checker

Problem:

TBPs for operations op,() only describe modified values for
involved state holding elements

= other registers/memory cells remain undetermined

Description of default behavior is required

m keep value
m take default value

Tedious identification of situations where default behavior
needs to be applied is completely automated
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Experimental Results

HW verification: . 65nm low power technology

_ « 41741 standard cells, 15 macros
= MAP and FlexiTreP, two | pje size without interface 0.74 mm?

WPIPs for channel « 360Mhz, core power ~100mW@1.1V
decoding were . Logic utilization 77%
successfully verified. . Silicon available since March 2009

m During the verification
subtle HW bugs were
discovered which had
escaped sign-off
simulation before

m FlexiTreP has been
taped out successfully

LETI MAGALI MPSoC Chip 27

4G mobile baseband IP demonstrator
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Design characteristics

MAP FlexiTreP
# Instructions 16 104
Lines of RTL Code 22689 114040
Lines of ADL Code 1521 8634
# Operations (properties) 28 83
# Generated properties 14 52
CPU Time regression 37,67 s 18h
Memory Usage 593 MB 14,3 GB

Intel(R) Xeon(R) CPU E5440

29.03.2010

@ 2.83GHz / SUSE 11.1
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Bugs discovered by FV

Wrong sign extensions: res = opl + op2

Wrong saturation condition in stage 13 out of 14

Confirmed bug in RTL code generation for nested if-then-
else statement of commercial ASIP design tool identified

Scenario for a race condition of parallel value assignments
to the same variable identified

Software constraints have been ignored by some programs

29
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Results for automatic completion

FlexiTreP (for industrial application)

= Automatic completion of the OISA model revealed
several inconsistencies/gaps within the property suite

= All inconsistencies have been successfully resolved
= All gaps have been closed

MAP

m SW-constraints and TBPs for default behavior have
originally been set up manually.

= Automatic analysis revealed that the manual process
missed important software constraints

m Completeness of the generated property set successfully
proven with OneSpin 360 MV

o Additional manual effort one week
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