
Designing Correct Circuits 2010

Gap-Free verification of weakly 
programmable IPs 

against their operational ISA model

Markus Wedler, Sacha Loitz, Wolfgang Kunz
Department of Electrical and Computer Engineering

University of Kaiserslautern/Germany



Designing Correct Circuits 2010

Outline
 Challenges  for Formal Verification imposed by 

Weakly-Programmable IPs (WPIP)

 Interval Property Checking

 Specification Methodology

 Gap-Free Specifications

 Operational ISA model

 Operation-oriented specification

 Software Constraints

 Completeness considerations

 Applications

29.03.2010 Slide-2



Designing Correct Circuits 2010

Slide-3

Example WPIP FlexiTreP

29.03.2010



Designing Correct Circuits 2010

Slide-4

Example WPIP FlexiTreP

29.03.2010

Challenges:

 Deep pipelines

 hard to control operations in 
uppermost stages

 Out-of-order memory access

 Implicit use of software constraints for 
optimization of the pipeline 

 Huge number of configurations 

 ISA model not available



Designing Correct Circuits 2010

Slide-5

Standard design flow for ASIPs

SW
Algorithm

Profiling

Additional
Instructions

Generic
Processor

Combine

ASIP

29.03.2010



Designing Correct Circuits 2010

Slide-6

Bottom-up Design Flow for WPIPs

Micro-
Architecture
Algorithm A

Micro-
Architecture
Algorithm B

Micro-
Architecture
Algorithm C

Hallo

Design
Pipeline

WPIP

Functional
Blocks

Analyze
Flexibility

Requirements

29.03.2010



Designing Correct Circuits 2010

APIn
t

D
e

In
t

AP/

SurvivorIn
t

D
e

In
t

WPIP FlexiTreP

 MAP 
micro-architecture

 Turbo 
micro-architecture

 Viterbi
micro-architecture

MAP

LLR

BM REC

MEM

BUF

BUF

TB

MEM BM REC LLR/TB

29.03.2010 Slide-7



Designing Correct Circuits 2010

SAT-based Property Checking

Slide-8

Iterative Circuit Model:  from i = t to  i = t + k

t, t t+1, t+1

Xt
Xt+1

st

Yt

t+k, t+k

Xt+k

s’t+1= st+2

Yt+1 Yt+k

Boolean function to represent property
p = 1?

s’t = st+1

Boolean satisfiability problem (SAT)
SAT modulo Theory (SMT) problem

29.03.2010



Designing Correct Circuits 2010

SAT-based Property Checking

 Unsatisfiability guarantees unbounded validity of G(p)
 p is specified by a timed Boolean predicate (TBP) in terms of 

design signals consisting of: 
 Boolean connectives (∧,∨,…)

 Generated next state operator Xt

 A TBP p refers to bounded inspection interval of time [tf,tl]  

Slide-9

t, t t+1, t+1

Xt
Xt+1

st

Yt

t+k, t+k

Xt+k

s’t+1= st+2

Yt+1 Yt+k

Boolean function to represent property
p = 1?

s’t = st+1

29.03.2010



Designing Correct Circuits 2010

RT-level module verification: operation by operation

Typical methodology for Property Checking 
of SoC modules:

 Adopt an operational view of the design

 Each operation can be associated with 
certain important control states in 
which the operation starts and ends

 Specify a set of properties for every 
operation, i.e., for every important 
control state

 Verify the module operation by 
operation by moving along the 
important control states of the design

 The module is verified when every 
operation has been covered by a set of 
properties  

Control 1

Control 2

n cycles

Slide-1029.03.2010



Designing Correct Circuits 2010

Property Checking of processor pipeline

property instr_XYZ

assume:

at t: next_instr_can_be_issued();

at t: command_dec(XYZ,res,op1,op2);

during[t,t+3]: no_reset;

during[t,t+3]: no_interrupt;

…

prove:

at t+3: res == compute_res(XYZ,op1,op2);  

at t+3: stable_other_regs(res);

at t+1: next_instr_can_be_issued();

end

"assumptions"

"commitments"

Goal: Prove that instructions are performed correctly

Spec: Safety properties of type: G(ac) with bounded 
inspection interval

Example: Property in ITL (Interval Language)

29.03.2010 Slide-11



Designing Correct Circuits 2010

Control 1

Control 2

/ data_path_control_signals

data path

CPU verification: instruction by instruction

Property 1:   G(acontrol 1  ccontrol 2)

Property 2:   G(acontrol 2  ccontrol …)

n cycles

Slide-12



Designing Correct Circuits 2010

RT-level module verification: operation by operation

Typical methodology for property checking 
of SoC modules:

 Adopt an operational view of the design

 Each operation can be associated with 
certain important control states in 
which the operation starts and ends

 Specify a set of properties for every 
operation, i.e., for every important 
control state

 Verify the module operation by 
operation by moving along the 
important control states of the design

 The module is verified when every 
operation has been covered by a set of 
properties  

Control 1

Control 2

n cycles

Slide-1329.03.2010

How to guarantee
that every 
scenario is 
covered?



Designing Correct Circuits 2010

Mutation coverage

A set of (operational) properties P is complete for a design 
C with respect to a set of mutations M={C1,…,Cn}, if C
satisfies the properties in P and for every mutation Ci at 
least one property fails.

Problems:

 Criterion design-dependent

 Do the mutations reflect designer mistakes?

29.03.2010 Slide-14



Designing Correct Circuits 2010

Completeness

A set of (operational) properties P is complete if every two 
designs C1, C2 satisfying the properties in P are sequentially 
equivalent.

29.03.2010 Slide-15

∧p(x,s2,o2)
p∈P

empty model for 
C1

empty model for 
C2

x

∧p(x,s1,o1)
p∈P

1!

1!

1?

K. Claessen: “A Coverage 
Analysis for Safety Property 
Lists”, FMCAD 2007

J. Bormann and H. Busch: 
„Method for determining the 
quality of a set of properties”
European Patent Application, 
Publication Number
EP1764715,  2005.



Designing Correct Circuits 2010

Completeness
 Practical extensions:

 Allow explicit constraints on 
inputs of designs

 Weaken sequential equivalence 
condition by introduction of 
determination requirements

 Decompose proof with respect to the given properties p∈P.

 Sucessor /Case-Split Test: 
Every input trace can be covered with a uniquely 
determined sequence of properties (pi | i ∈ ℕ) such that 
the determination intervals match without gaps.

 Determination Test:
Every property uniquely determines the outputs within 
its determination interval.

29.03.2010 Slide-16

∧p(x,s2,o2)
p∈P

empty model 
for C1

empty model 
for C2

x

∧p(x,s1,o1)
p∈P

1!

1!

1?



Designing Correct Circuits 2010

Completeness

 Decompose proof with respect to the given properties p∈P.

 Sucessor /Case-Split Test: 
Every input trace can be covered with a uniquely 
determined sequence of properties (pi | i ∈ ℕ) such that 
the determination intervals match without gaps.

 Determination Test:
Every property uniquely determines the outputs within 
its determination interval.

29.03.2010 Slide-17

state

insig

outsig1

outsig2



Designing Correct Circuits 2010

Operational ISA model
 Due to specific programming models WPIPs often lack a 

classical ISA model

 Instructions correspond to hundreds of classical RISC 
instructions (referred to a nuclei)

 Semantics often implicitly given by functional blocks 
(operations) involved in the execution

How to specify functional behavior of a WPIP?

29.03.2010 Slide-18



Designing Correct Circuits 2010

Operational ISA model
 The operational ISA model for a WPIP consists of:

 A relation OISA ⊆ I × O between the set of instructions I

and the set of (pipeline) operations O

 Timed Boolean predicates:

 instriFetched(): determines whether the instruction 
i ∈ I is issued into the pipeline at a time-point t

 opo(): specifies functionality of the operation o ∈ O 

29.03.2010 Slide-19

…

FE o1 o2 o3 o4 on

op1

op2

op3

op4 op5

opk

In
s
trre

g



Designing Correct Circuits 2010

Operational ISA model
Manual specifications given by the verification engineer

 OISA ⊆ I × O

 instriFetched(): determines whether the instruction 
i ∈ I is issued into the pipeline at a time-point t

 opo(): specifies functionality of the operation o ∈ O

Everything else will be generated automatically!

Slide-20



Designing Correct Circuits 2010

Operational ISA model
 Timed Boolean predicates that are automatically generated 

from operational ISA model:

 instriPerformed() = ∧(i,o) ∈ OISA opo()

 opoTriggered() = ∨(i,o) ∈ OISA instriFetched() 

 Per-Instruction properties:

 instriExec()= nextInstrState() ∧ instriFetched()
 instriPerformed() ∧ Xt(i) nextInstrState()

 Per-Operation properties:

 opoExec()= nextInstrState() ∧ opoTriggered()  opo()

29.03.2010 Slide-21

Just another
operation



Designing Correct Circuits 2010

 Determine every pair of opk, opj k ≠ j 
that refer to the same resource with 
time slack t

 For all related instructions ik, ij store (ik, ij, opk, opj ,t) in 
conflict list

Hazards imply software constraints

29.03.2010 Slide-22

…

FE o1 o2 o3 o4

op1

op2

op3

op4 op5

opk

In
s
trre

g

shared
resource



Designing Correct Circuits 2010

Hazards imply software constraints

29.03.2010 Slide-23

 For every conflict (ik, ij, opk, opj ,t) 
in conflict list decide:

 Store automatically generated constraint that forbids 
sequences where ik follows ij after t clock cycles

 Manually find weaker constraint

 swConstraintj,k()= instrik
Fetched()flagsik

()

…

FE o1 o2 o3 o4

op1

op2

op3

op4 op5

opk

In
s
trre

g

shared
resource



Designing Correct Circuits 2010

Software compliance with constraints

29.03.2010 Slide-24

 Strong abstraction feasible for checking compliance of 
software with detected and now explicitly specified 
constraints

…

FE o1 o2 o3 o4

op1

op2

op3

op4 op5

opk

In
s
trre

g

shared
resource



Designing Correct Circuits 2010

Software compliance with constraints

29.03.2010 Slide-25

…

FE op1 op2 op3 op4 opn

op1

op2

op3

op4 op5

opk

In
s
trre

g

 Strong abstraction feasible for checking compliance of 
software with detected and now explicitly specified 
constraints 
 Empty models for operations (only signal names)
 TBPs opkabstr() describe abstracted behavior

 Consider behavior of flagsik
() only

op2abstr()



Designing Correct Circuits 2010

Completeness by construction
 Case split and successor tests obviously hold and this can 

easily be verified by a completeness checker 

Problem:

 TBPs for operations opo() only describe modified values for 
involved state holding elements

⇒ other registers/memory cells remain undetermined

 Description of default behavior is required

 keep value
 take default value

 Tedious identification of situations where default behavior 
needs to be applied is completely automated

Slide-2629.03.2010



Designing Correct Circuits 2010

27

Experimental Results
 HW verification:

 MAP and FlexiTreP, two 
WPIPs for channel 
decoding were 
successfully verified.

 During the verification 
subtle HW bugs were 
discovered which had 
escaped sign-off 
simulation before

 FlexiTreP has been 
taped out successfully

 65nm low power technology
 41741 standard cells, 15 macros
 Die size without interface 0.74 mm2

 360Mhz, core power ~100mW@1.1V 
 Logic utilization 77%
 Silicon available since March 2009 

ARM1176

CORE

WIFLEX

ASIP

UWB-LDPC

SME Mephisto
TRX

OFDM

ARM1176 + SME

RX-BIT

+ 

HARQ

TRX

OFDM

TRX

OFDM

TRX

OFDM

MephistoMephisto

Mephisto SME

SME

Mephisto

SME

EXT SME

80C51

T
X

-B
IT

N
o
C

 p
erf

LETI MAGALI MPSoC Chip
4G mobile baseband IP demonstrator



Designing Correct Circuits 2010

Design characteristics

29.03.2010 Slide-28

MAP FlexiTreP

# Instructions 16 104

Lines of RTL Code 22689 114040

Lines of ADL Code 1521 8634

# Operations (properties) 28 83

# Generated properties 14 52

CPU Time regression 37,67 s 18h

Memory Usage 593 MB 14,3 GB

Intel(R) Xeon(R) CPU E5440  @ 2.83GHz / SUSE 11.1



Designing Correct Circuits 2010

Bugs discovered by FV

 Wrong sign extensions: res = op1 + op2

 Wrong saturation condition in stage 13 out of 14

 Confirmed bug in RTL code generation for nested  if-then-
else statement of commercial ASIP design tool identified

 Scenario for a race condition of parallel value assignments 
to the same variable identified

 Software constraints have been ignored by some programs

29



Designing Correct Circuits 2010

Results for automatic completion 

 FlexiTreP (for industrial application)

 Automatic completion of the OISA model revealed 
several inconsistencies/gaps within the property suite

 All inconsistencies have been successfully resolved

 All gaps have been closed

 MAP

 SW-constraints and TBPs for default behavior have 
originally been set up manually.

 Automatic analysis revealed that the manual process 
missed important software constraints 

 Completeness of the generated property set successfully 
proven with OneSpin 360 MV

 Additional manual effort one week
Slide-30


