Designing Correct Circuits 2010

Gap-Free verification of weakly
programmable IPs
against their operational ISA model

Markus Wedler, Sacha Loitz, Wolfgang Kunz
Department of Electrical and Computer Engineering

University of Kaiserslautern/Germany

Designing Correct Circuits 2010

Outline

Challenges for Formal Verification imposed by
Weakly-Programmable IPs (WPIP)

Interval Property Checking

m Specification Methodology
m Gap-Free Specifications

Operational ISA model

m Operation-oriented specification
m Software Constraints
m Completeness considerations

Applications

29.03.2010 Slide-2

Designing Correct Circuits 2010
Example WPIP FlexiTreP

Dynamically Reconfigurable Channel Code Control

&
=
g
£
'H

Fortroinag]
CVI/AP
LIFO
(128*48)

DECODE
ontrolfiags}

ntrolfiag

LIFOA
LIFOA

insn
LOOP
CONTROL

)
PROG
A MEM

INSN
FETCH
-

¥
BO

Address
Transformation

| set / mod|

4%(2048%8)

[DESMR
s |

=

4 Double Butterflies

WB2

AP/DEC »
MEM

4*(2048*8)

SMEVR
32
2
CJ
2

AP
[AP

WBA
[WEA

J

FE DC AD IL MEM CV BM1BM2 SM LLR1T LLR2 LLR3 LLR4 SAT WB

29.03.2010 Slide-3

Designing Correct Circuits 2010
Example WPIP FlexiTreP

Dynamically Reconfigurable Channel Code Control

m Deep pipelines

= hard to control operations in
uppermost stages

m Out-of-order memory access

m Implicit use of software constraints for
optimization of the pipeline

= Huge number of configurations

m ISA model not available
SAT WB

29.03.2010 Slide-4

Standard design flow for ASIPs

SW Generic
Algorithm Processor

29.03.2010 Slide-5

Bottom-up Design Flow for WPIPs

WPIP I
Design
Pipeline
e

Functional

5 Blocks %

(Flexibility
Requirements

W Micro-
Architecture
Algorithm A

¥ Micro- ¥ Micro-
Architecture Architecture
Algorithm B Algorithm C

29.03.2010 Slide-6

WPIP FlexiTreP

Designing Correct Circuits 2010

MEM

29.03.2010

BM

REC

LLR/TB

MAP
micro-architecture

Turbo
micro-architecture

Viterbi
micro-architecture

Slide-7

SAT-based Property Checking

Iterative Circuit Model: fromi=t to i=t+ k

X; Yi Xii Yii)) Y.,
St % At St = St} Orr1r Aeri S'r1= Str2 | Orir A

@
——

A 4
ol

y

Boolean function to represent property /—> '

Boolean satisfiability problem (SAT)
SAT modulo Theory (SMT) problem

29.03.2010 Slide-8

SAT-based Property Checking

Xi Yi X Yt) A Y.,
St O Mt St = st+1‘ Opr1r Aert S'ti1= Sti2 Oetkr Ak
v . v [v v [‘ v p _ 1?
Boolean function to represent property ——

Unsatisfiability guarantees unbounded validity of G(p)

p is specified by a timed Boolean predicate (TBP) in terms of
design signals consisting of:

= Boolean connectives (Av,...)

m Generated next state operator X!

A TBP p refers to bounded inspection interval of time [t;t,]

29.03.2010 Slide-9

RT-level module verification: operation by operation

Typical methodology for Property Checking
of SoC modules:

- Adopt an operational view of the design

- Each operation can be associated with
certain important control states in
which the operation starts and ends

- Specify a set of properties for every
operation, i.e., for every important
control state

- Verify the module operation by
operation by moving along the
important control states of the design

- The module is verified when every
operation has been covered by a set of
29.03.2010 properties

Slide-10

Designing Correct Circuits 2010

Property Checking of processor pipeline

Goal: Prove that instructions are performed correctly

Spec: Safety properties of type: G(a—>c¢) with bounded
inspection interval

Example: Property in ITL (Interval Language)

property instr XYZ

assume:
f at t: next instr can be issued();
at t: command dec (XYZ,res,opl,op2);
'HSSUWWHDHSW< during[t,t+3]: no reset;
during[t,t+3]: no interrupt;
\.
prove:
at t+3: res == compute res (XYZ,opl,op2);
"commitments* at t+3: stable other regs(res);

at t+l: next instr can be issued();
end

29.03.2010 Slide-11

Designing Correct Circuits 2010

CPU verification: instruction by instruction

PrOperty 1: G(acontrol 1 = Ceontrol 2)

/ data_path_control_signals
—/

\4

—— data path [

PrOperty 2: G(acontrol 2 ™ Ccontrol)

Slide-12

*
*
*
*
*
*
“
*

Designing Correct Circuits 2010

RT-level module verification: operation by operation

Typical methodology for property checking
of SoC modules:

- Adopt an operational view of the design
\Ciated with

How to guarantee
that every
scenario is

covered?

- The module is verified when every
operation has been covered by a set of

29.03.2010 propertles Slide-13

Designing Correct Circuits 2010

Mutation coverage

A set of (operational) properties P is complete for a design
C with respect to a set of mutations M={C,,...,C,}, if C

satisfies the properties in P and for every mutation C; at
least one property fails.

Problems:
Criterion design-dependent

Do the mutations reflect designer mistakes?

29.03.2010 Slide-14

Designing Correct Circuits 2010

Completeness

A set of (operational) properties P is complete if every two

designs C;, C, satisfying the properties in P are sequentially
equivalent.

1! K. Claessen: “A Coverage
Analysis for Safety Property

Lists”, FMCAD 2007

empty model for

- Dl-
empty model for

C, J. Bormann and H. Busch:
~Method for determining the
quality of a set of properties”
European Patent Application,
Publication Number

29.03.2010 EP1764715, 2005. Slide-15

Designing Correct Circuits 2010

Completeness
\ 1!
Practical extensions: —
m Allow explicit constraints on empty model
inputs of designs for ¢
m Weaken sequential equivalence empty model
condition by introduction of for &2
determination requirements _i

Decompose proof with respect to the given properties peP.

m Sucessor /Case-Split Test:
Every input trace can be covered with a uniquely
determined sequence of properties (p; | i € N) such that
the determination intervals match without gaps.

m Determination Test:

Every property uniquely determines the outputs within
its determination interval.

29.03.2010 Slide-16

Designing Correct Circuits 2010

Completeness
state (_) H (_) Hﬁ
o | —

Decompose proof with respect to the given properties peP.

m Sucessor /Case-Split Test:
Every input trace can be covered with a uniquely
determined sequence of properties (p; | i € N) such that
the determination intervals match without gaps.

m Determination Test:

Every property uniquely determines the outputs within
its determination interval.

29.03.2010 Slide-17

Designing Correct Circuits 2010
Operational ISA model

Due to specific programming models WPIPs often lack a
classical ISA model

m Instructions correspond to hundreds of classical RISC
instructions (referred to a nuclei)

m Semantics often implicitly given by functional blocks
(operations) involved in the execution

How to specify functional behavior of a WPIP?

29.03.2010 Slide-18

Operational ISA model

The operational ISA model for a WPIP consists of:

m A relation OISA € I x O between the set of instructions I
and the set of (pipeline) operations O

m Timed Boolean predicates:

o instrFetched(): determines whether the instruction
ie;/iz/issued into the pipeline at a time-point t

o op,(): specifies functionality of the operation 0 € O

—
-
)]
T
=
B
(D
O

29.03.2010 Slide-19

Designing Correct Circuits 2010
Operational ISA model

Manual specifications given by the verification engineer

OISAcIxO

instr;Fetched(): determines whether the instruction
i € Iis issued into the pipeline at a time-point ¢t

op,(): specifies functionality of the operation o € O

Everything else will be generated automatically!

Slide-20

Designing Correct Circuits 2010
Operational ISA model

Timed Boolean predicates that are automatically generated
from operational ISA model:

= instrPerformed() = A\ orsa 0Po()

= op,Triggered() = V ;o orsa instr,Fetched()

m Per-Instruction properties:
o instr;Exec()= nextInstrState() A instrFetched()
- instr,Performed() /\{XW) nextInstrState()

|
Just another

= Per-Operation properties: operation
o op,Exec()= nextInstrState() A op,Triggered() = op,()

29.03.2010 Slide-21

Designing Correct Circuits 2010

Hazards imply software constraints

on

—
-
n
Tt
=
=
(D
a

Determine every pair of op,, op; k # j
that refer to the same resource with
time slack t

For all related instructions iy, i; store (iy, i;, op,, op;,t) in
conflict list

29.03.2010 Slide-22

Designing Correct Circuits 2010
Hazards imply software constraints

on

=3

m Store automatically generated constraint that forbids
sequences where i, follows i; after t clock cycles

—
-
n
Tt
=
—
(D
a

For every conflict (i, i;, op,, op;,t)
in conflict list decide:

= Manually find weaker constraint
o swConstraint; ()= instr,-kFetched()9flags,k()

29.03.2010 Slide-23

Designing Correct Circuits 2010

Software compliance with constraints

on

—
-
n
Tt
=
—
(D
a

Strong abstraction feasible for checking compliance of
software with detected and now explicitly specified
constraints

29.03.2010 Slide-24

Designing Correct Circuits 2010

Software compliance with constraints

1 1 |
OP; I opP3 opy

0op,

D9JJ]SUT

OPy4

OPsg
FE OPp; OPp,\ OP3 OpP4 OPy

op,abstr()

Strong abstraction feasible for checking compliance of
software with detected and now explicitly specified
constraints
= Empty models for operations (only signal names)
m TBPs op,abstr() describe abstracted behavior

o Consider behavior of flags; () only

29.03.2010 Slide-25

Designing Correct Circuits 2010
Completeness by construction

Case split and successor tests obviously hold and this can
easily be verified by a completeness checker

Problem:

TBPs for operations op,() only describe modified values for
involved state holding elements

= other registers/memory cells remain undetermined

Description of default behavior is required

m keep value
m take default value

Tedious identification of situations where default behavior
needs to be applied is completely automated

29.03.2010 Slide-26

Designing Correct Circuits 2010
Experimental Results

HW verification: . 65nm low power technology

_ « 41741 standard cells, 15 macros
= MAP and FlexiTreP, two | pje size without interface 0.74 mm?

WPIPs for channel « 360Mhz, core power ~100mW@1.1V
decoding were . Logic utilization 77%
successfully verified. . Silicon available since March 2009

m During the verification
subtle HW bugs were
discovered which had
escaped sign-off
simulation before

m FlexiTreP has been
taped out successfully

LETI MAGALI MPSoC Chip 27

4G mobile baseband IP demonstrator

Designing Correct Circuits 2010

Design characteristics

MAP FlexiTreP
Instructions 16 104
Lines of RTL Code 22689 114040
Lines of ADL Code 1521 8634
Operations (properties) 28 83
Generated properties 14 52
CPU Time regression 37,67 s 18h
Memory Usage 593 MB 14,3 GB

Intel(R) Xeon(R) CPU E5440

29.03.2010

@ 2.83GHz / SUSE 11.1

Slide-28

Designing Correct Circuits 2010
Bugs discovered by FV

Wrong sign extensions: res = opl + op2

Wrong saturation condition in stage 13 out of 14

Confirmed bug in RTL code generation for nested if-then-
else statement of commercial ASIP design tool identified

Scenario for a race condition of parallel value assignments
to the same variable identified

Software constraints have been ignored by some programs

29

Designing Correct Circuits 2010
Results for automatic completion

FlexiTreP (for industrial application)

= Automatic completion of the OISA model revealed
several inconsistencies/gaps within the property suite

= All inconsistencies have been successfully resolved
= All gaps have been closed

MAP

m SW-constraints and TBPs for default behavior have
originally been set up manually.

= Automatic analysis revealed that the manual process
missed important software constraints

m Completeness of the generated property set successfully
proven with OneSpin 360 MV

o Additional manual effort one week
Slide-30

