
ARPACK

Dick Kachuma & Alex Prideaux

Oxford University Computing Laboratory

November 3, 2006

What is ARPACK?

ARnoldi PACKage
Collection of routines to solve large scale eigenvalue problems
Developed at Rice University, Texas
www.caam.rice.edu/software/ARPACK/

2/30 Dick Kachuma & Alex Prideaux ARPACK

The History of ARPACK

Main authors:

Danny Sorensen (Rice University, Texas)

Kristi Maschho� (Rice University, Texas)

Rich Lehoucq (Sandia National Laboratories)

Chao Yang (Berkeley National Laboratory, California)

Funded by:

National Science O�ce

ARPA (administered by US Army Research O�ce)

3/30 Dick Kachuma & Alex Prideaux ARPACK

What can it do?

Designed to compute a few eigenvalues and corresponding
eigenvectors of a general n by n matrix A.

Most appropriate for large sparse or structured matrices A where
structured means that a matrix-vector product w Av requires
order n rather than the usual order n2
oating point operations.

Suitable for solving large scale symmetric, nonsymmetric, and
generalized eigenproblems from signi�cant application areas.

Eigenvalues and vectors found can be chosen to have speci�ed
features such as those of largest real part or largest magnitude.

Storage requirements are on the order of n� k locations. Where k is
the number of eigenvalues requested.

4/30 Dick Kachuma & Alex Prideaux ARPACK

Algorithms used

In the general case, the Implicitly Restarted Arnoldi Method (IRAM)
is used

If A is symmetric it reduces to the Implicitly Restarted Lanczos
Method (IRLM).

For most problems, a matrix factorization is not required. Only the
action of the matrix on a vector is needed, or even more generally,
an operation de�ned.

5/30 Dick Kachuma & Alex Prideaux ARPACK

Libraries used by ARPACK

ARPACK makes use of

LAPACK

BLAS

SuperLU (depending on problem being solved)

UMFPack (depending on problem being solved)

The required LAPACK and BLAS routines are shipped with ARPACK
(although di�erent versions can be used), SuperLU and UMFPack must
be installed separately.

6/30 Dick Kachuma & Alex Prideaux ARPACK

LAPACK routines used

Main LAPACK routines used are:

Xlahqr (computes Schur decomposition of Hessenberg matrix)

Xgeqr (computes QR factorization of a matrix)

Xsteqr (diagonalizes a symmetric tri-diagonal matrix)

Ytrevc (computes the eigenvectors of a matrix in upper
(quasi-)triangular form)

7/30 Dick Kachuma & Alex Prideaux ARPACK

BLAS routines used

Main BLAS routines used are:

Xtrmm (matrix times upper triangular matrix - Level 3)

Xgemv (matrix vector product - Level 2) - IMPORTANT

Xger (rank one matrix update - Level 2)

Cgeru (rank one complex matrix update - Level 2)

Many other Level 1 routines.

8/30 Dick Kachuma & Alex Prideaux ARPACK

Code structure - Fortran implementation

The original code is written in Fortran77.

Functions are complicated - using a 'Reverse Communication
Interface' - a function that is called repeatedly with a number of
parameters, and after each call operations are carried out according
to its return value and the updated parameters used.

Functions are then called for 'Post-Processing' to return the values
required.

9/30 Dick Kachuma & Alex Prideaux ARPACK

Code structure - Fortran function notation

Reverse Communication Functions:

XYaupd RCF using IRAM or IRLM.

Post-processing functions:

XYeupd Return computed eigenvalues/eigenvectors

Xneigh Compute Ritz values and error bounds for the non-symmetric
case

Xseigt Compute Ritz values and error bounds for the symmetric case

Other (auxiliary) functions:

XYaup2

Xgetv0

XYconv

XYapps

10/30 Dick Kachuma & Alex Prideaux ARPACK

Code structure - C++ Implementation

Fortunately for us, a C++ version is now available, the latest version
being released in 2000 (although still in beta test).

Library is actually only an interface to the Fortran, written by D.
Sorensen and F. Gomes, but it has a number of improvements.

Library has many possible Class Templates to de�ne your operator in
order to avoid the complications of the Reverse Communication
Interface (although this is still available if required).

11/30 Dick Kachuma & Alex Prideaux ARPACK

Code structure - C++ function notation

Either use a simple 'Matlab-like' function - AREig

Or use various functions/templates for de�nition of matrix or
operation (uses SuperLU (CSC format), UMFPack (CSC format),
LAPACK (banded or dense))

Use your choice of function dependent on problem (eigenvalue, SVD
etc.).

12/30 Dick Kachuma & Alex Prideaux ARPACK

The AREig function

The simple way to use ARPACK++! Many di�erent overloaded functions
designed to take di�erent parameters eg for eigenvalues & eigenvectors
required from a matrix in CSC form:

int AREig(FLOAT EigValR[], FLOAT EigValI[], FLOAT EigVec[],
int n, int nnz, FLOAT A[], int irow[], int pcol[], int nev,
...)

EigValR (real part of eigenvalues)

EigValI (imaginary part of eigenvalues)

EigVec (eigenvectors)

n (dimension)

nnz, A, irow, pcol (CSC form for matrix)

nev (number eigenvalues required)

13/30 Dick Kachuma & Alex Prideaux ARPACK

Expected Performance - according to the documentation!

Asymptotic performance:

For a �xed number k of requested eigenvalues and a �xed length
ncv Arnoldi basis, the computational cost scales linearly with n.

The rate of execution (in FLOPS) for the IRA iteration is asymptotic
to the rate of execution of Xgemv, ie time = O(nk2)

Fortran vs C++ performance

Performance is very much comparable in the real variable case.

Performance is much worse in C++ for the complex case.
Matrix/vector multiplications are of the order of 750% slower
(how?!)

In their complex test case, which was VERY sparse, performance
was down 31% on the Fortran implementation.

14/30 Dick Kachuma & Alex Prideaux ARPACK

Implementation - Matlab vs ARPACK vs ARPACK++

We implemented six test problems on Henrici:

Problem 1 - 1D Laplacian (Real Symmetric)

Problem 2 - 2D Harmonic Oscillator (Real Symmetric)

Problem 3 - Convection-Di�usion Operator (Real Non-symmetric)

Problem 4 - Squire Equation (Complex)

Problem 5 - Toy Problem (Real Symmetric)

Problem 6 - Grcar Matrix (Real Non-symmetric, highly non-normal)

15/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 1 - 1D Laplacian

Eigenvalues of the 1D Laplacian operator:

�
d2u

dx2
= �u; x 2 [0; 1] (1)

Discretized using central �nite di�erences.

Benchmarking was carried out by measuring time taken to calculate the
smallest 4 eigenvalues using implementations in ARPACK and
ARPACK++, in comparison with the Matlab 'eigs'.

16/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 1 - Results

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

10
2

10
4

N

tim
e

ARPACK
ARPACK++
MATLAB
double
single

17/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 2 - 2D Harmonic Oscillator

Eigenvalues of the harmonic oscillator:

�
d2u

dx2
�

d2u

dy2
+ (x2 + y2)u = �u; (x ; y) 2 [�5; 5]� [�5; 5] (2)

Discretized using central �nite di�erences.

Benchmarking was carried out by measuring time taken to calculate the
smallest 4 eigenvalues using implementations in ARPACK and
ARPACK++, in comparison with the Matlab 'eigs'.

18/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 2 - Results

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

N

tim
e

ARPACK
ARPACK++
MATLAB
double
single

19/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 3 - Convection-Di�usion Operator

Eigenvalues of the convection-di�usion operator:

��u + 2a:ru = �u; (x ; y) 2 [0; 1]� [0; 1]; a = (�1; 2)T (3)

Discretized using central �nite di�erences.

Benchmarking was carried out by measuring time taken to calculate the
smallest 4 eigenvalues using an implementation in ARPACK++ in
comparison with the Matlab 'eigs'.

20/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 3 - Results

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

N

tim
e

ARPACK++
MATLAB
double
single

21/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 4 - Squire Equation

Eigenvalues of the Squire equation:

�
U(y)�

1

i k Re

�
d2

dy2
� k2

��
! = c! (4)

where U(y) = 1� y2, k = 1:0, Re = 2000.

The equation was again discretized using central �nite di�erences.
Benchmarking was carried out by measuring time taken to calculate the 4

eigenvalues of largest imaginary part using an implementation in
ARPACK++ in comparison with the Matlab 'eigs'.

22/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 4 - Results

10
0

10
1

10
2

10
3

10
4

10
−4

10
−2

10
0

10
2

10
4

N

tim
e

ARPACK++
MATLAB

23/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 5 - Toy Problem

We now look at the eigenvalues of a 'toy' problem, to try and obtain
O(N) time dependence for both Matlab and ARPACK.

Ax = �x (5)

where A is tri-diagonal with 1:002 on the diagonal and �0:001 on the o�
diagonals.

Benchmarking was carried out by measuring time taken to calculate the
smallest 4 eigenvalues using an implementation in both ARPACK and
ARPACK++ in comparison with the Matlab 'eigs'.

24/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 5 - Results

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

factor~10

N

tim
e

ARPACK
ARPACK++
MATLAB
double
single

25/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 6 - Grcar Matrix

We �nally look at the eigenvalues of the Grcar matrix. The use of this
matrix and its non-normality in particular was designed to force Matlab to
use stricter error bounds and therefore make it comparable to ARPACK.

A =

0
BBBBBBBBBBB@

1 1 1 1
�1 1 1 1 1

�1 1 1 1 1
. . .

. . .
. . .

. . .
. . .

�1 1 1 1 1
�1 1 1 1

�1 1 1
�1 1

1
CCCCCCCCCCCA

(6)

Benchmarking was carried out by measuring time taken to calculate the 4
eigenvalues of smallest magnitude using an implementation in both
ARPACK and ARPACK++ in comparison with the Matlab 'eigs'.

26/30 Dick Kachuma & Alex Prideaux ARPACK

Problem 6 - Results

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

10
2

N

tim
e

ARPACK++
MATLAB

27/30 Dick Kachuma & Alex Prideaux ARPACK

Problem Solving Squad

Find the 2-norm condition number of the matrix Toeplitz matrix:

0
BBBBBBBBB@

3 4 1 0
0 3 4 1
1 0 3 4

. . .
. . .

. . .
. . .

. . .

1 0 3 4
1 0 3 4

4 1 0 3

1
CCCCCCCCCA

(7)

with dimension n = 220.

28/30 Dick Kachuma & Alex Prideaux ARPACK

Problem Solving Squad - BRUTE FORCE

As a demonstration of Matlab's 'svds' and the functions in ARPACK, we
show the time taken to calculate the norm simply by generating the
sparse matrix and �nding the required singular values:

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

10
2

N

tim
e

ARPACK++
MATLAB

(note the sensible method is to extrapolate the results for small n to
n = 220).

29/30 Dick Kachuma & Alex Prideaux ARPACK

Conclusions

Our results show that Matlab is clearly the package of choice,
o�ering ease of use and good speed.

We would expect ARPACK to be comparable as this underlies
Matlab's 'eigs', but we can only demonstrate this in the highly
non-normal case.

From an implementation point of view, ARPACK++ is vastly
preferable to ARPACK, but it should be used only cautiously in the
complex case!

30/30 Dick Kachuma & Alex Prideaux ARPACK

