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ABSTRACT
Various sensing modalities have been exploited for indoor
location sensing, each of which has well understood limita-
tions, however. This paper presents a first systematic study
on using the electromagnetic field (EMF) induced by a build-
ing’s electric power network for simultaneous localization
and mapping (SLAM). A basis of this work is a measurement
study showing that the power network EMF sensed by either
a customized sensor or smartphone’s microphone as a side-
channel sensor is spatially distinct and temporally stable.
Based on this, we design a SLAM approach that can reliably
detect loop closures based on EMF sensing results. With the
EMF feature map constructed by SLAM, we also design an
efficient online localization scheme for resource-constrained
mobiles. Evaluation in three indoor spaces shows that the
power network EMF is a promising modality for location
sensing on mobile devices, which is able to run in real time
and achieve sub-meter accuracy.
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1 INTRODUCTION
Recent years have seen the increasing need of location aware-
ness by mobile applications. As of November 2017, 62% of the
top 100 free Android Apps on Google Play require location
services. While GPS can provide outdoor locations with sat-
isfactory accuracy, indoor location sensing for mobiles has
been a hard problem. Research in the last two decades has
exploited various sensing modalities for indoor location sens-
ing. Examples include various radio frequency (RF) signals
(e.g., WiFi [11, 16, 50, 51], GSM [17], FM radio [6]), visible
light [49, 52, 55], imaging [10, 13, 14, 54], acoustics [41], and
geomagnetism [12, 18, 22, 35, 36, 44]. However, each sensing
modality bears some limitations. RF signals have change-
able propagation paths and received signal strengths (RSSes)
due to barriers and transmitters’ dynamic power control.
Visual lights are vulnerable to blockage. Imaging is power
demanding and privacy breaching. Geomagnetic sensing is
susceptible to change of altitude.
This paper explores a new modality for indoor location

sensing, i.e., the ambient electromagnetic fields (EMFs) gen-
erated by the electric power networks in civil infrastructures.
These power networks supply alternating current (ac) volt-
ages with an effective value of 220V or 110V in a nominal
frequency of 50Hz or 60Hz to the electric appliances dis-
tributed in the buildings. As a result, the electromagnetic
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radiations (EMRs) from the powerlines in a building will
form an ambient EMF. The noises induced by the power
network EMF at electronic devices, called mains hums, are
undesirable in general and often removed by the devices’
built-in filters. However, recent studies leveraged the peri-
odic and synchronous properties of the mains hums to design
clock synchronization approaches for indoor sensors [33]
and wearables [48]. Moreover, a study in [23] shows that the
mains hums sensed by indoor mote-class sensors carry time
information with sub-second resolution, due to the subtle but
spatially homogeneous imperfections in the mains hum’s pe-
riodicity. While the powerline EMR’s time-related properties
have been the focus of existing studies, the spatial properties
of power network EMF and whether these properties can
be exploited for indoor location sensing have received no
systematic research.
Hypothetically, as the powerline EMR intensity decays

with the physical distance from the emitting powerline, the
power network EMF formed by the superposition of the
EMRs from the permanent powerlines running in the build-
ing infrastructures will give a spatially distinct but tempo-
rally stable intensity field, which is a basis for location sens-
ing. To verify our intuition, we use two types of sensors, i.e.,
a customized EMR receiver and smartphone microphone, to
conduct extensive measurements in various buildings. The
EMR receiver is based on a tank circuit tuned to the power
network’s nominal frequency, while the smartphone micro-
phone can perform side-channel sensing due to the leaked
mains hum in audio recordings. Our measurement results
confirm positively our hypothesis in the domain of indoor
pedestrian walkways. In particular, compared with geomag-
netic fields that often show altitude-varying intensity, power
network EMFs exhibit better altitude-invariability, suggest-
ing that the power network EMF-based location sensing can
be less susceptible to user height.
Based on the measurement study, we design a Simulta-

neous Localization and Mapping (SLAM) approach exploit-
ing the unique characteristics of power network EMF. Our
approach jointly estimates both the user locations and the
power network EMF feature map of the workspace, without
labor-intensive surveying or fingerprinting. The constructed
power network EMF feature map is metrically consistent,
where locations are associated with corresponding power
network EMF signatures. In particular, we bespoke our SLAM
approach for the power network EMF modality, and design
novel loop closure detection and curation algorithms to reli-
ably recognize previously visited locations from the observed
power network EMF signals. This is of crucial importance for
SLAMusing power network EMF, as standard techniques (e.g.
directly comparing the EMF signals at different locations)
would produce many false positive loop closure proposals,
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Figure 1: The normalized EMR amplitude around a
live wire and the ac voltage between the live wire and
the neutral wire.

and thus significantly jeopardize the consistency of the fea-
ture map and deteriorate localization performance. Given the
constructed power network EMF feature map, we also design
an efficient online localization scheme capable of positioning
the user in real time on resource-constrained devices.
We evaluate the proposed SLAM approach in realistic

indoor/semi-outdoor environments including a lab space, an
office building and a shopping center. The evaluation shows
that, (i) with the customized EMR sensor, we can construct
the power network EMF feature maps with sub-meter accu-
racy, and achieve meter level localization with the registered
maps, (ii) on commercially off-the-shelf (COTS) platforms,
the composite modality of geomagnetism and power net-
work EMF (sensed through microphone) can have compara-
ble performance, and (iii) by exploiting unique properties of
power network EMF including its stability and smoothness,
we could achieve real-time localization (0.69 s per measure-
ment) on embedded platforms.
The remainder of this paper is organized as follows. §2

introduces the background of powerline EMR sensing. §3
presents a measurement study. §4 presents the details of
the power network EMF-based SLAM and localization ap-
proaches. §5 presents the evaluation results. §6 reviews re-
lated work. §7 concludes.

2 POWERLINE EMR SENSING
2.1 Background
The EMR around an ac powerline is a composite effect of
the time-varying electric field generated by the line’s ac
voltage and the magnetic field generated by the ac current
going through the line. Fig. 1 shows the readings of an EMR
reception device (cf. §2.2) placed close to a 220V 50Hz live
wire and the corresponding ac voltage between the live wire
and the neutral wire. We can see that the EMR follows the ac
voltage well. A modern civil infrastructure often has massive
powerlines running in the walls, above ceilings, below floors,
to power various appliances distributed in the indoor space.
The intensity of the EMR attenuates with the distance from
the line, where the attenuation can be modeled by the power
law. As a result, those many powerlines in the infrastructure
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Figure 2: The 2nd harmonic of the powerline EMRs
sensed by an EMR sensor (upper) and a smartphone
microphone (lower). The smartphone can capture the
2nd harmonic faithfully.

will generate an EMF that has a sophisticated spatial intensity
distribution over the indoor space, which highly depends on
the routing of the powerlines. It is thus of great interest that
whether the power network EMF has the spatial distinctness
and temporal stability properties desired by location sensing.
Electromagnetic emanations from building power net-

works have been exploited in several applications. For in-
stance, in a circuit seeker system [2], an injector injects
modulated signals into a power outlet and then a seeker can
identify the routing of nearby embedded powerlines by sens-
ing the corresponding powerline EMR. A building’s power
network can also be used as an effective AM radio antenna
[1], because the size of a building can be close to AM radio
wavelengths (i.e., hundreds meters). Different from these ex-
isting applications that use the building power networks to
emit certain waves, this paper inquiries whether the power
network EMF, an inevitable side effect of electricity delivery,
can be exploited for location sensing.

2.2 Powerline EMR Reception
We use following two techniques to sense powerline EMR.

Customized Powerline EMR Sensor: We build a power-
line EMR sensor consisting of a tank circuit and a signal
amplifier. Our design uses a combination of a 470mH coil
inductor and a 22 µF capacitor, to achieve a resonance fre-
quency of 50Hz (i.e., the power network frequency in our
region). By using a 15 µF capacitor, the tank circuit can be
tuned to 60Hz, which is the nominal frequency in Americas.
A two-stage amplification circuit is applied to amplify the
µV-level output of the tank circuit to a volt-level input to
an analog-to-digital converter mounted on a Raspberry Pi
board. Our customized powerline EMR sensor can be readily
integrated with various robot and drone platforms.

Side-channel Sensing by Microphone: The internal of a
microphone is a capacitor consisting of a membrane and a
metal conductor. The vibration of the membrane in response
to sound results in time-varying capacitance between the
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Figure 3: Test points (A, B, C, D) and walking trajecto-
ries (in thistle color) in an office building.

membrane and the metal conductor, which is translated to a
voltage signal. The power network EMF can induce a time-
varying voltage across the metal conductor, resulting in the
mains hum in audio recordings. The mains hum can be ex-
tracted using a band-pass filtering algorithm. In this paper,
we use smartphones’ built-in microphones and extract the
mains hum and its harmonics. Fig. 2 shows the frequency
of the second harmonic sensed by a customized powerline
EMR sensor and a smartphone microphone. We can see that
the smartphone can capture the second harmonic faithfully.
The results based on the above two types of sensors will

provide insights into the limits of power network EMF-borne
spatial information and practicality of power network EMF-
based location sensing on COTS mobile platforms.

3 MEASUREMENT STUDY
We conduct experiments to investigate whether the power
network EMF has the properties desired for location sensing.

3.1 Power Network EMF’s Spatial
Distinctness

This set of experiments investigates whether the power net-
work EMF intensities at different locations in an indoor space
are distinct. We use the customized powerline EMR sensors
to perform measurements in an office building with an area
of about 2, 475m2. Fig. 3 shows the floor plan. We set the
sampling rate of our sensors to 8 kHz and applied a 5-step
moving filter to remove high-frequency noises in the sam-
pled signals.

Basic Time/FrequencyCharacteristics:Weplace our pow-
erline EMR sensors at four locations in a corridor by every
three meters, which are marked by A, B, C, and D in Fig. 3.
Fig. 4(a) shows the power spectral densities of the power
network EMF intensities collected at the four locations. We

3



50 100 150 200 250

Frequency (Hz)

M
a
g
n
it
u
d
e

A B C D

(a)

0 50 100

Time (ms)

N
o
rm

a
liz

e
d
 E

M
F

A B C D

(b)

Figure 4: Time/frequency Characteristics. (a) Power
spectral density. (b) 100ms signal snippets. The curves
in the figures are vertically displaced for better visual
comparison among them.
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Figure 5: Power network EMF’s invariability and geo-
magnetic field’s variability with user height. (a) Power
network EMF. (b) Geomagnetic field.

can see that they have similar characteristics, i.e., the sensed
signal consists of a 50Hz major component and several har-
monics. Fig. 4(b) shows the 100ms snippets of the sensed
signals at the four locations in the same time duration. The
power network EMF intensities at different locations have
distinct waveforms and amplitudes. This distinctness is con-
sistent with our understanding, as power network EMF has
a spatial distribution. As discussed in §2.1, this distribution
mainly depends on the routing of the powerlines. As the pow-
erline routing usually stays fixed, the spatially distributed
power network EMF is promising for location sensing.

Invariability with User Height: The spatial distinctive-
ness of indoor geomagnetic signals has been studied [8, 15].
Power network EMF and geomagnetic field are different. Ge-
omagnetic field is the magnetic field that extends from the
Earth’s interior out into space. Due to the metal infrastruc-
ture in the buildings, geomagnetic field is distorted in indoor
environments and can be utilized as the location signature.
Geomagnetic intensity is static over time. In contrast, the
power network EMF emitted from the ac powerlines is a
time-varying field. Our following measurements show that,
compared with the geomagnetic field, the power network
EMF exhibits better invariability with user height.

We recruit three userswith different heights (158cm, 173cm,
and 188cm) who carry our powerline EMR sensor and a
smartphone, and walk in a 150-meter pathway in a building.
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Figure 6: Distributions of DTW distance between two
power network EMF RMS segments at the same or dif-
ferent locations.

Fig. 5 shows the root mean square (RMS) value measured
by our powerline EMR sensor and the geomagnetic magni-
tude measured by the phone’s 3-axis magnetometer. Each
RMS value is computed based on readings in a 20ms win-
dow. Though both sensing modalities are affected by the
sensor altitude, the geomagnetic sensing is apparently more
susceptible as the envelope of the geomagnetic magnitude
varies much with user height. In contrast, the envelope of
the power network EMF RMS exhibits better invariability
against user height. This result implies that the power net-
work EMF signature map can be constructed based on data
crowd-sourced from users with different heights.

Location Discriminability: This set of experiments inves-
tigates whether we can discriminate different locations in
the resolution of footsteps based on power network EMF
measurement traces. A researcher carrying a powerline EMR
sensor and a smartphone walks three loops along the trajec-
tory showed in Fig 3. This trajectory covers all the pathways
in the building. We compute the sensed signal’s RMS trace
and divide it into non-overlap segments, where a segment
corresponds to a footstep sensed by the smartphone’s iner-
tial measurement units (IMUs). As the segments may have
different lengths due to varying walking speed and pattern,
we use the dynamic time warping (DTW) to measure the
similarity between any two segments. Fig. 6a shows the dis-
tributions of the DTW distance between any two segments
collected at the same location or different locations, respec-
tively. The two distributions largely overlap, suggesting that
the power network EMF RMS with a segmentation window
size of one footstep is not location-discriminative. Differ-
ently, if we segment the power network EMF RMS trace
with a segmentation window of nine footsteps, as shown in
Fig. 6b, the two distributions become less overlapped. This
means that with the 9-step window size, though not ideal,
the location discriminability of power network EMF can be
potentially exploited by SLAM. In §4, we will explain how
the proposed SLAM approach can reliably distinguish the
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same or different locations with the observed power network
EMF signals in more detail.

3.2 Power Network EMF’s Temporal
Stability

This section investigates the temporal stability of the power
network EMF. Although conventional SLAM systems only
require short-term stability of loop-closure landmarks, long-
term stability is still desirable, because the constructed fea-
ture maps can be reused for user navigation afterwards.

Impact of Individual Electric Appliances:Operating sta-
tus changes of electric appliances causes varying ac currents
in powerlines and therefore varying magnetic field. We con-
duct a set of controlled experiments to investigate the im-
pact of the on/off operating statuses of individual electric
appliances on the measurements of a powerline EMR sen-
sor. Fig. 10a shows the power network EMF amplitude in
decibels relative to full scale (dBFS) measured at different
distances from an electric appliance when it is on and off.
We can see that the operating statuses of the appliances can
affect the power network EMF measurements. However, the
impact is less than 1 dBFS when the sensor is more than one
meter from the appliance. This is because that the magnetic
intensity attenuates with distance and the measurement of
the sensor is dominated by the superposition of the EMRs
from all powerlines in the building compared with the EMR
contributed by the tested appliance. Among the eight tested
appliances, the operating status changes of the dryer, the
microwave, and the fridge introduce considerable impact
on the sensor measurements in their near fields. However,
the near fields of these appliances are generally limited com-
pared with the walking areas of built environments. From
the measurement results, we can observe that switching off
some appliances may increase the measurements at certain
distances. This is because these appliances make negative
contributions to the EMR superposition at those distances.

Impact of Near-by Human Bodies: A researcher holds a
powerline EMR sensor and stands still at an indoor loca-
tion. Then, more persons join the experiment by standing
still about 0.5m from the researcher. Fig. 8 shows the error
bars of the sensor measurements when different numbers
of persons stand around the researcher. We can see that
the nearby human bodies have little impact on the sensor
measurements. Unlike the short-wavelength RF signals (e.g.,
WiFi) that are susceptible to barriers, the 50Hz EMR signal
has an extremely long wavelength and thus are not affected
by small-size barriers like human bodies.

Temporal Stability: We deploy four customized powerline
EMR sensors at four different fixed locations in two countries

for 14 days. Each sensor records power network EMF inten-
sities for one minute every two hours. Fig. 10a shows the
error bars of each sensor’s measurements in the one-minute
duration. We can see that their measurements are stable over
time. For comparison, Fig. 9 shows a smartphone’s WiFi RSS
values for a number of access points over 24 hours. We can
clearly see the temporal variations of the WiFi RSS.

We also measure the power network EMF intensity when
traversing a loop along the trajectory shown in Fig. 3 in a
winter and the following summer. Fig. 10b plots the power
network EMF RMS traces in the two seasons. As the building
shown in Fig. 3 is located in the Temperate Zone, the electric
loadings of the building in winter and summer are differ-
ent. However, as shown in Fig. 10b, the power network EMF
traces in the two seasons are desirably similar. This suggests
that the ac voltage is the major exciter of the power network
EMF, rather than the loading-dependent current. The above
results show the power network EMF’s temporal stability
in the tested sites, and imply that once a power network
EMF fingerprint database is developed through SLAM, it can
be used for localization in considerably long time periods.
In case of building infrastructure changes and/or powerline
rerouting, it is readily for existing crowd-sourcing localiza-
tion tools to update the database timely.

3.3 Location Discriminability of Power
Network EMF Sensed by Smartphone

Phone’s PowerNetworkEMFSensing Performance:As
microphone is a side-channel sensor, we assess the impact of
various daily life sounds on its power network EMF sensing.
A Huawei P9 phone is placed at a fixed location to record
audio for five minutes. Meanwhile, we intentionally create
various interfering sounds, i.e., music and human speech that
are most probably faced by SLAM/localization systems for
pedestrians. Fig. 11 shows the distributions of the normalized
intensity of the 50Hz mains hum and its harmonics. From
the figure, we can see that the music and human speech have
larger impact on the 150Hz harmonic, compared with the
50Hz mains hum and the 100Hz harmonic. This is because
the 150Hz harmonic collides with some human voice com-
ponents. Although human voice can be down to 80Hz [32]
and collides with the 100Hz harmonic, such cases are rare.
As some high-end phones can effectively suppress the 50Hz
mains hum, we adopt the 100Hz harmonic only, unless we
need multiple harmonics to improve performance (cf. §4.4).

Mitigating Inefficacy ofGeomagnetism-based Sensing:
A researcher carries the Huawei P9 phone and walks three
loops along the trajectory shown in Fig. 3. The phone’s
magnetometer and microphone continuously record geo-
magnetic and power network EMF data traces. This section
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Figure 7: Impact of individual electric appliances on power network EMF sensing.
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tion of WiFi RSS.
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Figure 10: Temporal stability. (a) The power network
EMF amplitude measured at four fixed locations in
two countries over 14 days. Themeasurements labeled
by P1 and P2 are obtained in countryA; these labeled by
P3 and P4 are obtained in country B. (b) The power net-
work EMF amplitude tracewhen a researcher carrying
the sensor walks along the same trajectory shown in
Fig. 3 in a winter and the following summer.

particularly investigates the feasibility of using microphone-
sensed EMF to mitigate the localization inefficient points by
geomagnetic sensing. The insight for the mitigation is that
when geomagnetic features are less discriminative (small
gap) and insufficient to differentiate locations, power net-
work EMF sensing can help enhance location distinctions,
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Figure 11: Power network EMF captured by a smart-
phone microphone.
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Figure 12: DTW distance distributions of various
modalities at the same and different locations.

sensed with a COTS microphone. The vice is versa for in-
efficient cases of same locations. To account for the vary-
ing walking speeds in data collection, we use dynamic time
warping (DTW) to calculate the distance between sequences
for both geomagnetic and EMF signals. The curves labeled
“Mag” in Fig. 12a and Fig. 12b are the distributions of the
top 10% largest or smallest DTW distances between any two
geomagnetic signal segments collected at the same location
or different locations, respectively. We can see that among
these worst cases, the same-location DTW distances are sig-
nificantly larger than the different-location DTW distances,
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undermining the recall and precision performance in loca-
tion identification. The curves labeled “micEMR” are the
corresponding results obtained using the 100Hz powerline
EMR harmonic sensed by the P9’s microphone. Although
the micEMR’s two distributions overlap, the micEMR’s recall
and precision performance will be clearly better than the
geomagnetism’s. The “Mag+micEMR” curves are the corre-
sponding results using the average of the Mag-based and
micEMR-based DTW distances. The above results show that,
on smartphone platforms, power network EMF and geomag-
netism can be complementary in discriminating locations.
A combination of geomagnetism and power network EMF
can mitigate inefficacy of sole geomagnetism-based location
sensing.

Power Consumption of Power Network EMF Sensing:
According to the study [40], the power consumption of sam-
pling microphone is low. On the other hand, the plethora of
acoustic-based virtual assists on smartphones and wearables
(e.g., Apple Siri [37]) also require the microphones to be al-
ways on. Therefore, in practice, our proposed approach can
leverage the audio data collected by these virtual assistants,
without incurring excessive energy consumption.

4 SLAMWITH POWER NETWORK EMF
Based on the understanding obtained in §3, this section devel-
ops a novel Simultaneous LocalizationAndMapping (SLAM)
approach with the power network EMF. As discuss above,
power network EMF tends to exhibit better temporal sta-
bility comparing to geomagnetism, while providing certain
spatial discriminability. However unlike other modalities
such as vision, loop closures candidates obtained by directly
comparing the power network EMF signal similarities of-
ten contain many false positives, which could significantly
degrade the SLAM performance. To address this, the pro-
posed SLAM approach employs novel loop closure detection
and curation algorithms, which are able to discover as many
potential loop closures as possible based on the sequential
power network EMF measurements, while robustly rejecting

I
C0,3

x0 x1 x2 x3 ...
u1

z0 z3

u2 u3

Figure 14: Factor graph representation for EMF-SLAM.
x is the hidden state of actual user position; z denotes
the power network EMF measurement; c is the loop
closure of same place.

the false positive loop closure proposals by checking their
spatial consistency.
Fig. 13 illustrates the workflow of our SLAM and local-

ization approaches. Specifically, the sensed power network
EMF signals are bandpass-filtered to extract the 50/60Hz sig-
nal and its harmonics. By using a dead-reckoning module
on the motion data of the user, her trajectories/odometry is
estimated. The filtered power network EMF signal is then
segmented into sequences based on footsteps estimated in
odometry information. The power network EMF sequences
and odometry are sent to the loop closure detection module
to first detect the revisited positions by the user. The detected
loop closures are then curated to remove false positives in
them. By using the SLAM algorithms with the estimated
odometry and curated loop closures, the accurate trajecto-
ries of users can be recovered. By looking back the timestamp
of the recovered locations and their associated power net-
work EMF signatures, a feature map can be constructed. New
users’ location can be predicted via matching their power
network EMF readings with the feature map, even if their
odometry information is not available. Note that this SLAM
approach is fundamentally different from the standard fin-
gerprinting. In our case, the feature map is automatically
constructed as users move across the space, rather than man-
ually collected through the labor-intensive fingerprinting
process, which requires the users to explicitly establish the
correspondence between specific locations and their EMF
features. In addition, our SLAM approach can continuously
improve and enrich the EMF feature map as the users ex-
plore the space more, e.g. in different walking directions, and
eventually obtain a holistic view of the EMF signatures of
the environment.

In what follows, we first present the problem formulation
using the Graph SLAM machinery [26] in §4.1, and then
discuss the proposed loop closure detection and curation
algorithms in §4.2-§4.3. Finally, §4.4 provides an efficient
online localization scheme using the constructed power net-
work EMF feature maps.
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4.1 Graph SLAM Formulation
States, Measurements and Outputs: Fig. 14 shows the
factor graph representation of our SLAM formulation. Let xt
denote the hidden state, i.e., actual position of the user in the
workspace at discrete timestamp t . We assume that at each
t , the user observes a power network EMF measurement zt ,
which contains the sequence of power network EMF signals
received within a window [t − τ , t]. Note that here we con-
sider a signal sequence rather than point as the measurement
because as shown in §3.1, longer power network EMF signal
sequences tend to have more spatial discriminative power.
We also assume that the relative displacement between two
user positions xt and xt−1 is captured by an odometry edge
ut , e.g., estimated with PDR techniques. In practice, we often
assume the initial location of the user (starting state I) can be
known through other sources [26], e.g., CCTVs or card swipe
systems at the entrance of the venue. After the user finishes
traversing the workspace, the SLAM module should output
the estimated sequence of true locations of the user x0, ..., xT ,
along with the power network EMF feature map, which can
be obtained by associating the observed power network EMF
measurements z0, ..., zT with the state sequence.

Loop Closure using Power Network EMF Signals: In a
typical SLAM setting, loop closure refers to the recognition
of when the user or agent has returned to a previously vis-
ited location, e.g., via observing similar measurements. It is
one of the key components of SLAM framework, since in
most cases, odometry measurements tend to be noisy, result-
ing in unbounded errors in state and map estimation. For
instance, our system uses a PDR module which relies on the
low-cost IMUs on mobile devices to estimate odometry, and
inherently suffers from drift. Loop closure on the other hand,
can enforce constraints (often on distance) between states,
e.g., x0 and x3 in Fig. 14 are connected by an edge c0,3, indi-
cating that they should represent the same location in the
workspace. This immediately reduces the uncertainty in state
and map estimation, and therefore, the quality of detected
loop closures has a direct impact on SLAM performance.
In this work, we exploit the similarity between features at
50Hz of the observed power network EMF measurements to
detect loop closures. As shown later, by carefully designing
detection and curation algorithms, the power network EMF
signals can be used to generate effective and robust loop
closures across the workspace.

Graph Optimization: Given the odometry and loop clo-
sures, the optimal state sequence X∗ = {x∗0, ..., xT ∗} can be
estimated by solving:

X∗=argmin
X

∑
i

| | fu (xi , ui )−xi+1 | |
2
Σi︸                    ︷︷                    ︸

odometry constraints

+
∑
<i, j>

| | fc (xi , ci j )−xj | |2Λi j︸                 ︷︷                 ︸
EMF loop closure constraints

Timestamp Closest-point
timestamp

Closest-point
distance

1 42 0.94

24 129 0.21

58 280 0.25

129 231 0.18

231 129 0.18

280 58 0.25

(a) CPP

#129 #231#24

#24

#129

#231

(b) Proposal merging
Figure 15: Illustration example of closest-point profile
(CPP) and loop-closing proposals. (a) Color-shaded
fields are primary loop closures and the transparent
field is a subsidiary one. (b) Merging primary and sub-
sidiary loop-closing proposals. Nodes in the graph are
proposal nodes, and edges are proposed loop closures.

where fu (xi , ui ) describes the usermotion reported by odome-
tery, with uncertainty characterized by covariance matrix
Σi . fc (xi , ci j ) is the loop closure model, and in this paper we
use co-location with zero displacement, i.e., fc (xi , ci j ) = xj ,
and the covariance is Λi j .

4.2 Loop Closure Detection
This section presents the proposed approach of detecting
loop closures using power network EMF signals.

Distance between Measurements: One key prerequisite
for any loop closure approach is the distance metric between
the measurements. In our context, a power network EMF
measurement contains a sequence of power network EMF
signals. To account for different walking speed of the users,
when comparing two measurements zt and zt ′ , we use dy-
namic time warping (DTW) to align them, i.e. we first stretch
the two sequences and then use the smallest sum of the Eu-
clidean distances between their corresponding points as the
distance metric. For each newly observed measurement zt ,
we compute its distance with respect to all previous measure-
ments, and maintain the pairwise distance between them in
a matrix Q.

Closest Point Profile (CPP): Given the current Q, we try
to discover loop closures, i.e., measurements that are similar
to each other and likely to represent the same locations. In-
stead of directly working with Q, we firstly derive a closest
point profile (CPP) representation, where for each measure-
ment we only keep the timestamp of its closest peer and their
distance. For instance, the entry (129, 213, 0.18) in Fig. 15
means that for measurement z129, the closest measurement
(i.e., most similar one) observed so far is z231, and their dis-
tance is 0.18 under the distance metric discussed above. Note
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Figure 16: An example of loop closure curation.

that, in practice, CPP may not necessarily be symmetric un-
der the distance metric. For example, as in Fig. 15, the closest
peer of z24 is z129, but for z129, z24 is not the closest.

Mining Loop Closure Proposals from CPP: Intuitively,
the entries in CPP are potential loop closures, each of which
represents the local best knowledge on closest measurements
and associated distances. Like most of the existing SLAM
approaches, we could just naively threshold the distance,
and propose the top-k entries with smallest distances as loop
closures. However, in practice, such a technique is not ro-
bust to noise, and could propose many false positives. In
this paper, we consider a new approach exploiting the graph
structure of CPP. Concretely, we first discover the symmetric
entries within CPP, e.g., as shown in Fig. 15, both z129 and
z231 treat each other as the closest peer. The rationale is that,
regardless of the absolute distances, the fact that both mea-
surements confirm each other as the closest indicates that
they are likely to observe the same landmark. Therefore, we
initialize the set of loop closure proposals using those sym-
metric entries. To harvest more potential loop closures, we
also add entries whose 2-nearest neighbours are symmetric,
e.g., entry (24, 129, 0.21) in Fig. 15(b) will be included in the
loop closure proposal set, since measurement z129 appears
in an symmetric entry.

4.3 Loop Closure Curation
Given the set of loop closure proposals, in theory, we could
use all of them to directly optimize the graph and solve
the SLAM problem (as in §4.1). However, in practice, the
SLAM framework can be very sensitive to false positives,

i.e., even a small amount of erroneous loop closures would
greatly deteriorate graph optimization, and have a knock-
on effect on its performance. To address this, we propose
a loop closure curation approach, and exploit the spatial
consistency to reject false positives and iteratively discover
new valid proposals.

Spatial Consistency Validation: In our context, a true
loop closure contains a pair of measurements which observe
the same landmark in the workspace, although they may
be captured at different timestamps or even by different
users. Consider two loop closure proposals, involving two
pair of measurements as (zu , z(u′) and zv , zv ′) as shown in
Fig. 16a(left). In this case, if both loop closures are true, then
within any consistent reference frame, the two trajectory
segments Ti and Tj defined by the four measurements will
form a loop, since zu and zu′ , zv and zv ′ should be observed
in the same locations. Consider the 2D Euclidean reference
frame where zu′ is positioned at the origin (0, 0). Concep-
tually, if we move from zu′ (at the origin) to zv ′ using the
odometry information encoded in Tj , hop to zv via the loop
closure link from zv ′ , and then traverse back according to
the reverse odometry in Ti , when reaching measurement zu
we should be able to return to the origin. This is because zu
and zu′ should correspond to the same landmark. If this is
the case, we confirm that both loop closure proposals are
true, and mark them as valid (ready to be used by the later
graph optimization). On the other hand, if we fail to return
to the origin, e.g., as shown in Fig. 16a(right), then at least
one of the two loop closure proposals is false positive. In
that case we will not push any of them to later optimiza-
tion, and temporarily keep them in the proposal set for next
validation.

Distance Update Induced by Validation: As discussed
above, if two loop closure proposals pass the the spatial
consistency validation, we believe that the two trajectory
segments (see Ti and Tj in Fig. 16b) would share the same
start and end locations in the workspace (zu and zu′ , zv and
zv ′ in Fig. 16a(left)). On the other hand, this also indicates
that measurements within the neighbourhood of those vali-
dated loop closures should be spatially close, and there might
still be valid loop closures missed by the previous detection
algorithm. To exploit this constraint, we update the pairwise
distances of those measurements within that neighborhood.
Concretely, given the validated loop closure containing

two measurements zu and zu′ (zu ∈ Ti , zu′ ∈ Tj ), we first
consider the neighborhood of 2N + 1 measurements around
zu and zu′ respectively, i.e., two sequences of measurements
{zu−N , ..., zu+N } and {zu′−N , ..., zu′+N }. The size of N is de-
termined by the shape similarity of the two trajectory seg-
ments Ti and Tj : N ∝ 1/DTW (Ti ,Tj ), where DTW (Ti ,Tj )
is the DTW distance based on odometry information. For

9



Lab Space Office Building

Shopping Mall (Indoor)

Shopping Mall (Outdoor)EMR Sensor

Figure 17: Powerline EMR sensor and test venues.

the 2N + 1 window, we define a Gaussian kernel: w (n) =

e−
1
2 (Q(zu ,zu′ ) · nN )2 , where −N ≤ n ≤ N , and Q(zu , zu′ ) is the

distance between measurements zu and zu′ of the validated
loop closure. Then for each pair of measurements zu+n ∈ Ti
and zu′+n′ ∈ Tj (−N ≤ n,n′ ≤ N ) between the two 2N + 1
windows, we update their distance as follows:

Qnew (zu+n , zu′+n′ )=Q(zu+n , zu′+n′ )−β ·w (n) · Q(zu , zu′ ).

Here, Q(zu+n , zu′+n′ ) is the current distance, and β is the
updating rate which controls how much distance change
should be applied.

Iterative Loop Closure Curation: With the updated Q,
where measurements around the validated loop closures
have new distance values, we then drive the detection al-
gorithm to discover any new loop closure proposals. This
detection-validation cycle runs iteratively: in each iteration
we first discover loop closure proposals, validate them, and
finally use the validation results as constraints to update our
previous belief on distances between measurements, which
is then used by the loop closure detection algorithm in the
next iteration. This loop closure curation process continues,
until there is no proposal can satisfy the spatial consistency
validation. In this way, our system is able to discover as many
genuine loop closures as possible, and as shown later in the
evaluation, it is the key for our SLAM framework to build
accurate and consistent power network EMF feature maps.

4.4 Efficient Real-time Localization
In essence, the proposed SLAM framework leverages the
odometry information and power network EMF, to jointly
estimate the location of the user and the power network EMF
feature map of the workspace within a metrically consistent
frame of reference. In practice, this process typically hap-
pens offline in the cloud, since it requires optimization over
all states and measurements (as discussed in §4.1). On the
other hand, if the power network EMF feature map of the
workspace has been constructed using the proposed SLAM
approach (e.g., via crowdsourcing), we could position the
user directly with respect to the map. In the following, we
show that such localization can be achieved in real-time on
resource-constrained devices without infrastructure support:
once the power network EMF feature map is downloaded

to the user’s mobile device, she can be localized using the
carried device only.

Localization with Power Network EMF Feature Map:
Assume that the workspace is a 2D discrete Euclidean space,
and has been thoroughly surveyed by our SLAM approach. In
this case, the produced power network EMF feature map can
be viewed as a 2D grid, where each grid represents a location
l and the associated power network EMF signature z̄l . In this
paper, z̄l is defined as the DTW centroid [30, 31] of all power
network EMF measurements observed at location l , which is
also a sequence of power network EMF signals. Therefore,
localization with respect to the feature map can be cast into
a classification problem, where for a live power network
EMF measurement zt , we try to find the location that has the
closest power network EMF signature. In our context, we
consider a similar distance metric as in §4.2, which employs
DTW to evaluate the similarity between power network EMF
signal sequences. However, unlike in SLAM (see §4.2) where
we only use power network EMF features at 50Hz for ro-
bustness, during localization we consider three frequency
components 50Hz, 100Hz and 150Hz (the harmonics), to
exploit more discriminative power of power network EMF
signals. Therefore, the distance between the live power net-
work EMF measurement zt and the power network EMF
signature at a given location is evaluated as the weighted
sum of distances between signals at the three frequency com-
ponents, where weights are learned from the data. Finally,
given the pairwise distances between live power network
EMF measurement zt and power network EMF signatures
at different locations, the estimated location is given by a
Nearest Neighbour (NN) classifier.
Sparse PowerNetworkEMFFeatureAnalysis:The above
localization scheme is intuitive and easy to implement, but
may incur substantial computational cost since a newly ob-
served power network EMF measurement has to be com-
pared against power network EMF signatures of all locations
within the feature map, where each comparison involves
one run of DTW. This would pose significant negative effect
on performance when feature maps become bigger/denser,
or for resource constrained devices such as wearables. To
address this, we propose a sparse power network EMF fea-
ture analysis approach which only works on much sparser
power network EMF signals to speed up processing. The
intuition is that within a short period, the power network
EMF signals tend to smooth with low variance, i.e., most val-
ues are entered around the sample mean. Therefore, when
comparing a given measurement zt with the power network
EMF signatures in the feature map, we first use the mean
values to filter out those locations whose mean power net-
work EMF signatures are very far away from that of zt . In
our experiments, we find that this pre-processing step is very
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Figure 18: Floorplans (a), inertial trajectories produced by PDR (b), and the maps estimated by the proposed
senEMR-SLAM (c) and micEMR+Mag-SLAM (d) in lab (top), office building (middle) and shopping mall (down).

effective: on average it can rule out about 90% of locations
in the feature map, with less than 2% drop in overall local-
ization accuracy. In addition, given the sample mean µ (zt )
and variance σ (zt ) of a power network EMF measurement
zt , the signal sequence encoded in zt can be sparsified by
collapsing all values within [µ (zt ) − λσ (zt ), µ (zt ) + λσ (zt )]
as zeros. λ is the sparsity factor, which controls how much
information would be omitted from the original signal. The
resulting consecutive zeros are then clustered together, and
we only keep the lengths of them in the sequence. We apply
the same process to the power network EMF signatures, and
then run DTW on the sparse representations, which should
be much shorter than the original signals. The rationale is
that we have already used mean values to compare zt with
the power network EMF signatures, and thus values close to
its mean won’t be able to contribute further information. As
shown later in the evaluation, this sparse analysis approach
can significantly reduce computation latency of localization.

5 EVALUATION
5.1 Experiment Setup
Sites: We evaluated the performance of proposed power net-
work EMF-based SLAM and localization approaches in three
venues across two countries, including (i) an office building

(1, 750m2), which was built over 20 years ago with stones and
bricks, and reinforced with metal rebars; (ii) a semi-outdoor
shopping center (11, 000m2) built recently close to a high-
way; and (iii) a lab space (900m2) in another country, which
has the same 50Hz powerline frequency but different layout.
Fig. 17 shows the snapshots of these test venues.

Sensing Modalities and Platforms: In our experiments
we employed a variety of sensing modalities, and collected
the following data: (i) power network EMF signals from a cus-
tomized powerline EMR sensor as shown in Fig. 17, (ii) audio
from microphones, (iii) geomagnetic field from the smart-
phone magnetometer, and (iv) WiFi RSS on smartphones. We
used 5 devices with different specs, including Raspberry Pi 2
and 3, Galaxy S7, Huawei P9, and Nexus 6.

Data Collection Protocol: We recruited 10 participants
with different heights (1.58m to 1.88m), and asked them to
hold the devices and walk normally in the experiment sites.
We collected about 5 hours of walking data in total from the
three sites, where longer trajectories with multiple loops are
used to evaluate the proposed SLAM approach, while the
rest for localization. We employ Google Tango tablet [24]
to obtain ground truth for both user trajectories and con-
structed feature maps. The visual-inertial odometry is fused
with manually inserted loop closures using visual SLAM [19].
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Figure 19: SLAM performance in the lab space.

5.2 Experiment Results

Effectiveness of SLAMusing PowerNetworkEMF: The
first experiment studies the effectiveness of SLAM using
power network EMF. We refer to the SLAM approach using
power network EMF sensed via the customized receiver as
senEMR-SLAM, while via microphone asmicEMR-SLAM. The
two proposed approaches are compared against: (i) WiFi-
SLAM and (ii) Mag-SLAM, which use WiFi RSS [11, 50] and
earth geomagnetic field [12, 44] for SLAM. Fig. 18 shows
the floorplans (a), the inertial trajectories produced by PDR
(b), and the maps (shown as trajectories) estimated by the
proposed senEMR-SLAM (c) and micEMR+Mag-SLAM (d)
across three experiment sites. We see that in all sites both ap-
proaches can producemuchmore consistent trajectories than
PDR, which are very similar to the ground truth. Fig. 19(a),
20(a) and 21(a) further show the error distributions of maps
constructed by different SLAM approaches using a variety
of sensing modalities. As we can see, senEMR-SLAM con-
sistently outperforms the other single-modality SLAM ap-
proaches, and can reach 0.42m accuracy for 90% of the time
in the lab space, while achieving 3.34m mean accuracy in the
very challenging shopping center. On the other hand, Mag-
SLAM has about 15% more error than senEMR-SLAM, while
WiFi-SLAM performs even worse. Although both exploit the
power network EMF, the performance of micEMR-SLAM is
generally inferior to senEMR-SLAM due to the background
noise in audio data. This is expected, however in the lab space
micEMR-SLAM is still better than WiFi-SLAM (Fig. 19(a)). In
the challenging shopping center, neither micEMR-SLAM nor
WiFi-SLAM is able to construct a reasonable map (errors not
shown in Fig. 21(a)). On the other hand, when fused with
other sensing modalities, e.g. micEMR-SLAM + Mag-SLAM,
the SLAM accuracy could improve by 20% on average than
Mag-SLAM alone.

Performance of Iterative Loop Closure Curation: This
experiment investigates the performance of the proposed
iterative loop closure curation algorithm. We compare our
approach with the state-of-the-art loop closure checking
algorithms: (i)RRR [21] which identifies valid loop closures
by clustering them; (ii) Max-mixture [28] which employs a
mixture model to capture probabilities of valid loop closures;
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Figure 20: SLAM performance in the office building.
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Figure 21: SLAM performance in the shopping center.

and (iii)Vertigo [39], which uses latent variables to model the
validity of loop closures. We also include the baseline No
Validation, which naively pushes all loop closure proposals
to optimization without any validation. Fig. 19(b), 20(b) and
21(b) shows the error CDF of different approaches. Firstly, we
see that loop closure validation is a necessary step, and can
significantly improve SLAM accuracy: in the shopping center,
the proposed approach can reduce the error to 20% (from
15.06m to 3.34m), compared to no validation. Comparing to
other loop closure validation techniques, our approach can
achieve approximately 1.5-fold reduction in error and the
accuracy degrades gracefully. This is because our approach
is able to iteratively validate and mine genuine loop closures,
while the competing ones just run one-off validation.

Localization Accuracy: Now we evaluate the online lo-
calization accuracy of different modalities given their con-
structed feature maps. Intuitively, the performance of local-
ization depends very much on the quality of maps regis-
tered by SLAM. Therefore in this set of experiments we only
consider the lab and office settings, because feature maps
estimated by single modalities (senEMR, micEMR, Mag or
WiFi -SLAM), even the best ones, have non-negligible errors,
and it does not make sense to evaluate localization accuracy
with respect to them. Similarly, we only compare the pro-
posed power network EMF based localization approaches
(senEMR-Loc using the customised receiver, and micEMR-
Loc using microphones) with magnetic field based approach
(Mag-Loc) since WiFi does not perform well. Fig. 22 shows
the CDF of localization accuracy. As we can see, senEMR-loc
outperforms the other approaches, achieving mean accuracy
of 1.59m in the lab space and 3.93m in the office building.
Note that Mag-Loc performs particularly bad on the lab space
(see. Fig. 22(a)). This is because we use data collected from
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Figure 22: Localization performance of different sens-
ing modalities.

a participant of height 162cm to build the magnetic feature
map, while tried to localise another of 190cm. This confirms
that magnetism based approaches are not robust to height,
while the proposed power network EMF based approaches do
not suffer from this problem. On the other hand, using only
power network EMF sensed via microphones (micEMR-Loc)
has generally larger errors than that of using customized
receivers (senEMR-Loc). However, when fused with mag-
netic field (micEMR+Mag-Loc), the localization errors could
be halved comparing to the single best modality: from 8.2m
(micEMR-Loc only) to 3.7m in the lab space and 8.4m (Mag-
Loc only) to 3.9m in the office building.
Sensitivity to Power Network EMF Sequence Length:
This experiment looks into the sensitivity of localization per-
formance with respect to the sequence length of power net-
work EMF signals included in onemeasurement.We consider
two realistic settings: (i) running senEMR-Loc on Raspberry
Pi (RP2 and RP3), which can be used in various IoT applica-
tions; and (ii) running micEMR+Mag-Loc (fusion of micEMR-
Loc and Mag-Loc) on smartphones, which provides an alter-
native option for infrastructure-free positioning. As shown in
Fig. 24 and 25, we vary the length of power network EMF sig-
nals in terms of steps: e.g. 2-step means in a power network
EMF measurement we include signals observed within the
last 2 steps. We see that senEMR-Loc and micEMR+Mag-Loc
achieve comparable localization accuracy: generally longer
sequences result in better accuracy, while the gaps become
marginal when the sequence length is bigger than 6-step.
For instance, for both senEMR-Loc and micEMR+Mag-Loc,
using signals of 10-step would only improve localization ac-
curacy by <0.2m comparing to 6-step. On the other hand,
longer sequences take more time to process, e.g. using 10-
step would significantly increase localization time as shown
in Fig. 24 and 25 (up to ∼3s for one measurement), which is
not cost-effective.

Performance Gain by Sparse Feature Analysis: The last
set of experiments verify the impact of the proposed sparse
feature analysis on localization performance. We use the
same two settings (that is, senEMR-Loc on Raspberry Pi, and
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Figure 23: Running time of different feature analysis
approaches on test devices.

Table 1: Localization accuracy (m) of different feature
analysis approaches.

raw DTW constrained mean filter full
senEMR 1.76 1.89 1.77 2.01
micEMR
+ Mag 4.15 5.58 4.20 4.71

micEMR+Mag-Loc on smartphone) as in the previous ex-
periment, and compare the proposed sparse feature analysis
approach (in §4.4) with: (i) standard DTW, (ii) constrained-
DTW [27] which imposes local constraints on searching
when aligning sequences, and (iii) a straw man version of
the proposed approach, using mean filter only to pre-select
matching sequences. For the proposed approach, we tem-
porarily fix the sparsity level (controlled by λ in §4.4) to
25%. This means that during sparse feature analysis, 25% of
values in the original signal would be set to zero since they
are close to the mean. Fig. 23 shows the wall-clock running
time of different approaches, and the resulting localization
accuracy is shown in Tab. 1. We see that even with mean
filter only, we can already run ∼10× faster than standard-
DTW, while the drop in accuracy is negligible. On the other
hand, the full version of proposed sparse feature analysis
approach can achieve up to 25× performance gain in run-
ning time compared to standard-DTW, at the cost of ∼15%
accuracy loss, which is still comparable with the state-of-
the-art (constrained-DTW). When we vary the sparse level
(from 0% to 50% as shown in Fig. 24, we observed that sparser
signals take shorter time to process (∼0.1s less per 5% on
RP3), while resulting in negligible increase in localization
error (∼0.06m). This confirms that the proposed sparse fea-
ture analysis approach can achieve desire trade-off between
cost and accuracy. In particular, as in Fig. 24, when using
25% sparsity and 6-step power network EMF signals, it takes
0.69s to process one measurement, which is within the time
for one footstep. Therefore, we could run real-time power
network EMF based localization on the resource constrained
Raspberry Pi with reasonable accuracy.
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Figure 24: Accuracy and running time on RP3.
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Figure 25: Accuracy and running time on Huawei P9.

6 RELATEDWORK
As discussed in §1, recent studies [23, 33, 48] have exploited
powerline EMR for time-related services. In [29, 38], mod-
ulated high-frequency signals are injected into a building’s
power network and then the corresponding power network
emanations are sensed by a mobile device equipped with an
EMR sensor for localization. However, the requirements of
one or more signal injectors and intensive in situ training
introduce significant system deployment overhead. The Hu-
mantenna system presented in [9] uses the human body as
an antenna to receive powerline EMR and recognize gestures.
Preliminary results on recognizing the user’s location among
pre-spotted locations are presented. However, the physical
connection with the user’s body and system training bring
overheads. To the best of our knowledge, this paper presents
the first work on using power network ENF measurements
captured by a standalone sensor or smartphone for SLAM
and localization.
Originally designed for robotics, SLAM has been applied

to mobile computing applications [3, 43]. However, due to
mobile devices’ low-cost and noisy IMUs and human’s com-
plicated motion patterns, SLAM for human-centric applica-
tions is often challenging. Early solution [11, 50] use WiFi
RSS and IMUs for SLAM. However, WiFi RSS suffers from
the multi-path effects and the performance of SLAM de-
grades significantly in dynamic environments, e.g., retail
stores. Geomagnetism-based SLAM is recently introduced
[12, 18, 44]. However, geomagnetism often exhibits high

variability with altitude. Recent SLAM systems also leverage
vision techniques [10, 14], which raise privacy concerns [52],
however. Our SLAM system differs from the above systems
in its new sensing modality – power network EMF – that ex-
hibits desirable high repeatability. Our system also features
a bespoke approach that detects power network EMF loop
closures reliably and produces better SLAM results.

Localization can be seen as a special case of SLAM where
the map is known or obtained through SLAM. Existing local-
ization approaches can be divided into two categories. First,
model-based approaches estimate the distance between a user
device and deployed anchors based on models of RSS [5, 7],
angle of arrival [20, 46], or propagation time [25, 42, 45].
However, non-line-of-sight conditions often degrade the per-
formance of these approaches. Differently, powerline EMR
with extremely long wavelengths can well penetrate bar-
riers. Second, fingerprinting approaches develop a map of
features extracted from images [13, 54], sounds [41], geo-
magnetic field [22, 35, 36], RF signals [6, 51], visible lights
[49, 52, 55] and a mix of them [4, 34, 47]. However, these
approaches generally require a laborious blanket process
of (re-)fingerprinting all locations. Owing to the temporal
stability of power network EMF, our approach requires a
one-shot profiling only, coinciding with the concept of light
registration [53]. Moreover, the profiling can be accomplished
via crowd-sourced SLAM in an unsupervised manner.

7 CONCLUSION
This paper systematically investigated the spatial distinct-
ness and temporal stability of EMFs induced by buildings’
power networks. Based on the result, we designed a SLAMap-
proach that can reliably detect loop closures with power net-
work EMF signals sensed by either a customized receiver or
a smartphone’s microphone as a side-channel sensor. More-
over, with the power network EMF feature map constructed
by SLAM, we design an efficient localization algorithm that
can position the user in real time on resource-constrained
devices. Our extensive evaluation shows that the power net-
work EMF is a promising modality for indoor location sens-
ing since it is ubiquitous, spatially distinct, temporally sta-
ble, and noise resilient. By exploiting these advantages of
power network EMF, the proposed SLAM and localization
approaches are capable of achieving sub-meter accuracy,
while run in real time on both smartphones and embedded
hardware. Advanced approaches for fusing power network
EMF measurements with the measurements in other sens-
ing modalities, as well as 3D indoor localization with power
network EMF are interesting topics for future work.
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