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ABSTRACT
Sensor data acquired from multiple sensors simultaneously is fea-
turing increasingly in our evermore pervasive world. Buildings
can be made smarter and more e�cient, spaces more responsive to
users. A fundamental building block towards smart spaces is the
ability to understand who is present in a certain area. A ubiqui-
tous way of detecting this is to exploit the unique vocal features as
people interact with one another. As an example, consider audio
features sampled during a meeting, yielding a noisy set of possible
voiceprints. With a number of meetings and knowledge of partici-
pation (e.g. through a calendar or MAC address), can we learn to
associate a speci�c identity with a particular voiceprint? Obviously
enrolling users into a biometric database is time-consuming and
not robust to vocal deviations over time. To address this problem,
the standard approach is to perform a clustering step (e.g. of audio
data) followed by a data association step, when identity-rich sensor
data is available. In this paper we show that this approach is not ro-
bust to noise in either type of sensor stream; to tackle this issue we
propose a novel algorithm that jointly optimises the clustering and
association process yielding up to three times higher identi�cation
precision than approaches that execute these steps sequentially.
We demonstrate the performance bene�ts of our approach in two
case studies, one with acoustic and MAC datasets that we collected
from meetings in a non-residential building, and another from an
online dataset from recorded radio interviews.
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•Computer systems organization →Embedded systems; Re-
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1 INTRODUCTION
�e key to reactive and personalisable behavior in smart spaces of
the future is knowing who is using a particular area. Buildings and
appliances can then react dynamically to demand, control heating
and lighting and simultaneously improve comfort and energy e�-
ciency. For such a system to be widely used, it needs to be accurate,
robust and ubiquitous.

At a high level of abstraction, there are two classes of obser-
vations which can be made about who is where: those which are
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Figure 1: Training a speaker identi�cation system based on
context labels: given a set of noisy voice-prints with infor-
mation about likely sets of participants, we can learn the
relationship between a voiceprint and identity. Later, just
given voiceprints without any contextual identi�ers, we can
determine who the speakers are.
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directly linked to the user (identity-related observations) and those
which are linked to the context like a particular meeting room
(context-related observations). Identity-related observations typi-
cally require active participation from the user, o�en in the form
of carrying a device or identifying token, such as a smartphone or
RFID-enabled card. Although these systems are o�en highly accu-
rate, they are inherently not robust as a strong assumption is made
that the token and user are inseparable i.e. the token is a proxy for
a user. As soon as the token and the user are separated, e.g. if they
lose, forget or don’t charge their token, this assumption collapses,
leading to an unresponsive and bri�le system. On the other hand,
context-related observations such as voices of the users passively
sensed in a particular space, e.g. an o�ce, cannot be linked directly
to the user identities without explicit initial enrollment into a data-
base. However, the enrollment process is typically time-consuming
and expensive, and needs to be constantly updated over time.

In this work, we propose associating uniquely identi�able sen-
sor observations (e.g. MAC address), when available, with noisy,
infrastructure-based observations of acoustic data (human voice-
prints). We build a speaker identi�cation system which gradually
associates context-linked audio observations with a speci�c iden-
tity. In this way, existing token-driven systems can be bootstrapped
with additional contextual sensing to improve the performance of
the system as a whole, without the cost and e�ort of having to make
users enroll into the system. We explicitly assume that sensor data
will be noisy, and present a technique that simultaneously clus-
ters and names observations, yielding accurate, zero-e�ort speaker
identi�cation. We show that this can further improved by iterating
between clustering and naming to minimize the mismatch, yielding
signi�cantly improved results in the face of increasing levels of
noise. In summary, our contributions are:

• We show that side-channel information about likely par-
ticipants in an event provides valuable, albeit noisy, clues
about speaker identity.

• We propose SCAN, a novel algorithm which simultane-
ously handles clustering and association, and highlight
the bene�ts of the algorithm compared to handling these
problems in a sequential manner.

• We illustrate the impact of user diversity on the speaker
identi�cation performance of SCAN, and perform a sensi-
tivity analysis as we vary its key parameters.

• We compare SCAN against competing approaches using
two case studies, one based on sensor data that we collected,
and one based on a real world online sensor dataset and
show 3-fold improvements in performance especially in
noisy environments.

�e rest of the paper is orgnised as follows. Sec. 2 formulated
the identi�cation problem considered in this paper, and Sec. 3 ex-
plains how the baseline approach tackles this problem. In Sec. 4
we present the proposed simultaneous cluster and naming (SCAN)
algorithm, and Sec. 5 provides two real-world application scenarios
in which we implement our SCAN algorithm. Sec. 6 evaluates the
SCAN algorithm, and compares its performance with the competing
approaches. Sec. 7 surveys the related work, while Sec. 9 concludes
the paper and outlines future directions.

I

C
 I – Identities OI –  Identity Observations
 C – Contexts OC – Context Observations

OC OI

100% Known Unknown Noisy

Figure 2: Schematic illustration of the problem: Identity ob-
servations have known links with identities but noisy links
with contexts. Context observations have known links with
contexts, but unknown links with identities. �e problem
studied in this paper is how to learn to infer identities from
context observations.

2 PROBLEM FORMULATION
In this section, we explain the key terms in our system and de�ne
the core problem of sensor association.
Context: We follow the de�nition in [6] and use the term context
C to broadly refer to a se�ing in which users interact with entities
in an environment e.g. a physical visit or meeting in a room, a radio
program or a teleconference.
Identities: We also assume that individuals have unique identity
labels I , such as their names, email or hardware addresses of mobile
devices.
Sensor Observations: We refer to sensor observations as the in-
formation resulting from individuals participating in contexts. We
distinguish between two types of sensor observations: a) Iden-
tity Observations O I , o�ering direct yet noisy information about
which individual may have participated in a context; and b) Context
Observations OC , generated by sensors directly monitoring the con-
text, but without o�ering direct knowledge of individual identities.
Identity observations for example could be obtained from calendar
entries or from sni�ed MAC addresses. Note that in practice,O I can
be noisy: e.g. people may miss scheduled meetings or their device
may be detected in multiple rooms with di�erent probabilities. On
the other hand, examples of context observations OC could be the
audio signals recorded in a meeting. Such observations typically
represent passive observations of users’ important vocal features.
In the absence of training data, it is challenging to immediately
associate context observations to individual identities.

�erefore, the identi�cation problem addressed in this paper is:
given the noisy identity observations O I , �nd the correct mapping
between the context observations OC and identity labels I , so that
in the future, context-linked observations OC can be automati-
cally associated to the correct identities. Fig. 2 provides a simple
schematic illustration of this problem.
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3 BASELINE APPROACH
Intuitively, the most important task to address the identi�cation
problem is to establish the mapping between anonymous context
observationsOC and identity labels I , with the help of noisy identity
observations O I . Standard approaches tackle this in two steps: a)
in the Clustering Step, context observations OC are �rstly grouped
into clusters, each of which represents the features of a single
individual (e.g. voice samples); and then b) in the Data Association
Step, the clusters are assigned with identities based on identity
observations O I (e.g. calendar entries).
Clustering Step: Given a set of contexts C , clustering occurs at
two levels: at the local level clusters are formed within a single
context and then globally aggregated across contexts. At the local
level, the intent is to partition the sensor stream into disjoint, non-
overlapping clusters. �e number of clusters can be estimated
via heuristics or inferred from identity observations (i.e. calendar
entries). �ese local clusters can then be grouped across di�erent
contexts into |I | global clusters, where I is the set of true identities
of individuals who have participated in any of the contexts. �is is
typically accomplished with constrained clustering techniques [1]
which impose additional constraints, such as whether clusters must-
link or cannot-link, on traditional clustering algorithms such as
k-means [10], spectral clustering [20] or agglomerative clustering
[2].
Data Association Step: Let EGk be the membership vector of
the k-th global cluster Gk . EGk [j] is set to 1 only if Gk contains
observations from context Cj (see Fig. 3 for an example). �e set
of contexts that contribute to cluster Gk can be represented as:
CGk == {Cj |EGk [j] = 1}. �en, for a given identity label Im , an
edge is created between Im and Gk if Im is observed to appear in
any context within CGk , according to the identity observations O I .
�e weight of this edge is determined by the number of contexts in
CGk that Im has participated in. �en associating identities with
clusters is equivalent to solving the combinatorial optimization
problem on the weighted bipartite graph, e.g. using the Hungarian
algorithm [12].
Limitations of Baseline Approach: �e above method addresses
the identi�cation problem in two isolated steps: context observa-
tions are �rstly clustered and then matched to identities by min-
imizing the combinatorial mismatch. Although this approach is
simple and easy to implement, it is not robust to noisy observations.
Firstly, errors can occur due to the noise in context observations.
For example, people’s audio may vary considerably across contexts
due to illness or emotional in�uences [32], confusing the clustering
step and causing unrecoverable knock-on e�ects on the ensuing as-
sociation step (see Fig. 4 for an example). Secondly, errors can also
occur due to noisy identity observations; these a�ect the number
of local and global clusters, and degrade the quality of data associa-
tion. In the next section, we will a�empt to mitigate some of these
limitations by proposing a new algorithm that jointly optimises the
clustering and data association steps.

4 SIMULTANEOUS CLUSTERING AND
NAMING (SCAN)

�e key insight of our algorithm is that the clustering of sensor ob-
servations should not be �nalised independently of and in advance

of data association, but both tasks should progress in tandem. �e
proposed simultaneous clustering and naming algorithm works as
follows. Firstly, it compiles sensor observations as an augmented
linkage tree, which succinctly encodes the hierarchical clustering
plans of context observations across di�erent contexts, and more
importantly all possible data association plans given a speci�c clus-
tering plan. �en our algorithm �nds the best clustering and data
association plan by solving a constrained optimisation problem on
the constructed linkage tree. In the following Sec. 4.1, we show
how to construct the augmented linkage tree from both the context
and identity observations, while in Sec. 4.2, we explain how we
jointly optimise the clustering and data association processes to
improve noise immunity.

4.1 Construct the Augmented Linkage
Tree

Robust Clustering: For a given context, the proposed SCAN al-
gorithm uses a similar intra-context clustering process as discussed
in Sec. 3, to separate the context observations of each individual
locally. However, unlike the baseline approach, which only relies
on the cardinality of identity observations (i.e. |O I

j |) in context Cj
to determine the number of local clusters, our algorithm considers
a more robust strategy. It evaluates the number of clusters in con-
text Cj as follows: max{|O I

j |,k
C
j }, where kCj is the natural number

of clusters of the context observation OC
j . In practice, kCj can be

evaluated in many ways, e.g. using average silhoue�e or Bayesian
information criterion.

�e rationale here is that O I
j can be quite noisy. �erefore, the

problem of the baseline approach (only considering |O I
j |) is that

it can underestimate the number of individuals in a context Cj ,
and as a result generate local clusters containing mixed voiceprint
of multiple individuals. For instance, an individual may a�end a
meeting without updating her calendar. In that case, if we still use
the number of individuals inferred from calendar data to cluster
audio signals of that meeting, the voices of two di�erent people
will be inevitably grouped into one cluster. To make things worse,
as we move on to group together local clusters (representing an
individual’s voiceprint in one context) to larger ones (representing
an individual’s voiceprint across contexts), initial clustering errors
will compound and lead to global clusters that are impossible to
associate correctly to individuals.

On the other hand, the proposed approach could potentially
overestimate the number of individuals participating in a given
context. As a result, the voiceprint of a single individual may be
split into two or more local clusters. We address this problem
by adding dummy identity labels into our initial set I . Since we
typically have enough context observations for each individual, it
is safe to remove the data associated with those dummy labels from
the �nal results.
Linkage Tree Construction: Given the generated local clusters
from di�erent contexts, the proposed SCAN algorithm compiles
them into a linkage tree T based on a similarity metric. �e leaf
nodes of T are the local clusters, while a branch node represents
the cluster of all its descendant leaf nodes. Essentially T represents
the hierarchical clustering of all the local clusters, and selecting a



IPSN 2017, April, Pi�sburgh, PA USA C. Lu et al.

Context

Observations

Local Clusters

Global Clusters

4

1

2

1

1

2

2

2
1

2

1

1

E    = [1, 1, 1, 1]

E    = [0, 1, 1, 0]

E    = [0, 1, 0, 1]

E    = [1, 0, 0, 0]

I2

I3

I4

Identity Observations

Clustering Step

Data Association Step

I1

G1

G3

G4

G2

I1 I4 I1 I1 I1I2 I2I3 I3

O
I

1 O
I

2 O
I

3 O
I

4

G2G1 G3 G4

G1

G3

G4

G2

O
C

1 O
C

2 O
C

3 O
C

4
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four contexts.

utterances in happy states

utterances in sad states

v
o

ic
e

 fe
a
t
u

r
e
s

Figure 4: Deviations of voices due to the
di�erent emotion states of the speaker.
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Figure 5: An example of SCAN. (a) Assigning QA to nodes in T. As the size of cluster increases, its identity becomes de�nite.
(b) Solved global clusters by SCAN and baseline method respectively. �e baseline clustering approach is conservative to
deviations and messes up the identity information. SCAN is able to tolerate voice deviations and identify clusters robustly
compared with the baseline method.

combination of nodes from the tree will give a speci�c clustering
plan. For example in Fig. 6(a), selecting nodesT1 andT4 means that
the local clusters in nodes T2 and T3 should be grouped together
(and thus belong to the same individual), while T1 is le� alone as
the cluster corresponding to another individual. Each node Tn in T
is associated with a linkage score QL (n), describing the similarity
between the data within the cluster it represents.
Augment Linkage Tree with Data Association Scores: Given
a linkage treeT , the inter-context clustering process of the baseline
approach is equivalent to �nding the set of nodes in T that max-
imises the total linkage score. However as discussed in the previous
section, this is not reliable due to noisy sensor observations. �ere-
fore, the proposed SCAN algorithm augments the linkage tree by
introducing additional data association scores to each of its nodes
Tn , which represent the �tness of assigning an identity label to Tn
given identity observations O I .

Concretely, let ETn be the context membership vector of a node
Tn , where ETn [j] = 1 if Tn contains data collected from context Cj .
Similarly, we use EIk to denote the context membership vector of
an identity Ik , and set EIk [j] to 1 if Ik has participated in contextCj
according to the identity observationsO I . Intuitively, for a nodeTn
and an identity Ik , if ETn and EIk are similar enough, it is very likely
that context observations under nodeTn are actually the voiceprint
of identity Ik , since they appear in similar series of contexts and
match with each other well (as shown in Fig. 5a).

Formally, for a nodeTn , we de�ne its data association scores with
respect to the identity observations O I as a vector QA (n), where
the k-th score QA (n,k ) is the reward of assigning identity label Ik
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to Tn :

QA (n,k ) =



|ETn ⊗ EIk |, if Tn is leaf
|ETn |[

|ETn ⊗EIk |
|ETn ⊕EIk |

+ 1
|ETn |− |EIk |+1 ], otherwise

(1)
where ⊗ and ⊕ are element-wise AND and OR, and | · | here is the
L1-norm. For a leaf node which only contains context observations
from a single context,QA (n,k ) is a binary value indicating whether
individual Ik has been observed to participate in that context, given
the identity observations O I . On the other hand for a branch node,
the above QA (n,k ) is determined by the Jaccard index and cardi-
nality similarity between ETn and EIk , i.e. it prefers to pair Tn and
Ik that are associated with similar contexts. �e multiplier |ETn |
is used to favour nodes that contain data from multiple contexts,
since they tend to have less ambiguity as to which identity label it
should be associated with.

In this way, we augment the linkage treeT , so that each nodeTn
not only represents a candidate cluster of context observations, but
also encodes all possible data association plans with corresponding
scores. �is means we don’t have to make the clustering decisions
before assigning identities to clusters, but it is possible to jointly
solve the problems of clustering and data association, which will
be discussed in the next section.

4.2 Joint Optimization of Clustering and Data
Association

Given the augmented linkage treeT , the proposed SCAN algorithm
aims to �nd the optimal clustering and data association plan simul-
taneously. Essentially, we want to �nd the a set of |I | nodes inT and
the corresponding identity assignments, which maximise: a) the
similarity of the context observations clustered under each node;
and b) the consistency with respect to the identity observations O I .
�is can be expressed as a composite score function for each node
Tn :

Q (n) = (1 − ω)QL (n) + ω max
k

QA (n,k ) (2)

whereQL (n) is the standard linkage score, maxk QA (n,k ) is the best
data association score, and ω is the weight between them. As dis-
cussed in Sec. 4.1, the data association scoreQA (n,k ) is determined
by the identity observations O I . �erefore, here the parameter ω
governs how much we trust the identity observations O I and to
what extent we want them to impact the result of clustering. In
Sec. 6.2 we will show the sensitivity of our system with respect to
the parameter ω, and explain how to �nd the optimal ω in practice.

However we can’t directly optimise the sum of Q (n) over the
linkage tree, since there are certain constraints when selecting
nodes from the tree, e.g. a node cannot be selected with its ancestors
or descendants at the same time since they contain duplicate data.
To address this, the proposed SCAN algorithm �rstly converts the
linkage tree to an undirected graph, where vertices are from the
nodes inT , and an edge (m,n) ∈ B connects two verticesTm andTn
if they can’t be selected at the same time (as shown in Fig. 6). �en
optimising ∑Q (n) over the |T | nodes is equivalent to solving the
Maximum Weighted Independent Set problem [9] on the converted

MWISLinkage Tree

Figure 6: Converting a linkage tree to an undirected graph
where an edge connects two nodes that should not be se-
lected at the same time. An example of the Maximum
Weighted Independent Set (MWIS) is highlighted in green.

graph:

max
δn

|T |∑
n
δnQ (n)

s .t . δm + δn ≤ 1,∀(m,n) ∈ B
δm ,δn ∈ {0, 1} and ∑δn = |I |

(3)

where δn is the indicator function, and δn = 1 means the n-th
node is selected. Note that here we require exactly |I | nodes to be
chosen, i.e. ∑δn = |I |. Depending on the hardness of the problem
(e.g. number of nodes and the graph density), this can be solved by
either exact [21] or approximate algorithms [4].
Final Cluster Re�nement: Once we assign identities to global
clusters, we perform a post-processing step to further re�ne the
quality of these clusters. We revisit leaf clusters one by one, and
check whether removing a leaf cluster from a global cluster could
potentially increase the global cluster’s score Q (n). If this is the
case, the leaf cluster is removed and considered as candidate to be
a�ached elsewhere in the tree. If it cannot increase the value of
any other global cluster, it is simply discarded. Otherwise, it joins
the global cluster that it helps increase its �tness the most. An
illustrative example is provided in Fig. 7.

It is also worth pointing out that in practice, the performance
gain o�ered by this �nal cluster re�nement step largely depends on
the quality of identity observations O I . If the observed O I is very
trustworthy, e.g. in our experiments (Sec. 6) when erroneous iden-
tity observations account for less than 10∼15% of all observations,
such a re�nement step is bene�cial. In this case, we can safely rely
on the accurate identity observations to tidy up the resulting global
clusters from spurious local clusters that are inconsistent with the
observed O I . However, if the identity observations O I are noisy,
e.g. when >30% of O I is wrong, it is be�er to skip this step. In
practice, it is o�en di�cult to determine the precise “noisiness” of
the identity observations, but such information could be available
as prior knowledge in di�erent application scenarios. For example,
the identity observations collected from calendar data should be
more accurate than those sensed from WiFi MAC address sni�ng.

4.3 SCAN vs. Online Inference
Once the SCAN algorithm is used to simultaneously cluster and
associate context observations to identities, we can use its ouput to
populate a user speaker voiceprint database. �e la�er can then be
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Popping Pushing

Figure 7: Final cluster re�nement: Example of moving a lo-
cal cluster from one global cluster to another in order to in-
crease the �tness of both global clusters.

used for online user identi�cation based purely on context observa-
tions, without relying on identity observations. An entry in such
a database maps a user’s identity to the global cluster of context
observations previously generated by that user. Note that these
entries are generated directly from the output of SCAN.

A classi�cation technique, such as k-nearest neighbor algorithm,
can then be used to take a sample context observation in a new pre-
viously unseen context, and identify the user in the database that
has the closest match. �is inference step can be implemented using
a variety of existing classi�cation techniques, while the novelty of
this paper lies in the proposed SCAN algorithm, which enables the
building of an accurate voiceprint database even in the presence
of noisy context and identity observations. �e accuracy of the
database has an obvious direct in�uence on the accuracy of the
online inference step. As a consequence, SCAN enables reliable
identi�cation of users in new contexts where we possess no prior in-
formation on a�endance. �erefore smart spaces can learn to react
to speakers even when they are not carrying explicitly identifying
tokens.

5 APPLICATION SCENARIOS
Case studies: We evaluate the proposed and competing approaches
in two case studies, one using sensor observations generated from
physical meetings, and another from broadcast radio programs. In
both cases, we assume the context observationsOC are the recorded
voice clips of the participants, while the identity observations O I

are generated from additional side channels discussed below.
(1) Non-residential building meetings: �e �rst is a number of

meetings in an o�ce environment. �e audio collection
application runs on Motorola Nexus 6, which is an Android
based smartphone. We organize a cohort of 16 participants
who agree to share the MAC addresses of their phones
and record their voices in meetings1. Five of them are
selected as meeting organizers, who are responsible for
organizing meetings for participants, recording audio and
sharing corresponding calendar information (participant
list, location, time). In this scenario, the collected calendar
entries are considered to be the identity observations O I ,
since they provide noisy information on the identity of
participants in di�erent meetings. �ere are 35 meetings
recorded for voice indexing (training) and 15 meetings
for online inference (testing), totalling over 30 hours of
audio, recorded over a month from 6 di�erent locations.

1Ethical approval for carrying out this experiment has been granted.

�e average size of a meeting is ∼ 3 participants. Our goal
in this case is to identify speakers in various meetings by
their voices. To obtain the ground truth, we �rst segment
each audio clip into segments based on speaker-change
points and then manually label each segment by listening.

(2) Radio programs: �e second is the BBC ‘Six Minutes Eng-
lish’ radio interview. �ere are usually 2 or 3 hosts plus 1
or 2 interviewees in one program. �e text-based metadata
of the interviews (e.g. transcripts) is used to generate the
identity observations O I . In this case, the transcripts of
interviews are considered as the ground truth, where for
each session we assume the corresponding transcript con-
tains true information about its participants. �erefore in
our experiments, we manually add di�erent levels of noise
to simulate noisy identity observations. 30 clips are used
to learn the mapping and another 12 are used for online
inference. As no interviewee takes part in more than one
episode, they essentially act as spurious noisy clusters and
hence we only report on the mapping between the hosts
and their voices.

Our goal in both cases is to build up a voice database between
voice features and speakers, and use the developed database to infer
speaker identities given their voices online. Speaker identi�cation
via li�le human calibration is a popular but unsolved problem.
�e challenge here lies in that human voices across scenarios and
occasions could vary signi�cantly [16]. We brie�y introduce the
concept of speaker diarization below, since it is a pre-processing
step for our case studies and its output serves as input to the SCAN
and competing algorithms.
Speaker Diarization As shown in Fig. 8, speaker diarization is a
process of partitioning an input audio stream into homogeneous
segments according to the speaker identities [28]. �e pipeline of
an i-vector based speaker diarization approach used in this paper
is as follows. �e raw audio signal is �rstly pre-processed to re-
move non-informative components, such as silent gaps, background
and high-frequency noise. �e processed audio is then segmented
into short clips based on in�ection points, so that each of them is
likely to only contain the u�erances of a single speaker. For each
clip, we extract its i-vectors [5] as features, which are shown to
be the state-of-the-art representation in various speech processing
tasks [8, 25]. �en the raw i-vectors (typically ∼500 dimensions)
are projected to lower dimensional i-vectors (contain only the most
variable 200 dimensions) using a PCA-based dimensionality reduc-
tion technique [24], to account for the intra-conversation variability
of the audio data. Finally, the audio clips are grouped into local
clusters based on their i-vector features, which is essentially the
intra-context clustering as discussed in Sections 3 and 4.

6 EVALUATION
We are now in a position to evaluate the proposed SCAN approach
in the context of the application scenarios discussed in the previous
section. Our evaluation is divided into four parts. In the �rst part,
we brie�y evaluate the performance of the pre-processing speaker
diarization step; although this is not our own contribution, it is
important to gauge the accuracy of context observations which are
later on fed as input to SCAN. In the second part, we delve into
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Figure 9: Evaluation of Speaker Diarization

the proposed SCAN algorithm and perform a sensitivity analysis
of the algorithm as we vary the quality of the input as well as
some of its key parameters. In the third part, we investigate how
SCAN fares compared to state of the art competing approaches
and show the bene�ts of using simultaneous clustering and data
association to fuse context and identity observations. �e last part
of the evaluation focuses on the online speaker identi�cation step,
which exploits the high quality voice database generated SCAN to
recognise a speaker only based on context observations (without
identity observations).

6.1 Evaluation of Speaker Diarization
Speaker diarization is the preprocessing step and its performance
determines the quality of local clusters, which can further a�ect
the accuracy of SCAN and competing methods. We implement the
state-of-the-art i-vector based approach [24], and in this section we
evaluate its performance with / without dimensionality reduction.
We consider the F1 score as a standard performance metric, which
is the harmonic mean of precision and recall of speaker diarization
- widely used in speaker diarization [18, 19].

F1 = 2 · precision · recall
precision + recall

(4)

Fig. 9 shows the results of speaker diarization with and with-
out dimensionality reduction on i-vector features. As expected,
diarization with dimensionality reduction consistently outperforms
the standard approach in both cases and for various numbers of
speakers. More speci�cally, the F1 score is improved by ∼ 5.2% and
∼ 6.5% in the radio program and meeting scenarios respectively. As
expected, F1 score decreases with the increase of number of speak-
ers in a conversation, but not abruptly. �erefore, for both cases,
this pre-processing step can generate local clusters with reasonable

levels of noise, which serves as the input to the proposed SCAN
and competing approaches.

6.2 Sensitivity Analysis of SCAN
Now we focus on the performance of the proposed SCAN algorithm
and its sensitivity to parameter se�ings and input with di�erent
noise levels. �e key performance metric here is the F1 score which
weights recall and precision equally.
Impact of Weights Between Linkage and Association Score:
�e �rst experiment is designed to explore the impact of the level
of trust that we place on the identity observations. Recall that
identity observations provide a noisy prior on the a�endance of
participants in a context, and are derived in our use cases from
sni�ed MAC addresses or the radio program metadata. In SCAN,
such information is jointly optimised with the clustering of audio
segments as discussed in Eq. (2). �e parameterω in Eq. (2) indicates
the interplay between the linkage score (derived from the context
observations OC ) and data association score (derived from the
identity observations O I ). Intuitively, when ω is set to a small
value, the identity observations have li�le impact on clustering
and SCAN mostly relies on linkage score. �is will of course have
negative impact on the performance, since the valuable information
encoded inO I is largely ignored. For instance, as shown in Fig. 10a,
when we set ω = 0.1, SCAN only achieves very low F1 score: 0.24
on the radio program dataset and 0.18 on the meeting dataset. On
the other hand, largeω tends to over trust the identity observations,
which are o�en noisy in practice, leading to suboptimal F1 score of
0.45 and 0.42 on two datasets respectively.

Empirically we observe that a slightly skewed mix between link-
age score and data association score works well in practice for both
datasets, with suitable values of ω lying in the range of [0.5, 0.7].
�e exact optimal value is slightly higher for the meeting dataset:
this is because context observations there (audio data) su�er from
more voice-deviation, and it therefore makes sense to trust less the
linkage score which is based on distances between audio features.
Impact of Number of Speakers: �e next experiment aims to
evaluate the impact of the number of speakers to associate identities
on the performance of SCAN. We take the real data collected from
the two use cases discussed in the previous section (meetings and
radio programs) and arti�cially gradually remove the audio and
identity labels of some of the participants to generate sub-datasets
of various participant sizes. SCAN is then examined on these sub-
datasets. As shown in Fig. 10b, SCAN is able to associate small-size
sub-datasets at very high F1 score. As expected, the performance
drops when the number of identities increases, but the degradation
is graceful and its F1 score is still beyond 0.75 when the we reach 7
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Figure 10: Sensitivity analysis of SCAN on physical meeting dataset.

participants per context on both datasets. An explanation for this
is that when the number of distinct identities increase, the chance
that two or more identities (i.e. speakers) have similar voicepoint
increases. In that case, SCAN may develop incorrect linkage tree
branches due to the voice similarity between users, and thus makes
wrong association decisions.
Impact of Diversity of Participants: �e e�ectiveness of SCAN
in fusing context and identity observations does not depend only
on the number of context participants but also on their diversity.
�e last experiment is designed to look at diversity through the lens
of 1) recording location (relative to speaker location), 2) speaker
gender and 3) �rst-language. Here we focus on the meeting scenario
because its participants have su�cient levels of diversity.

Fig.10c shows that diversity in location of the speaker relative
to the microphone can reduce F1 score by 15%. �e reason is that
it confuses the linkage score in the clustering process, which is
partly in�uenced by the distance between microphone and speaker.
On the other hand, gender diversity is helpful (for a given number
of participants) as it makes voices from participants of di�erent
genders easier to separate. �e same applies for �rst language
of the speakers. In contexts with international students, SCAN
was more accurate than in contexts with native English speakers
only, for a similar reason as the one discussed in the case of gender
diversity. Although diversity in gender and �rst language helps,
SCAN remains very accurate (0.86) even in the non-diverse cases.

6.3 Comparison of SCAN with Competing
Approaches

A�er analysing in detail the performance of SCAN, we now proceed
to compare it against a number of competing approaches. �ey fol-
low a similar pipeline as discussed in Sec. 3. For the association step,
they all use the Hungarian algorithm, but for the clustering step
we consider three di�erent clustering algorithms namely: spectral
clustering, k-means and agglomerative clustering. In the following
graphs, for brevity, we refer to them by the name of the clustering
algorithm that they use, but remind the reader that they also include
the association step.

6.3.1 Robustness to Noise. As discussed in Sec. 2, both context
and identity observations can be noisy. In the case of acoustic
data, the context observations can merge clusters between di�erent
speakers or split a speaker’s voiceprint into two or more clusters.
�e causes of such type of noise can range from the collection
environment (e.g. distance from microphone or ambient noise) to
two speakers who may sound very similar. Identity noise comes

from incorrect observation of participation and can again add extra
identities or remove them from the association step. �ese are
common sources of disturbance in real-world pervasive data, and in
this section we compare the performance of SCAN against baseline
approaches in terms of noise immunity.

We �rst analyse the robustness of SCAN in two common sce-
narios: a) accurate identity observations and b) noisy identity ob-
servations. �ere are three sub-datasets in the radio program case,
each of which corresponds to a particular host’s episodes. On the
other hand, there are �ve sub-datasets in the meeting case, each of
which corresponds to audio recorded by the same meeting orga-
nizer. SCAN is examined on all these sub-datasets and the average
F1 score is reported on both cases respectively.
Scenario 1: Accurate Identity Observations: In this se�ing, we
validate the robustness of SCAN when faced with increasing levels
of vocal deviation across contexts. To only focus on the impact of
noise in context observations, we use the ground truth identity ob-
servations. From the ground truth data, a centroid i-vector feature
is �rst derived by averaging all voice samples across all contexts.
�e variance of all the i-vectors in terms of cosine distance [25] is
denoted as the strength of vocal deviation. We split our dataset into
�ve levels of deviation, ranging from level1 with low deviation and
level5 with the highest deviation. Within each category, conversa-
tions are formed from those vocal samples in the same category.
Note that this deviation based categorization is implemented from
the dataset itself. �e meetings dataset naturally su�ers from higher
levels of deviation due to environmental dynamics and microphone
placement.

As shown in Fig. 11, the greater the deviation, the more signi�-
cantly that SCAN outperforms baseline approaches. On average,
SCAN has a performance of 0.85 and 0.83 on the two scenarios
respectively. Even in the most extreme case (level5), SCAN is still
able to be as accurate as 0.81 and 0.70. On the other hand, the
F1 score of baseline approaches is below 0.6 in the radio program
case and below 0.5 in the meeting case. �e decreases from the
best case (level1) to the worst case (level5) are around 0.4 in both
scenarios for the baseline while SCAN only su�ers a ∼ 0.2 loss.
As explained in Sec. 4, vocal deviations across contexts severely
jeopardise the accuracy of inter-context clustering, which results
in erroneous mapping between global cluster of voices and iden-
tities. SCAN fully exploits the context information as constraints
to form clusters and tackle clustering and association at the same
time, resulting in a signi�cant increase in robustness. In addition,
Fig. 11 also indicates that cluster re�nement in SCAN yields further
gains in robustness, raising the F1 score by 4.2% and 4.8% in the



SCAN: Learning Speaker Identity From Noisy Sensor Data IPSN 2017, April, Pi�sburgh, PA USA

Level
1

Level
2

Level
3

Level
4

Level
5

Voice Deviation Intensity

0.2

0.4

0.6

0.8

1

F
1
 S

c
o
re

 Spectral clustering

 K-Means

 Agglomerative merging

 SCAN w/o refinement

 SCAN full-version

Level
1

Level
2

Level
3

Level
4

Level
5

Voice Deviation Intensity

0.2

0.4

0.6

0.8

1

F
1
 S

c
o
re

 Spectral clustering

 K-Means

 Agglomerative merging

 SCAN w/o refinement

 SCAN full-version

Figure 11: Impact of di�erent level of voice deviation. Le�: radio program dataset; Right: physical meeting dataset.

two scenarios respectively. As shown in Table 1, we see that SCAN
outperforms all baseline approaches on both radio program and
physical meeting datasets. In the former scenario, SCAN outper-
forms the best baseline approaches by 0.23, 0.26 and 0.23 in terms
of precision, recall and F1 score, while in the la�er case, it improves
the performance by 0.36, 0.30 and 0.35 respectively.

Methods
/Dataset

Radio Program Physical Meeting
Precision Recall F-1 Precision Recall F-1

Spectral
Clustering 0.68 0.64 0.66 0.52 0.56 0.53

k-means 0.69 0.66 0.67 0.50 0.54 0.52
Agglomerative

Merging 0.59 0.65 0.63 0.44 0.49 0.47

SCAN
(w/o re�nement) 0.85 0.87 0.85 0.83 0.84 0.83

SCAN
(full version) 0.91 0.90 0.90 0.88 0.86 0.87

Table 1: �e overall performance of competing algorithms
in scenario 1, where identity observations are accurate.

Methods
/datasets

Radio Program Physical Meeting
Precision Recall F-1 Precision Recall F-1

Spectral
Clustering 0.45 0.41 0.43 0.36 0.31 0.34

k-means 0.42 0.38 0.41 0.35 0.30 0.32
Agglomerative

Merging 0.43 0.49 0.45 0.40 0.39 0.40

SCAN
(w/o re�nement) 0.71 0.74 0.73 0.68 0.72 0.69

SCAN
(full version) 0.69 0.72 0.71 0.69 0.71 0.71

Table 2: �e overall performance of competing algorithms
in scenario 2, where identity observations are noisy.

Scenario 2: Noisy Identity Observations: �is scenario is much
more challenging as now the uncertainties include both voiceprint
deviations (i.e. we use all voices and do not split them into cate-
gories) and errors in identity observations. By changing the pro-
portion of correct speaker labels in conversations, we validate the

robustness of SCAN to noisy identities. �ere are two types of noise
for identity observation, a) scheduled but absent b) present but un-
scheduled. If an individual is replaced by another one this means
that both types of error occur simultaneously. In this experiment,
we vary the proportion of identity observation error by uniformly
selecting from the two classes of error and injecting/removing an
individual at random varying the proportion of identity error from
0% to 50%.

Fig. 12 shows the experimental results as identity error increases.
For the radio program dataset, the three baseline methods signi�-
cantly drop in F1 score to below 0.25 in the case where half of the
identity observations are corrupted. It can be seen that although
the precision of SCAN decreases, it degrades far more slowly than
any of the the baseline approaches. �e F1 score of the full version
of SCAN has decreased from 0.94 to 0.38. Interestingly, the version
of SCAN without reallocation shows improved performance with
high identity errors, dropping from 0.89 to 0.47. �is di�erence is
because the re�nement assumes correct identity observations to
move samples between clusters. Overall as shown in Table 2, SCAN
performs be�er than all baseline algorithms, and can achieve up to
0.26, 0.25 and 0.28 improvement in precision, recall and F1 score.

For the meeting dataset, the results show a similar pa�ern. �e
F1 score of SCAN decreases from 0.95 and 0.86 to 0.44 and 0.47 with
and without re�nement. By contrast, even with perfect identity ob-
servations, the baseline methods show extremely poor performance,
below 0.65 even for the best method. �is is because this scenario
is less controlled as audio is recorded in non-ideal environments
(i.e. not in a sound-proofed recording studio) and using di�erent
phones. �e resulting i-vector features are less discriminative for
encapsulating biometric information. As shown in Table 2, on this
dataset SCAN continues to outperform baseline approaches and
the largest gain in terms of precision, recall and F1 score is 0.29,
0.33 and 0.31 respectively.

�is experiment demonstrates that SCAN is robust to identity
errors that signi�cantly a�ect competing baseline methods. For
extremely noisy datasets, the performance of SCAN is up to three
times be�er than the baseline. �is demonstrates that SCAN can
reject errors both from the context observations and identity obser-
vations.
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Figure 12: Impact of varying level of erroneous identity observations. Le�: radio program dataset; Right: physical meeting
dataset.

6.4 Evaluation of Online Inference
We are now in position to validate the performance of online infer-
ence via the developed voice database, i.e. we now use a reserved
test set of data to check our predictions of participants. By varying
levels of error in identity observations, from 0% to 50% in steps of
10%, we develop six di�erent voiceprint databases. In this experi-
ment, we now focus on the overall prediction accuracy now.

�e developed voiceprint database may contain certain amount
of incorrect labels due to the voice deviations and noisy identity
observations. Conventional PLDA classi�er [3, 24] in this case is
not suitable as they require reliable instance labels. We therefore
use a probabilistic k-Nearest Neighbor (PKNN) classi�er [7], which
is proved to be an e�ective method for the scenarios with noisy
training data. It considers the uncertainties of sample labels when it
trains the classi�er. To assign a metric of uncertainty to a voiceprint,
a voice centroid in the form of i-vector is derived by averaging all
her voice instances for each speaker in the populated database. �e
uncertainty of a voiceprint is then calculated by its cosine distance
to its respective voice centroid [5]. Although there are other robust
classi�ers which can handle noisy training data, we do not discuss
more in this paper because online inference is not novel but simply
a implementation step to complete speaker identi�cation.

Fig. 13 shows the end-to-end identi�cation accuracy on two re-
served test datasets. As we can see, online inference using voiceprint
databases developed by SCAN (with/without) reallocation consis-
tently outperforms the one developed by baseline approaches. �is
is as expected because the association accuracy of SCAN is much
higher than baseline approaches and the resultant training data is
more �ne-grained. �e performance di�erence between of SCAN
with or without re-allocation is small. A potential reason is that
PKNN is able to tolerate certain uncertainties of labels and narrows
the accuracy gap if the quality gap of databases is within small
range. �is observation is also found for the performance changes
with di�erent noise intensities of identity observations. When noise
intensities grows from 0 to 20%, the accuracy drops on both test
set are not as dramatic as the association performance drops: 3%
decline of accuracy v.s. 13% loss of F1 score for radio program case
and 5% drop of accuracy v.s. 14% decrease of F1 score for physical
meeting case. In fact, until 20% noise, online inference by SCAN

can be as accurate as around 0.8 on both datasets. Even in the worst
case where 50% identity observations are incorrect, its accuracy can
still be around 0.63. Considering the fact that we develop the whole
pipeline of identi�cation (diarization, voice indexing and online
inference) by weak label information (names only), the end-to-end
results are extremely competitive and useful for many scenarios of
populating a voiceprint database from noisy identity observations.

7 RELATEDWORK
Although a great deal of work has gone into fusing sensor oberva-
tions, there is less research in the area of automatically associating
observations across sensor sets. In terms of data association in
cyber-physical systems, a number of techniques have tackled prob-
lems where there exists a correlated, temporally linked pa�ern
between a pair of sensors e.g. between a camera and wearable sen-
sors. For instance, Jung et at. [13] uses multiple trajectory tracking
(MTT) to associate motion traces to people detected in the �eld
of view (FOV) from cameras. As the accelerometer readings are
accessed from id-linked wearable devices, associating motion traces
to detected people uniquely identi�es people in the FOV. A similar
approaches is also presented in [26], where the MTT is replaced by
the bipartite graph matching. In EV-Loc [27] the Hungarian algo-
rithm is then used to �nd the best match mapping between camera
measurements and WiFi measurements. By using the combination
of various sensing modalities and prediction models, identi�cation
accuracy can be signi�cantly improved [22]. Unlike our work, these
approaches rely on state-based models, where both sensors are ob-
serving temporally evolving systems. In our approach, detecting a
MAC address does not imply that someone will be speaking at that
exact instant.

SCAN is a generic, rather than audio-speci�c application. Nonethe-
less, there are some similar concepts in speech processing. Audio
sensing based applications are widely adopted to infer contexts
[17, 31, 35]. Among many applications, speaker identi�cation [23]
is still a hot topic because of the pervasiveness of voices. �e fo-
cus of speaker identi�cation has recently shi�ed from proposing
vocal feature extraction methods to address the challenge of acquir-
ing training data. An ideal data acquisition system should enroll
minimal labor costs while maintaining desirable quality of data
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Figure 13: Online inference results. Le�: radio program dataset; Right: physical meeting dataset.

labels. SpeakerSense [15] and Darwin [19] pioneer this in the �eld
of mobile sensing. SpeakerSense collects training voices from daily
contexts, e.g., phone call and one-to-one conversations. It signi�-
cantly reduces the calibration e�orts and exploits the pervasiveness
of conversations. In parallel, Darwin adopts a hybrid speaker clas-
si�cation, in which collaborations among phones are exploited for
speaker model sharing and speaker inference. To avoid a large
amount of data transfer in the sharing process, SocialWeaver [18]
only involves collaborative veri�cation in model learning phase
through collaboration and uses the trained speaker models for on-
line inference. A similar application is SocioPhone [14], where
speaker are grouped based on a pure volume-topography-based
approach to detect speakers. DopEnc [36] is recently proposed that
leverages Doppler e�ects to �rst classify approaching trajectories
of people and identify people encounters via voices.

Finally, SCAN aims to discover knowledge (i.e. speaker identity
in this paper) from noisy sensor data, which shares the similar idea
with the truth discovery in social sensing [11, 29, 30] and accuracy
estimation [33, 34] techniques. �ose approaches typically assume
that sensor data is homogeneous but comes from multiple sources,
and consider the Expectation-Maximization (EM) framework to
jointly estimate the reliability/accuracy of the sources and sensor
measurements in the same time. However, SCAN focuses on using
heterogeneous sensor data (i.e. voiceprints and identity observa-
tions) from di�erent sensing modalities to learn their associations.
A promising direction is to incorporate the truth discovery/accuracy
estimation step on top of SCAN, and use the learned trustworthi-
ness/accuracy to adjust the behaviour of SCAN accordingly.

8 DISCUSSION
Usability: Although the problem of speaker identi�cation has
been well studied for many years, the challenge of labelling voiceprints
using observations of identity from side channels has not been con-
sidered. SCAN is able to build a voice database automatically with
identity data derived from pervasive sensors, whether physical
(e.g. MAC) or semantic (e.g. calendar information). �ose identity
observations act as a catalyst for the noisy voice data, and could
signi�cantly improve the performance of speaker identi�cation
without requiring user enrolment. �is could open up many new
applications and services, e.g. personalisation in smart homes and
targeted advertising.
Privacy: In practice, SCAN requires voice data (context obser-
vations) and identity observations sensed from the users (or their

devices) to operate, which may have certain impact on user pri-
vacy. For example, a user may be able to be identi�ed without
explicit consent in a new environment, if the owner has the access
to the voice data of this user. Although we do not explicitly study
the threat model in this paper, we note potential privacy concerns
worth exploring in future work.
Limitations: SCAN also has some limitations. Firstly, it relies
heavily on the diversity of identities across di�erent sessions to
work well. �e intuition is that SCAN is able to identify speakers
more accurately if they participate in di�erent sequences of ses-
sions, i.e. the participation pa�erns of speakers are diverse. On
the other hand, if most of the speakers have participated in the
same sessions, the performance of SCAN will degrade. In that case
the identity observations are not informative and SCAN can only
use speaker diarization to identify di�erent speakers. Secondly, al-
though we have shown in Sec. 6.2 how to empirically set the weight
ω between the context observations and identity observations for
our datasets, it is not clear how to generalize this to di�erent ap-
plication scenarios. �is may need to take other factors such as
the number of speakers, and characteristics of the sensing modali-
ties into account, which is beyond the scope of the current SCAN.
Finally, the current version of SCAN does not have a principled
mechanism to handle the ‘new comer’ scenarios, i.e. when a new
speaker with no identity information is joining the session. In this
case, SCAN tends to mis-associate her voices to that of a known
speaker. If this only happens occasionally, we can manually remove
those outliers a�er the voice database has been constructed. In the
future we will extend SCAN to consider how to grow/modify the
existing database as users join and leave.

9 CONCLUSION
In this paper, we propose SCAN, a novel approach that automat-
ically learns speaker identity from the noisy audio and identity
data derived from pervasive sensors, without the e�ort of manual
labeling or explicit user enrollment. We show that although in
many cases both audio and identity data are noisy and not su�-
ciently reliable by themselves, SCAN is able to pull them together.
�is enables it to robustly reject noise, o�ering up to three-fold
improvement with respect to existing techniques.



IPSN 2017, April, Pi�sburgh, PA USA C. Lu et al.

ACKNOWLEDGMENTS
�e authors would like to acknowledge the support of the EPSRC
through grants EP/J012017/1, EP/M017583/1, EP/M019918/1 and
Oxford-Google DeepMind Graduate Scholarship. We thank Yu
Tang, the anonymous reviewers and our shepherd Dr. Dong Wang
for their helpful comments.

REFERENCES
[1] Sugato Basu, Arindam Banerjee, and Raymond J Mooney. 2004. Active Semi-

Supervision for Pairwise Constrained Clustering.. In SIAM SDM.
[2] Doug Beeferman and Adam Berger. 2000. Agglomerative clustering of a search

engine query log. In Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining.

[3] Bengt J Borgström and Alan McCree. 2013. Discriminatively trained bayesian
speaker comparison of i-vectors. In ICASSP.

[4] Stanislav Busygin. 2006. A new trust region technique for the maximum weight
clique problem. Discrete Applied Mathematics (2006).

[5] Najim Dehak and et al. 2011. Front-end factor analysis for speaker veri�cation.
IEEE Transactions on Audio, Speech, and Language Processing (2011).

[6] Anind K Dey. 2001. Understanding and using context. Personal and ubiquitous
computing (2001).

[7] Benoı̂t Frénay and Michel Verleysen. 2014. Classi�cation in the presence of label
noise: a survey. IEEE Transactions on Neural Networks and Learning Systems
(2014).

[8] Daniel Garcia-Romero, Xinhui Zhou, and Carol Y Espy-Wilson. 2012. Multi-
condition training of Gaussian PLDA models in i-vector space for noise and
reverberation robust speaker recognition. In ICASSP.

[9] Fanica Gavril. 1972. Algorithms for minimum coloring, maximum clique, min-
imum covering by cliques, and maximum independent set of a chordal graph.
SIAM J. Comput. (1972).

[10] John A Hartigan and Manchek A Wong. 1979. A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics) (1979).

[11] Chao Huang and Dong Wang. 2016. Topic-aware social sensing with arbitrary
source dependency graphs. In IEEE IPSN.

[12] Roy Jonker and Ton Volgenant. 1986. Improving the Hungarian assignment
algorithm. Operations Research Le�ers (1986).

[13] Deokwoo Jung, �iago Teixeira, and Andreas Savvides. 2010. Towards coopera-
tive localization of wearable sensors using accelerometers and cameras. In IEEE
INFOCOM.

[14] Youngki Lee, Chulhong Min, Chanyou Hwang, Jaeung Lee, Inseok Hwang,
Younghyun Ju, Chungkuk Yoo, Miri Moon, Uichin Lee, and Junehwa Song. 2013.
Sociophone: Everyday face-to-face interaction monitoring platform using multi-
phone sensor fusion. In ACM MobiSys.

[15] Hong Lu, AJ Bernheim Brush, Bodhi Priyantha, Amy K Karlson, and Jie Liu. 2011.
SpeakerSense: energy e�cient unobtrusive speaker identi�cation on mobile
phones. In International Conference on Pervasive Computing.

[16] Hong Lu, Denise Frauendorfer, Mash�qui Rabbi, Marianne Schmid Mast, Gokul T
Chi�aranjan, Andrew T Campbell, Daniel Gatica-Perez, and Tanzeem Choudhury.
2012. Stresssense: Detecting stress in unconstrained acoustic environments using
smartphones. In ACM UbiComp.

[17] Hong Lu, Wei Pan, Nicholas D Lane, Tanzeem Choudhury, and Andrew T Camp-
bell. 2009. SoundSense: scalable sound sensing for people-centric applications
on mobile phones. In ACM MobiSys.

[18] Chengwen Luo and Mun Choon Chan. 2013. SocialWeaver: collaborative infer-
ence of human conversation networks using smartphones. In ACM SenSys.

[19] Emiliano Miluzzo, Cory T Cornelius, Ashwin Ramaswamy, Tanzeem Choudhury,
Zhigang Liu, and Andrew T Campbell. 2010. Darwin phones: the evolution of
sensing and inference on mobile phones. In ACM MobiSys.

[20] Andrew Y Ng, Michael I Jordan, Yair Weiss, and others. 2001. On spectral
clustering: Analysis and an algorithm. In NIPS.
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