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Abstract—The increasing demands of location-based services
have spurred the rapid development of indoor positioning system
and indoor localization system interchangeably (IPSs). However,
the performance of IPSs suffers from noisy measurements. In this
paper, two kinds of robust extreme learning machines (RELMs),
corresponding to the close-to-mean constraint, and the small-
residual constraint, have been proposed to address the issue
of noisy measurements in IPSs. Based on whether the feature
mapping in extreme learning machine is explicit, we respec-
tively provide random-hidden-nodes and kernelized formulations
of RELMs by second order cone programming. Furthermore,
the computation of the covariance in feature space is discussed.
Simulations and real-world indoor localization experiments are
extensively carried out and the results demonstrate that the
proposed algorithms can not only improve the accuracy and
repeatability, but also reduce the deviation and worst case error
of IPSs compared with other baseline algorithms.

Index Terms—Indoor positioning system (IPS), robust extreme
learning machine (RELM), second order cone program-
ming (SOCP).

I. INTRODUCTION

DUE to the nonline-of-sight transmission channels
between a satellite and a receiver, wireless indoor posi-

tioning has been extensively studied and a number of solutions
have been proposed in the past two decades. Unlike other wire-
less technologies, such as ultrawideband and radio frequency
identification, which require the deployment of extra infras-
tructures, the existing IEEE 802.11 network infrastructures,
such as WiFi routers, are widely available in large numbers of
commercial and residential buildings. In addition, nearly every
mobile device now is equipped with a WiFi receiver [1].

The WiFi-based machine learning (ML) approaches are
becoming popular in indoor positioning in recent years [2].
Fingerprinting method based on WiFi received signal
strength (RSS), in particular, has received a lot of attentions.
The fingerprinting localization procedure usually involves two
stages: 1) offline calibration stage and 2) online matching stage.
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During the offline stage, a cite survey is conducted and signal
strengths received at each location from various access points
(APs) are recorded in a radio map. During the online stage, users’
positions can be estimated by matching the online RSSs with
the fingerprints stored in the radio map. Online matching strat-
egy according to the relationships between physical locations
and RSS map modeled by different ML algorithms is cru-
cial for the performance of indoor positioning systems (IPSs).
Neural network (NN) and support vector machines (SVM) [3],
as two sophisticated ML techniques, have both been utilized
in fingerprinting-based indoor positioning [4].

However, either NN or SVM-based IPSs face two chal-
lenges. On one hand, NN and SVM are time-consuming, and
this issue becomes more serious in fingerprinting-based posi-
tioning systems, because large amount of training data are
required for generating a radio map. Their high computational
costs leave us little leeway, especially for some large-scale
scenarios, to improve the performance and robustness of
ML-based IPSs. On the other hand, noisy measurements are
inevitable, considering that manual observational errors of cal-
ibrated points happen throughout the calibration phase. In
addition, signal variation and ambient dynamics also affect
the signals received by APs. These adverse factors can be con-
sidered as uncertainties, which may degrade the performance
of IPSs. Many researchers bypass optimizing ML methods to
enhance the robustness of IPSs since it will aggravate the sit-
uation of slow training rate. Kothari et al. [5] utilized the
integration of complementary localization algorithms of dead
reckoning and WiFi signal strength fingerprinting to achieve
robust indoor localization, nevertheless, a disadvantage of dead
reckoning is that the errors are cumulative, since new positions
are calculated solely from previous ones. Meng et al. [6] pro-
posed a robust noniterative three-step location sensing method,
but its capability of reducing the worst case error (WCE)
and variance is comparatively limited. Other robust indoor
localization algorithms demand either extra infrastructure or
users’ interaction during calibration phases, which is not
cost-efficient in reality.

These undesirable results motivate us to reconsider the
problem: can we find a ML technique which is fast in train-
ing and has the capability of handling the robustness issue
in IPSs? As a novel learning technique, extreme learning
machines (ELM) has been demonstrated with its outstanding
performance in training speed, prediction accuracy, and gener-
alization ability [7], [8]. Several IPSs have already leveraged
ELM to deliver accurate location estimation with fast training
speed [1], [9], [10].
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Extended from ELM, this paper proposes two robust
ELMs (RELMs), which can be implemented in the
random-hidden-nodes form or kernelization form depending
on the situation, to boost the robustness of IPSs.

The problem of uncertainty and robustness has been
intensively studied in recent years. Wang et al. [11] pro-
posed an ELM tree model-based on the heuristics of uncer-
tainty reduction and computationally lightweight for big
data classification. Fuzzy integral method is adopted to
study the probabilistic feed-forward neural networks [12].
Horata et al. [13] proposed an approach, which is also named
RELM to improve the computational robustness by extended
complete orthogonal decomposition and outlier robustness
by reweighted least squares. Unlike these works, consider-
ing the noises in IPS as discussed above, we propose our
algorithm under a stochastic framework. It is worthwhile to
mention that RELMs are based on second order cone program-
ming (SOCP), which is widely adopted in robust convex opti-
mization problems. Simulation and real-world experimental
results both demonstrate that RELMs-based IPSs outperform
other baseline algorithms-based IPSs in terms of accuracy,
repeatability (REP), and WCE.

An outline of this paper is as follows. In Section II, we
introduce the preliminaries for this paper, including basic com-
ponents of a WiFi-based IPS, backgrounds for ELM, and
its comparison with SVR. Two second order moment con-
straints, i.e., close to mean (CTM) and small residual (SR)
constraints, with their geometric interpretations are given in
Section III. The random-hidden-nodes and kernelized formula-
tions of RELMs are derived in Sections IV and V, respectively.
How to calculate the covariance in the feature space is studied
in Section VI. In Section VII, the proposed algorithms are eval-
uated by both simulation and real-world IPSs. The conclusion
is drawn in Section VIII.

II. PRELIMINARIES

A. WiFi Indoor Positioning

An enormous body of indoor positioning problems fall into
a sort of regression problem. As shown in Table I, the input
variable x(x1, x2, . . . , xd) is a vector of RSS received from
APs in the environment, and t(t1, t2) is the indoor 2-D physical
coordinates of a target’s location. When an AP is undetectable
in a position, its corresponding RSS is taken as −100 dBm.
The problem here is to train and approximate the regression
model.

Although in some works, the procedure of collecting sig-
nal strength involves physically moving a wireless device all
around the target area, as in [14] and [15], we only pick out
some spatially representative locations, i.e., reference (calibra-
tion) points, from the target area, and conduct sampling at each
reference point for a period of time to build up a radio map.

B. Introduction to ELM

Originally inspired by biological learning to overcome the
challenging issues faced by back propagation (BP) learn-
ing algorithms, ELM is a kind of ML algorithm based on
a generalized single-hidden layer feedforward NN (SLFN)

TABLE I
INPUT VARIABLE: RSS (x) AND OUTPUT: LOCATION (t)

architecture [16]. It has been demonstrated to provide good
generalization performance at an extremely fast learning
speed [17]–[19].

Let ϒ = {(xi, ti); i = 1, 2, . . . , N} be a training set consist-
ing of patterns, where xi ∈ R1×d and ti ∈ R1×m, then the goal
of regression is to find the relationship between xi and ti. Since
the only parameters to be optimized are the output weights,
the training of ELM is equivalent to solving a least squares
problem [20].

In the training process, the first stage is that the hidden
neurons of ELM map the inputs onto a feature space

h : xi → h(xi) (1)

where h(xi) ∈ R1×L.
We denote H as the hidden layer output matrix (randomized

matrix)

H =

⎡
⎢⎢⎢⎣

h(x1)

h(x2)
...

h(xN)

⎤
⎥⎥⎥⎦

N×L

(2)

with L the dimension of the feature space and β ∈ RL×m as
the output weight matrix that connects the hidden layer with
the output layer. Then, each output of ELM is given by

ti = h(xi)β, i = 1, 2, . . . , N. (3)

ELM theory aims to reach the smallest training error but
also the smallest norm of output weight [16]

min
ξ ,β∈RL×m

LP = 1

2
‖β‖�1

�1
+ C

2

N∑
i=1

ξi

s.t. ‖h(xi)β − ti‖�2
�2

= ξi i = 1, 2, . . . , N (4)

where �1 > 0, �2 > 0,�1,�2 = 0, 1/2, 1, 2, . . . ,+∞,1 C is
the penalty coefficient on the training errors and ξi ∈ Rm is
the error vector with respect to the ith training pattern.

A simplest example of the above is basic ELM [17]

min
β∈RL×m

LP =
N∑

i=1

ξi

s.t. ‖h(xi)β − ti‖2 = ξi i = 1, 2, . . . , N (5)

which can be solved by the least squares method

β = H†T (6)

where H† is the Moore–Penrose generalized inverse of H.

1Unless explicitly specified, �1 = �2 = 2 for all norm notations in this
paper.
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Extended from basic ELM, [21] proposed an optimization-
based ELM (OPT-ELM) for the binary classification problem
by introducing inequality constraints. We follow from [21] to
give a form of OPT-ELM for regression problems:

min
ξ ,β∈RL×m

LP = 1

2
‖β‖2 + C

2

N∑
i=1

ξi

s.t. ‖h(xi)β − ti‖ ≤ ε + ξi

ξi ≥ 0 i = 1, 2, . . . , N (7)

where ε is a slack variable. This formulation is very similar to
support vector regression (SVR) in a nonlinear case [3], [22],
which is in the following form:

min
ξ ,w,b

LPSVM = 1

2
‖w‖2 + C

2

N∑
i=1

ξi

s.t. ‖w · φ(xi) + b − ti‖ ≤ ε + ξi

ξi ≥ 0 i = 1, 2, . . . , N (8)

where φ(·) is the nonlinear feature mapping function in SVR,
w is the output weights and b is the approximation (output)
bias. ε and ξi are as defined in the OPT-ELM case.

Detailed comparison between ELM and SVM for classi-
fication problems are given in [21] and [23], and in the next
section we further this comparison to regression problems. For
convenience of description, we henceforth follow from [16]
to refer to the formulation of (7) as OPT-ELM, while basic
ELM stands for the formulation of (5). The terminology ELM
in the rest of this paper has more broad meaning, which
can be considered as the gathering of basic ELM and its
random-hidden-nodes-based variants.2

C. Comparisons Between ELM and SVR

Both formulations of ELM and SVR are within the scope
of quadratic programming, however, the decision variable b,
i.e., the bias term, is not existent in ELM.

SVR and its variants emphasize the importance of bias
b in their implementation. The reason is that the separation
capability of SVM was considered more important than its
regression capability when SVM was first proposed to handle
binary classification applications. Under this background, its
universal approximation capability may somehow have been
neglected [3]. Due to the inborn reason that the feature map-
ping φ(·) in SVR is unknown, it is difficult to study the
universal approximation capability of SVR without the explic-
itness of feature mapping. Since φ(·) is unknown and may not
have universal approximation capability, given a target func-
tion f (·) and any small ε precision, there may not exist a w
such that ‖w·φ(x)−f (x)‖ < ε. In other words, there may exist
some system errors even if SVM and its variants with appro-
priate kernels can classify different classes well, and these
system errors need to be absorbed by the bias b. This may be
the reason why in principle the bias b has to remain in the
optimization constraints [16].

2We particularly avoid including kernel ELM and its variants in the above
gathering, given the fact that they do not possess the most significant property
of ELM—random feature mapping.

On the other hand, all the parameters of the ELM map-
ping h(x) are randomly generated, and h(x) is known to users
finally. According to [17]–[19], ELM with almost any non-
linear piecewise continuous function h(x) has the universal
approximation capability. Therefore, the bias b is not necessary
in the output nodes of ELM.

In addition, from the optimization point of view, less
decision variables to be determined implies less computa-
tional costs, and this computational superiority becomes more
obvious when the scale of the training data gets larger.

Kernel ELM is somehow superior to SVR for the sake of
flexibility in kernels. Namely, the feature mapping to form
the kernels can be unknown mapping or random feature map-
ping. More introduction about kernel ELM will be given in
Section V.

Huang [16] pointed out that the “redundant” b renders SVR
sub-optimal compared with ELM if same kernels are both used
in them, because the feasible solution space of SVR is a subset
of ELM feasible solution space.

We shall indicate that the main difference between ELM
and SVR is their different account of starting points. SVR [24]
was developed at first as an extension of SVM. As mentioned
above, SVM was designed for binary classification at first, and
the subsequent variants for regression problems were devel-
oped on the basis of SVM without addressing the problem
caused by b. By contrast, ELM was originally proposed for
regression, the feature mappings h(x) are known, and univer-
sal approximation capability was considered at the first place.
Thus, in ELM, the approximation error tends to be zero and
b should not be present [16], [21], [23].

III. ROBUST ELM

A. Uncertainties of Input and Output Data

RELM is proposed under a stochastic framework. Assume
that both input x and output data t are perturbed by noises.
Since H is the feature space after nonlinear mapping from
the input space, if the input data is contaminated, H is also
mixed with disturbances. We follow from [25] to assume the
disturbances in the feature space are additive:

h(xi) = h(xi)true + (ι1)i

ti = (ti)true + (ι2)i (9)

where (ι1)i and (ι2)i are uncorrelated perturbations in the
feature space and output space with proper dimensions, respec-
tively. The new vector yi ∈ R1×(L+m) is the ith input and ith
output observation, i.e., yi = [h(xi), ti]. And now we give the
following definitions:

h̄(xi) = E(h(xi)), t̄i = E(ti)

�i
hh = Cov(h(xi), h(xi)), �i

tt = Cov(ti, ti) (10)

where E(·) and Cov(·) denote expectation and covariance
operators for random variables, respectively. Since, the per-
turbations in the feature space (ι1)i and output space (ι2)i are
uncorrelated, i.e., �i

ht = 0, we have

ȳi = E([h(xi), ti]) = [
h̄(xi), t̄i

]

�i
yy = Cov(yi, yi) =

[
�i

hh 0
0 �i

tt

]

(L+m)×(L+m)

. (11)
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The ith prediction error is denoted by ei ∈ R1×m and its
expectation ēi is defined as follows:

ei = h(xi)β − ti, ēi = h̄(xi)β − t̄i. (12)

It follows from [25] and [26] that, by inserting CTM and
SR constraints into SVR, the predictions can be robust to
perturbations in the data set.

CTM is a criterion on that we require the prediction errors
to be insensitive to the distribution of the noises in input and
output data

Pr
xi,yi

{|ei − ēi| ≥ θi} ≤ η i = 1, 2, . . . , N (13)

xi, yi here are the input and output data, and θi means the
confidence threshold while η denotes the maximum tolerance
of the deviation.

An alternative way to boost the robustness is restricting the
residual to be small, which leads to the SR constraint

Pr
xi,yi

{|ei| ≥ ξi + ε} ≤ η (14)

where ξi corresponds to the prediction error and ε is a slack
variable. Compared with the CTM constraint, the SR con-
straint requires the estimator to be robust in terms of deviations
which lead to larger estimation error rather than centering. In
fact, both CTM and SR constraints are robust constraints uti-
lized to bound probabilities of highly deviated errors subject
to second order moment constraints.

B. Sufficient Condition of CTM Constraint

It should be pointed out that, the above two robust con-
straints only consider a scalar output case, however, the
outputs of IPSs are usually vectors. Moreover, ELM or
kernel ELM algorithms are inherently different from SVR,
therefore different constraints should be provided for our
problem setting. We now give our CTM constraint for this
paper

Pr
h(xi),ti

{
‖ei − ēi‖2 ≥ θ2

i

}
≤ τ i = 1, 2, . . . , N (15)

where θi is still a confidence threshold and τ here stands
for some probability. Nevertheless, CTM constraints in this
form are intractable. Multidimensional Chebyshev’s inequal-
ity is leveraged to convert the original constraints into tractable
ones.

Lemma 1 [27]: Let z be an m-dimensional random row vec-
tor with expected value z̄ and positive-definite covariance �,
then

Pr
{
(z − z̄)�−1(z − z̄)T ≥ θ2

}
≤ m

θ2
. (16)

Proposition 1: For z and � defined in Lemma 1, if ‖z‖2 ≥
ε‖�‖, then z�−1zT ≥ ε.

Proof: Since � is a real-valued symmetric matrix, it can be
diagonalized as � = P−1P.  here is a real-valued matrix
with eigenvalues of � on its diagonal. It can be shown that

 ≤ ‖�‖I ⇒ −1 ≥ ‖�‖−1I (17)

which leads to

z�−1zT = zP−1−1PzT ≥ zzT

‖�‖ (18)

and (18) gives rise to

‖z‖2 ≥ ε‖�‖ ⇒ z�−1zT ≥ ε. (19)

Proposition 1 also implies

Pr
{
‖z‖2 ≥ ε‖�‖

}
≤ Pr

{
z�−1zT ≥ ε

}
. (20)

Theorem 1: Let β ∈ RL×m and ω = [βT ,−1]T ∈
R(L+m)×m and �i

yy is defined in (11), then a sufficient con-
dition for (15) is

∥∥∥∥
(
�i

yy

) 1
2
ω

∥∥∥∥ ≤ θi
√

τ/m (21)

where −1 is a vector of all entries of −1 with proper length.
Proof: Substitute ei, θi for z, θ into (16), we have

Pr
h(xi),ti

{
(ei − ēi)

(
�i

ee

)−1
(ei − ēi)

T ≥ θ2
i

}
≤ m

θ2
i

(22)

which together with (20), leads to

Pr
h(xi),ti

{
‖ei − ēi‖2 ≥ θ2

i

}

≤ Pr
h(xi),ti

{
(ei − ēi)

(
�i

ee

)−1
(ei − ēi)

T ≥ θ2
i

‖�i
ee‖

}

≤ m‖�i
ee‖

θ2
i

. (23)

Thus, m‖�i
ee‖/θ2

i ≤ τ is a sufficient condition for (15). By
taking into account that

�i
ee = ωT�i

yyω (24)

inserting (24) into m‖�i
ee‖/θ2

i ≤ τ and then taking the square
root on both sides, (21) follows.

C. Sufficient Condition of SR Constraint

The sufficient condition of SR constraint can be derived in
the same fashion. The SR constraint in our case is

Pr
h(xi),ti

{
‖ei‖2 ≥ (ξi + ε)2

}
≤ τ i = 1, 2, . . . , N. (25)

Theorem 2: Let β ∈ RL×m, ω = [βT ,−1]T ∈ R(L+m)×m

and �i
yy is defined in (11), then a sufficient condition for (25) is

∥∥∥∥∥∥

(
�i

yy

) 1
2
ω

h̄(xi)β − t̄i

∥∥∥∥∥∥
≤ (ξi + ε)

√
τ/m (26)

where −1 is a vector of all entries of −1 with proper length.
Proof: Taking eieT

i ∈ R as a random variable, from
Markov’s inequality, we have

Pr
h(xi),ti

{
‖ei‖2 ≥ (ξi + ε)2

}
= Pr

h(xi),ti

{
eieT

i ≥ (ξi + ε)2
}

≤ E(eieT
i )

(ξi + ε)2
.
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Fig. 1. Shadow area indicates the possible region the random variable may
fall into.

Denote tr(·) as the trace operator of a matrix

E
(
eieT

i

) = E
{
tr
(
eT

i ei
)}

= E
{
tr
(
eT

i ei − ēT
i ēi
)}+ tr

(
ēT

i ēi
)

= tr
(
�i

ee + ēT
i ēi
)
. (27)

Since �i
ee and ēT

i ēi are both positive semi-definite, which
implies that �i

ee + ēT
i ēi is positive semi-definite. Since

∥∥�i
ee + ēT

i ēi
∥∥ = max{λ1, . . . , λm} (28)

where λi stands for an eigenvalue of �i
ee + ēT

i ēi, we have

tr
(
�i

ee + ēT
i ēi
) ≤ m

∥∥�i
ee + ēT

i ēi
∥∥ (29)

which leads to

m
∥∥�i

ee + ēT
i ēi
∥∥ = m

∥∥∥∥∥∥

(
�i

yy

) 1
2
ω

h̄(xi)β − t̄i

∥∥∥∥∥∥

2

. (30)

By letting

m

(ξi + ε)2

∥∥∥∥∥∥

(
�i

yy

) 1
2
ω

h̄(xi)β − t̄i

∥∥∥∥∥∥

2

≤ τ (31)

and taking square root on both sides, we claim that (26) is a
sufficient condition for (25).

D. Geometric Interpretation

The geometric interpretations of the above claims are as
follows:

1) Proposition 1 can be interpreted as that the chance of
a random variable lying outside a sphere with radius√

ε‖�‖ is greater than that of a random variable lying
outside an ellipsoid with radius

√
ε and covariance

matrix �. This is intuitive because the largest length
of semi-axe of the ellipsoid is equal to the radius of the
sphere and they share the same center. Fig. 1 shows the
illustration when the ellipsoid and sphere are projected
onto a 2-D space.

2) The above CTM robust criterion can be understood as
a restriction that each training data yi picked from the
ellipsoid �i(ȳi, �

i
yy, (m/τ)1/2) satisfies the inequality

‖ei − ēi‖ ≤ θi (32)

where

�i

(
ȳi, �

i
yy,

√
m

τ

)

�=
{

yi| (yi − ȳi)
(
�i

yy

)−1
(yi − ȳi)

T ≤ m

τ

}
. (33)

From Theorem 1, we have

√
m/τ

∥∥∥∥�i
yy

1
2 ω

∥∥∥∥ ≤ θi. (34)

Further, by noting that

‖ei − ēi‖ = ‖(yi − ȳi)ω‖
=
∥∥∥∥(yi − ȳi) �i

yy
− 1

2 �i
yy

1
2 ω

∥∥∥∥

≤
∥∥∥∥(yi − ȳi) �i

yy
− 1

2

∥∥∥∥
∥∥∥∥�i

yy

1
2 ω

∥∥∥∥

≤
√

m

τ

∥∥∥∥�i
yy

1
2 ω

∥∥∥∥. (35)

It is obvious that the above geometric interpretation for
the CTM constraint holds.

3) A similar geometric interpretation can be given for the
SR constraint. Let

�̂i
yy = �i

yy + yT
i yi (36)

a SR constraint enforces each training data yi picked
from the ellipsoid �i(0, �̂i

yy,
√

m/τ)

�i

(
0, �̂i

yy,

√
m

τ

)
�=
{

yi|yi

(
�̂i

yy

)−1
yT

i ≤ m

τ

}
(37)

satisfies the following inequality:

‖ei‖ ≤ ξi + ε. (38)

The procedure to verify this interpretation is in the same
fashion of the CTM case

‖ei‖ = ‖yiω‖
=
∥∥∥∥yi�̂

i
yy

− 1
2 �̂i

yy

1
2 ω

∥∥∥∥

≤
∥∥∥∥yi�̂

i
yy

− 1
2

∥∥∥∥
∥∥∥∥�̂i

yy

1
2 ω

∥∥∥∥

≤
√

m

τ

∥∥∥∥�̂i
yy

1
2 ω

∥∥∥∥. (39)

From Theorem 2, we have
∥∥∥∥∥∥

(
�i

yy

) 1
2
ω

h̄(xi)β − t̄i

∥∥∥∥∥∥

2

= ∥∥�i
ee + ēT

i ēi
∥∥

=
∥∥∥ωT

(
�i

yy + yT
i yi

)
ω

∥∥∥
=
∥∥∥ωT

(
�i

yy + yT
i yi

)
ω

∥∥∥
≤ τ

m
(ξi + ε)2. (40)

Taking square roots of (40) yields
∥∥∥∥
(
�̂i

yy

) 1
2
ω

∥∥∥∥ ≤
√

τ

m
(ξi + ε) (41)

which together with (39) implies

‖ei‖ ≤ ξi + ε. (42)
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IV. ROBUST ELM FOR REGRESSION

Based on the preliminary results of last section, we now
formulate CTM-constrained RELM (CTM-RELM) and SR-
constrained RELM (SR-RELM) for noisy input and output
data.

A. CTM-Based RELM

By adding second order moment constraints to the basic
ELM formulation in Theorem 1, the CTM-RELM is formu-
lated as

min
β,b,θ,ξ

LP = b + C
N∑

i=1

ξi + D
N∑

i=1

θi

s.t. ‖h(xi)β − ti‖ ≤ ε + ξi∥∥∥∥
(
�i

yy

) 1
2
ω

∥∥∥∥ ≤ θi
√

τ/m

ξi ≥ 0 i = 1, 2, . . . , N

‖β‖ ≤ b (43)

where C is defined in (7), and D is a penalty coefficient to
control the deviation of the prediction errors.

B. SR-Based RELM

Likewise, Theorem 2 also leads to a SOCP problem
formulation

min
β,b,ξ

LP = b + C
N∑

i=1

ξi

s.t.

∥∥∥∥∥∥

(
�i

yy

) 1
2
ω

h̄(xi)β − t̄i

∥∥∥∥∥∥
≤ (ξi + ε)

√
τ/m

ξi ≥ 0 i = 1, 2, . . . , N

‖β‖ ≤ b. (44)

V. KERNELIZATION FOR RELMS

As discussed in Section II-C, the kernel trick is adopted
in SVR. In fact, the kernel trick can also be applied to
ELM. We have indicated that, the explicit nonlinear fea-
ture mapping with random hidden nodes in ELM can bring
about some advantages compared to SVR. Nevertheless, it
does not mean that the kernel trick is useless for ELM. In
reality, the capability of universal approximation of ELM
can not be fulfilled due to the curse of dimensionality.
Kernel methods enable access to the corresponding very
high-dimensional, even infinite-dimensional, feature spaces
at a low computational cost both in space and time [28].
In the case of a Gaussian kernel, the feature map lives in
an infinite dimensional space, i.e., it has infinite number of
hidden nodes L, which enables ELM to work as universal
approximator [18]. Some related works have adopted the ker-
nel method in ELM and produce desirable results [23], [29].3

In this section, we slightly modify CTM and SR constraints

3For terminology consistency, we use kernel ELM to refer to the kernel
trick-based ELM and its variants.

and then incorporate them into the kernelized formulations
of RELMs.

It follows from [23] that the optimal weight matrix β in
ELM has the form:

β = HTP (45)

where P ∈ RN×m. Once the model, i.e., β, is determined, we
can make predictions by

f (x) = h(x)β =
N∑

i=1

h(x)h(xi)
TPi. (46)

Based on the definition of ELM kernel, we have

f (x) =
N∑

i=1

k(x, xi)Pi (47)

where k(·, · ) is a kernel function. The kernel matrix of ELM
is defined as [16]

K = HHT : Ki,j = h(xi) · h
(
xj
)T = k

(
xi, xj

)
(48)

when the number of training samples is n, K ∈ RN×N .
The intrinsic modularity of kernel machines also means that

any kernel function can be used provided it produces symmet-
ric, positive semi-definite kernel matrices [28]. In our case, we
restrict K not only to satisfy the modularity but also have all
of its entries being real numbers. Thus, we can decompose K
in such way

K = K
1
2 K

1
2 (49)

where K1/2 is real symmetric. From (45) and (48), we get

βTβ = PTKP =
(

K
1
2 P
)T

K
1
2 P (50)

which leads to ‖β‖ = ‖K1/2P‖.
We now give the kernelized CTM constraint

∥∥∥�i
yy

∥∥∥
1
2
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K

1
2 P

−1

∥∥∥∥∥ ≤ θi
√

τ/m i = 1, 2, . . . , N (51)

where −1 is a matrix of all entries of −1 with the dimen-
sion of m × m. Note that (51) is a sufficient condition of (21)
since

∥∥∥∥
(
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2
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1
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1
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∥∥∥∥∥
K

1
2 P

−1

∥∥∥∥∥ (52)

where ω = [βT ,−1]T , and the kernelized CTM-RELM is of
the form as

min
P,b,θ,ξ

LP = b + C
N∑

i=1

ξi + D
N∑

i=1

θi

s.t. ‖Ki,:P − ti‖ ≤ ε + ξi
∥∥∥�i

yy

∥∥∥
1
2

∥∥∥∥∥
K

1
2 P

−1

∥∥∥∥∥ ≤ θi
√

τ/m

ξi ≥ 0 i = 1, 2, . . . , N∥∥∥K
1
2 P
∥∥∥ ≤ b. (53)
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A similar fashion can be adopted to derive the kernelized
SR-RELM formulation

min
P,b,ξ

LP = b + C
N∑

i=1

ξi

s.t.

∥∥∥∥∥∥∥

∥∥∥�i
yy

∥∥∥
1
2

[
K

1
2 P

−1

]

Ki,:P − ti

∥∥∥∥∥∥∥
≤ (ξi + ε)

√
τ/m

ξi ≥ 0 i = 1, 2, . . . , N∥∥∥K
1
2 P
∥∥∥ ≤ b. (54)

VI. COVARIANCE IN THE FEATURE SPACE

We firstly calculate the covariance when the nonlinear
mapping functions are known explicitly. We write h(x) as
follows:

h(x) = [G(a1, b, x), . . . , G(aL, b, x)] (55)

where ai, b are randomly generated weights and bias con-
necting an input and the ith hidden node. G(ai, b, x) is the
activation function.

A statistical method is provided to derive the covariance
theoretically in the feature space. For each input xi, we ran-
domly generate Z samples {x1

i , x2
i , . . . , xZ

i } according to the
distribution of xi with mean x̄i and covariance �i

xx. Then the
covariance matrix of h(xi) can be approximated by

�i
hh = 1

Z

Z∑
z=1

h̃
(
xz

i

)T h̃
(
xz

i

)
(56)

where

h̃
(
xz

i

) = h
(
xz

i

)− 1

Z

Z∑
z=1

h
(
xz

i

)
. (57)

However, the covariance in the kernel case is more delicate
and cannot be derived explicitly. Note that, in the kernelized
cases of (53) and (54), only the norm of covariance �i

yy is
needed, that is

�i
yy =

∥∥∥∥
�i

hh 0
0 �i

tt

∥∥∥∥ = max
{∥∥�i

hh

∥∥, ∥∥�i
tt

∥∥}. (58)

‖�i
tt‖ can be readily calculated, and we now give a solution

to approximate ‖�i
hh‖. The L2-norm of real symmetric matrix

�i
hh equals its largest eigenvalue. Let λ and v be an eigenvalue

and its corresponding eigenvector

λv = �i
hhv. (59)

It is been proved in [30] that λ of �i
yy also satisfies

Zλα = K̃iα (60)

where K̃i = Ki − LKi − KiL + LKiL and L ∈ RZ×Z with
each entry Li,j = 1/Z. Here, the Z ×Z matrix K is defined by

Ki
i,j := k

(
xi

i, xj
i

)
=
(

h
(
xi

i

) · h
(

xj
i

))
. (61)

Fig. 2. Positions of the WiFi AP, offline calibration points, and online testing
points in the simulated field.

Hence, we can compute the L2-norm of �i
hh from the set

of eigenvalues of K̃i

∥∥�i
hh

∥∥ = 1

Z
max

{
λ
(

K̃i
)}

(62)

where λ(K̃i) is the set of all the eigenvalues of K̃i.

VII. PERFORMANCE VERIFICATION

A. Simulation Results and Evaluation

We develop a simulation environment using MATLAB
R2013a in order to evaluate the performance of our proposed
algorithms before any real-world experiment is conducted. As
shown in Fig. 2, we assume a 20 × 20 m room where four
WiFi APs are installed at the four corners of the room. The
most commonly used path loss model for indoor environment
is the ITU indoor propagation model [31]. Since it provides
a relation between the total path loss PL (dBm) and distance
d (m), it is adopted to simulate the WiFi signal generated from
each WiFi AP. The indoor path loss model can be expressed as

PL(d) = PL0 − 10αlog(d) + X (63)

where PL0 is the path loss coefficient and it is set to be
−40 dBm in our simulation. α is the path loss exponent and
X represents some random noises.

The distribution of RSS indication from four real-world APs
in our IPS is illustrated in Fig. 3. As shown in Fig. 3, the sig-
nals collected by one AP can be quite different even at a same
location due to noises and outliers. Therefore, four different
types of data with disturbances are generated based on (63),
i.e., data mixed with the Gaussian noise X ∼ N (0, 1), data
mixed with the student’s noise X ∼ T (0, 1, 1), data mixed
with the gamma noise X ∼ Ga(1, 1) and data contaminated by
one-sided outliers (20% contamination rate),4 to test the per-
formance of RELMs. To make our simulation more practical,
100 testing samples are artificially generated at each training
point and testing point, respectively using (63) with different
perturbations.

We apply our RELMs to the simulated data, and com-
pare our proposed algorithms with basic ELM, OPT-ELM,

4The strategy of adding outliers here is similar to the one of [13].
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Fig. 3. RSS index of distribution of four APs at one position.

kernel ELM, and SVR [32]. In the CTM-RELM formulation,
there are three hyperparameters, C, D, and τ to be tuned.
C and D are both selected by grid method from the exponential
sequence [2−5, 2−4, . . . , 25] utilizing fivefold cross-validation
on the training data set. τ increases from 0.1 to 1 with a step
size of 0.1. In SR-RELM case, there are two hyper-parameters,
C and τ to be tuned, they are all selected with the same strat-
egy as CTM-RELM. For both RELMs, the slack variable ε is
empirically selected as 0.05. The SOCP problems are solved
by CVX MATLAB toolbox [33]. Since the performances of
ELM and its variants are not sensitive to the number of hid-
den nodes L as long as it is larger than some threshold [23],
we fix L as 500 for our proposed algorithms, basic ELM and
OPT-ELM to facilitate the comparison of computational costs.
The width of Gaussian kernel λ used in SVR and kernel ELM
are selected from the exponential sequence [2−5, 2−4, . . . , 25]
utilizing fivefold cross-validation.

Four performance measures are introduced: mean root
square error (MRSE), standard deviation (STD), WCE, and
REP over r repeated realizations. Noted that MRSE, STD,
and WCE in this case are taken from the mean over the r
repeated realizations. REP is measured by the deviation of
the MRSE over the repeated realizations, and this measure is
proposed based on the fact that ELM with same parameters,
e.g., the number of hidden nodes, in the same training data
set may draw quite different results. r in our experiment is
selected as 30
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Fig. 4. Cumulative percentile of error distance for simulation data sets.

where s is the number of testing samples, S is the index set
of testing samples like [1, 2, . . . , s].

As shown in Fig. 4, the proposed two algorithms outperform
the other four algorithms in terms of accuracy and WCE. More
exact number can be found in Table II, from which we see that
the REP of the RELMs-based systems is improved compared
with basic ELM and OPT-ELM-based ones. The enhancement
of the REP is due to more constraints brought in our algo-
rithms, which shrinks the size of solution searching space.
Note that, the shrinking happening here is different from the
one discussed in [21], in which the loss of solution searching
freedom of SVR is caused by the redundant b [16].

B. Evaluation in Real-World IPSs

The system architecture of our WiFi-based IPS is shown
in Fig. 5. The main components of this system consist of
the existing commercial WiFi APs, mobile devices with WiFi
function, a location server and a web-based monitoring system.
The following is a brief operation procedure of our WiFi-based
IPS. First of all, a data collection App for android devices was
developed. After the mobile device turns on the WiFi mod-
ule, it can collect RSS information from different APs every
second and sends this information to a location server. The
responsibility of the location server is to analyze the RSS, and
calculate the estimated position of the mobile device. Then,
the user can obtain his or her real time position through our
web-based monitoring system directly on his or her mobile
device.

We conducted real-world indoor localization experiments to
evaluate the performance of the proposed RELM approaches.
The testbed is the Internet of Things Laboratory in the
School of Electrical and Electronic Engineering, Nanyang
Technological University. The area of the test-bed is around
580 m2 (35.1 × 16.6 m).
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TABLE II
COMPARISON OF SIMULATION RESULTS

Fig. 5. System architecture of our WiFi-based IPS.

The layout of the testbed is shown in Fig. 7. Eight D-link
DIR-605L WiFi cloud routers are utilized as WiFi APs for
our experiments. The Android application is installed on
a Samsung I929 Galaxy SII mobile phone. All the WiFi
RSS fingerprints at offline calibration points and online test-
ing points are collected using this phone for performance
evaluation.

The RELM model was built up by the following steps.
During the offline phase, 30 offline calibration points were
selected and 200 WiFi RSS fingerprints were collected at

Fig. 6. Cumulative percentile of error distance for IPS testing results.

each point. The positions of these 30 offline calibration points
are demonstrated in Fig. 7. By leveraging these 6000 WiFi
RSS fingerprints and their physical positions as training inputs
and training targets (outputs) accordingly, the RELM model
was constructed. During the online phase, we continued to col-
lect WiFi RSS fingerprints at online testing points for five days.
On each day, two distinct online testing points were selected
in order to reflect the environmental dynamics. The positions
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Fig. 7. Positions of the WiFi APs, offline calibration points, and online testing points in the test-bed.

TABLE III
COMPARISON OF EXPERIMENTAL TESTING RESULTS

of these ten online testing points are also presented in Fig. 7.
Two hundred WiFi RSS fingerprints are collected at each point.
The parameter setting for the proposed and compared algo-
rithms in this experiment is similar with the one introduced in
Section VII-A, apart from the number of hidden units, which
is set to 1000.

The testing results with respect to four performance mea-
sures given in Section VII-A are shown in Table III. Fig. 6
illustrates the comparison in terms of cumulative percentile of
error distance, which shows that the proposed CTM-RELM
can provide higher accuracy and have an obvious effect in
reducing the STD compared to ELM and OPT-ELM. On the
other hand, SR-RELM also gives an accuracy as good as
CTM-RELM, and has better performance of confining the
WCE. The above results are reasonable, since the two robust
constraints have their different emphasis. In addition, both
CTM-RELM and SR-RELM can give better performances in
REP than basic ELM.

The proposed algorithms incur longer training time due to
the introduction of second order moment constraints instead
of linear constraints. However, a slightly longer training time
is not a concern in IPSs, considering that it is the calibration
phase, e.g., procedure of radio map generating, that accounts
for the large body of time consumption. Besides, RELMs
inherit the simpleness, e.g., random feature mapping, dis-
pensation with bias b, and single layer structure from ELM,
therefore its training time is still competitive compared with
SVR and its variants.

VIII. CONCLUSION

Before concluding this paper, we provide some important
discussions.

1) Choice of the Measure for Accuracy: It is noteworthy
that, we adopt MRSE instead of the conventional root
mean square error (RMSE) as our measure. It is because
MRSE makes more practical sense than RMSE for IPSs,
which has been widely adopted in indoor positioning
contests [2]. The measure of REP is introduced in par-
ticular for ELM because it produces variation in repeated
realizations, namely, with same parameters setting, e.g.,
the number of hidden nodes, of the same training set,
ELM may draw different results. This is mainly due to
the reason that the number of hidden units is not infi-
nite so that the universal approximation using SLFNs
with random nodes may not be accurate [18]. However,
it is should be noted that, most iteratively tuning-based
algorithms such as BP, actually also face the unrepro-
ducibility issue, and from the perspective of STD, ELM
is even more stable.

2) Abandonment of Kernelized RELMs: Although we have
proposed the kernelized CTM-RELM and SR-RELM,
we did not adopt them in simulation and real-world
experiment due to their limits in scaling. Firstly, the
size of the decision variables in the kernelized CTM-
RELM formulation is N × m + 2N + 1, while the size
of the CTM-RELM is L × m + 2N + 1. Considering that
the number of training data N is usually several times
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larger than the number of hidden nodes L, we would
encounter memory issue if we implement the Kernelized
CTM-RELM. The same logic applies to the SR-RELM
case. Secondly, the kernel-based algorithms enjoy com-
putational efficiency in optimization problems when the
dimension d of the feature is larger than N, while in
our case, the size of feature is far fewer than the num-
ber of training samples, therefore it is not cost-effective
to conduct training with kernels.5 Thirdly, prediction by
kernel-based methods takes O(Nd) time since it uses the
dual variables, while prediction using random-hidden-
nodes-based methods by primal variables, e.g., ELM,
OPT-ELM, and RELMs only takes O(d) [28]. The test-
ing time listed in Tables II and III is consistent with the
above claim. Although a slightly longer training time is
within the tolerance for IPSs, the fast prediction speed is
highly demanded as IPSs’ servers need to provide real-
time positioning services for large crowds in some dense
indoor environments such as shopping malls, cinemas
and airports. However, when encountering small-scale
data sets, or where the size of features is very large,
kernelized RELMs can be leveraged.

3) Implementation Tricks for RELMs: How to calculate the
covariance and mean is tricky for regression problems,
since one has to use only one sample to approximate its
corresponding statistics. In this paper, we take advantage
of the specificity of the learning problem in IPSs—
grouping. The whole data set can be divided into several
groups by their belonging calibration points, and in any
group, its members “theoretically” should have the same
RSS (input) and coordinates (output). But in reality, it is
impossible due to the uncertainties as discussed above.
However, these members in one certain group can be
intuitively used to calculate the mean and covariance
needed to represent the group for problem formulations.
By this “grouping” trick, we can further reduce the num-
ber of the constraints in (43) and (44) from n to N/g,
where g is the size of a group the number of sampling at
one calibration point. This trick can be directly extended
to RELMs for classification problems.

4) Assumption About Additive Noises in the Feature Space:
Though we assume that the noises lying in the feature
space are additive, the simulation is conducted under
the circumstances that the inputs were corrupted with
additive disturbances. The simulation results demon-
strate that RELMs are effective for these cases. In fact,
assuming noises in the feature space are additive is
conventionally adopted by a number of ML and opti-
mization researchers [34]–[36]. It is possible that our
assumption becomes invalid under some circumstances,
e.g., input mixed with multiplicative noises. However,

5Indeed, kernel ELM possesses fast training speed, because it adopts nor-
mal equation method, i.e., it is equality constrained-optimization-based [16].
But when inequality constraints are added in the convex optimization
setting (inequality constraints can bring about the benefit of sparsity in
solutions [23], [29]), the normal closed-form method may not work any-
more. Some recent work on ELM, e.g., sparse ELM [29] has already used
the inequality constraints-based formulation. Thus, the above claim about the
computational costs still holds for kernel ELM.

the case of multiplicative noises lying in RSS is rare
in indoor environments [37]. When they are not signifi-
cant, those multiplicative noises can be seen as outliers
and Section VII-A has shown that RELMs can address
outliers (20% contamination rate) well.

To sum up, this paper proposed CTM-RELM and SR-RELM
to address the problem of noisy measurements in IPSs by intro-
ducing two CTM and SR constraints to the OPT-ELM, and
further gave two SOCP-based formulations. The kernelized
RELMs and the method to calculate the theoretical covariance
matrix in the feature space were further discussed. Simulation
results and real-world indoor localization experiments both
demonstrated that the CTM-RELM-based IPS can provide
higher accuracy and smaller STD than other algorithms-based
IPSs; while the SR-RELM-based IPS can provide better accu-
racy and smaller WCEs. The REP of the proposed algorithms
was also demonstrated to be better.

The future work will focus on how to reduce the compu-
tational costs of the proposed algorithms for IPSs with large
data sets. Sparse matrix techniques will be leveraged to make
it possible. Meanwhile, more performance testing for RELMs
will be conducted for classification problems with different
combinations of �1 and �2 for the norm.
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