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Biometric characteristics are often used as a supplementary component in user authentication and identifica-
tion schemes. Many biometric traits, both physiological and behavioral, offering a wider range of security
and stability have been explored. We propose a new physiological trait based on the human body’s electrical
response to a square pulse signal, called pulse-response, and analyze how this biometric characteristic can
be used to enhance security in the context of two example applications: (1) an additional authentication
mechanism in PIN entry systems, and (2) a means of continuous authentication on a secure terminal. The
pulse-response biometric recognition is effective because each human body exhibits a unique response to
a signal pulse applied at the palm of one hand, and measured at the palm of the other. This identification
mechanism integrates well with other established methods and could offer an additional layer of security,
either on a continuous basis or at login time. We build a proof-of-concept prototype and perform experiments
to assess the feasibility of pulse-response for biometric authentication. The results are very encouraging,
achieving an equal error rate of 2% over a static data set, and 9% over a data set with samples taken over
several weeks. We also quantize resistance to attack by estimating individual worst-case probabilities for
zero-effort impersonation in different experiments.
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1. INTRODUCTION
Many modern access control systems augment traditional two-factor authentication
(something you know and something you have) with a third factor: “something you are”,
i.e., biometric authentication. This additional layer of security comes in many flavors:
from fingerprint readers on laptops used to facilitate easy login with a single finger
swipe, to iris scanners used as auxiliary authentication for accessing secure facilities.
In the latter case, the authorized user typically presents a smart card, then types in a
PIN, and finally performs an iris (or fingerprint) scan.

In this paper, we propose a new biometric characteristic based on the human body’s
electrical response to a square pulse signal. We consider two motivating scenarios:
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The first is an access control setting where this new biometric mode is used as
an additional layer of security when a user enters a PIN, e.g., into a bank ATM.
Pulse-response biometric recognition (pulse-response recognition in short) facilitates
unification of PIN entry and biometric capture. We use PIN entry as a running example
for this scenario throughout the paper. This is because PIN pads (e.g., in ATMs) are
often made of metal, which makes capturing the biometric trait straightforward: a user
would place one hand on a metal pad adjacent to the key-pad, while using the other
hand to enter a PIN. This conductive pad would transmit the pulse and a sensor in the
PIN pad would capture the measurement.

The second scenario corresponds to continuous authentication at a stationary com-
puter terminal, e.g., verifying that the user, who logged in earlier, is the same person
currently at the keyboard. For this scenario, we need a mechanism that periodically
samples one or more biometric characteristics. However, for obvious usability reasons,
this should ideally be done unobtrusively. Pulse-response recognition is particularly
well-suited for this setting. Assuming that it can be made from a conductive material,
the keyboard would generate the pulse signal and measure the electric response, while
the user (remaining oblivious) is typing. The main idea is that the user’s pulse-response
is captured at login time and identity of the person currently at the keyboard can be
verified transparently, at desired frequency.

The continuous authentication problem can be challenging to solve using static
biometric modalities. For example, if swipe fingerprint sensors are used, the user of
such an authentication system would have to periodically stop and swipe a finger on
the scanner, which could be disruptive. Less obtrusive approaches try to solve this
problem using automated video monitoring or continuous face recognition [Niinuma
and Jain 2010; Sensible Vision Inc. 2013] with a video camera. However, depending
on the context, such systems can be perceived as invasive. Unlike many static traits,
behavioural characteristics can allow for very non-invasive continuous authentication,
most notably keystroke timings and mouse dynamics [Banerjee and Woodard 2012]. By
continuously measuring and quantizing the interaction with mouse and keyboard one
can verify if an originally logged in user is still present at the computer terminal or if
someone else took over an open session. We present a possible solution to continuous
authentication that is equally transparent and unobtrusive as a keystroke dynamics
but is based on a physiological trait.

To assess efficacy and feasibility of pulse-response recognition, we built a prototype
platform for gathering pulse-response data. Its main purpose is to assess whether
we can identify users from a population of test subjects. The same platform can test
the distinguishing power and stability of this trait over time. We also explored two
hypothetical systems that apply pulse-response recognition to the two sample scenarios
discussed above: one to unobtrusively capture the biometric characteristic for an addi-
tional layer of security when entering a PIN, and the other to implement continuous
authentication.

This paper is based on and extends the publication “Authentication Using Pulse-
Response Biometrics” [Rasmussen et al. 2014]. In particular, it contains a more com-
prehensive analysis of pulse-response recognition: Besides average performance of the
biometric recognition method in terms of algorithm and system errors, we examine
experimentally for each subject in our data set how resistant the biometric trait is to
impersonation attacks. To this end, we design experiments with selected combinations
of attackers and victims from our test subject population and calculate worst-case prob-
abilities for impersonation. We differentiate between internal and external impostors,
i.e., attackers whose biometric template is known to the classification algorithm and
attackers who are unknown. In addition, the underlying test subject population of this
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work is increased threefold over the publication in [Rasmussen et al. 2014] to achieve
higher statistical significance of all reported results.

The rest of the paper is organized as follows: Section 2 provides some background on
biometric recognition and states our goals and requirements for the presented biometric
modality. Section 3 describes pulse-response recognition in detail. Sections 4 and 5
present the PIN entry and continuous authentication systems, respectively. Section 6
describes the biometric data capture setup and Section 7 presents experimental results.
In Section 8 resistance to impersonation is investigated. Related work is overviewed in
Section 9 and the paper concludes with Section 10.

2. BACKGROUND
This section provides background on biometric recognition, summarizes the terminology
and introduces our design goals.

2.1. Biometric Verification and Identification
Given basic familiarity with the subject, this section can be skipped with no loss of
continuity.

The US National Institute of Standards and Technology (NIST) divides biometric
measurements into two categories [Information Technology Laboratory – National
Institute of Standards and Technology 2013], physiological and behavioral. The former
relies on the physiology of a person and includes: fingerprints, hand geometry, facial
recognition, speech analysis, and iris/retina scans. Behavioral traits are based on user
behavior and include, for instance, keystroke timings, speech pattern analysis or gait
recognition and analysis of stylus pressure, acceleration and shape in hand-writing.

Physiological biometric characteristics can help identify an individual among a large
pool of candidates. In general, physiological biometrics are considered moderately
difficult to circumvent. For example, although hand geometry is very stable over the
course of one’s adult life, it does not provide enough distinguishing power to be used
as the only means for identification [National Science & Technology Council 2006].
Also, facial recognition systems that do not employ liveness detection can be fooled
by an appropriately-sized photo of a legitimate user. This might pose a weakness if
facial recognition is used to unlock a smartphone. On the other hand, the failure might
not be due to the biometric characteristic itself but to inadequacy of current (sensor)
technology.

Behavioral characteristics constitute user actions over time, i.e., for each action, there
must be a beginning, an end, and a duration. Consequently, behavioral characteristics
indirectly measure properties of the human body. Behavioral characteristics are learned
processes and, therefore, can be also re-learned. However, the consensus in the literature
seems to be that after reaching a certain age, changes in behavior become more difficult
to achieve, even with specific and sustained effort [Woodward et al. 2003]. Behavioral
characteristics can therefore be regarded as valid means of identification, even though
they are mostly neither as unique nor as permanent as their physiological counterparts.
An advantage is that they are less invasive and therefore more user-friendly. For
example, a system that analyses keystroke timings or speech patterns can usually do so
in the background. In contrast, an iris or fingerprint scan requires specific user actions.

2.2. Requirements and Goals for Pulse-Response Recognition
In this paper, we explore body impedance as a novel biometric characteristic. Body
impedance, also referred to as bioimpedance, measures and quantifies the electrical
impedance of (parts of) the human body [Martinsen and Grimnes 2011]. We use pulse-
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response as an instance of a particular body impedance measurement, which is acquired
by sending a low-voltage electric signal from the palm of one hand to the other.

When assessing this new biometric mode and envisioning pulse-response based
systems it is advantageous to consider lessons learned from past and current biometric
systems. General design goals for biometric systems can be found in the literature,
e.g., [Jain et al. 2011].

Our requirements and goals we assess the envisaged systems against are described
in the following:

Universal. The biometric mode must be universally applicable, to the extent required
by the application. The recognition method should apply to everyone intended to use
the biometric system.

Unique. The biometric trait must be unique within the target population.

Permanent. The biometric trait must remain consistent over the period of use. Few
biometric characteristics stay constant over a lifetime, but they work well if they are
consistent over the lifetime of the biometric system,

Unobtrusive. Biometric recognition should be as unobtrusive as possible. If the user
can be identified passively, without interference, a biometric system is more likely to be
accepted.

Difficult to circumvent. Users of a biometric system should be unable to change the
characteristic that is captured for biometric recognition. At a minimum, it should be
difficult for a user to modify the biometric characteristic to match that of another user.

Other common non-technical but important goals are:

Acceptability. The biometric recognition should be one that users are likely to feel
comfortable with. Clearly, acceptability is a sensible requirement. The capture of pulse-
response requires electricity which naturally raises concerns about safety. In Section 3.2
we demonstrate that measuring pulse-response is harmless to health and discuss
acceptability and perception of pulse-response based recognition.

Cost effectiveness. The relationship between the distinguishing power of the biometric
and its deployment and maintenance costs. Since we focus on assessment of a new
biometric mode and are building a prototype, it is premature to seek insights about
costs of a possible commercial system.

3. PULSE-RESPONSE RECOGNITION
Pulse-response recognition works by applying a low voltage pulse signal to the palm of
one hand and measuring the body’s electrical response in the palm of the other hand.
The signal travels up through the user’s arm, across the torso, and down the other arm.
The biometric characteristic is captured by measuring the response in the user’s hand.
This response is transformed to the frequency domain via the Fast Fourier Transform
(FFT). This transformation yields the individual frequency components (bins) of the
response signal, which form the biometric features that are then fed to a classifier.
Working in the frequency domain eliminates any need for aligning the pulses when
they are measured. Details of our measurement setup and experiments can be found in
Section 6.

The main reason for the ability of this biometric trait to distinguish between users is
due to subtle differences in body impedance, at different frequencies, among different
people. When a signal pulse is applied to one palm and measured in the other, the
current travels through various types of body tissues – blood vessels, muscle, fat tissue,
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User 2User 1Square pulse signal

Fig. 1. Overview of pulse-response recognition. The electric response is captured and transformed to the
frequency domain. Each individual has a distinct pulse-response due to differences in body impedance.

cartilage and bones – to reach the other hand. Differences in bone structure, muscle
density, fat content and layout (and size) of blood vessels result in slight differences
in the attenuation of the signal at different frequencies. These differences show up
as differences in the magnitude of the frequency bins after the FFT. This is what
facilitates distinguishing among individuals. Figure 1 illustrates the concept of how
pulse-response recognition works and exemplifies the differences in pulse-response for
two different users.

Pulse-response is a physiological characteristic since it measures body impedance
which is largely distinct from behavioral aspects. However, it has an attractive property
normally associated with behavioral characteristics: it can be captured in a completely
passive fashion. Although other physiological characteristics used for biometric recog-
nition also have this feature, e.g., face recognition, pulse-response recognition is not
easily circumventable. This combination of unobtrusiveness and difficulty to circumvent
makes it an attractive identification mechanism. Essentially, it offers the desirable
properties of both physiological and behavioral traits.

At the same time, pulse-response recognition requires special-purpose hardware,
which is also true for any other physiological trait. For example, fingerprints need a
fingerprint reader, face recognition requires a precision camera and hand geometry
– a scanner. Since pulse-response is captured using electrical signals, there are few
restrictions on the exact construction of the biometric capture hardware. We explore
this issue in Sections 4 and 5.

3.1. Liveness and Replay
A common problem with many biometric systems is presentation attack detection.
A fingerprint reader would want to detect whether the purported user’s fingerprint
was produced by a real finger attached to a human, as opposed to a fingerprint mold.
Similarly, a face recognition system would need to make sure that it is not being fooled
by a photo or a 3-D artefact. More details and concrete examples are given in Section 9.

In established biometric systems, presentation attacks are usually addressed via
some form of active authentication, e.g., a challenge-response mechanism. In a face
recognition system a user might be asked to turn his head or look at a particular point
during the authentication process. Although this reduces the chance of a photo passing
for the real person, the user is forced to take active part in the process, which can be
disruptive and annoying if authentication happens on a continuous basis.

In the context of pulse-response recognition, unlike fingerprint or face recognition,
it is difficult (yet not impossible) to separate the biometric characteristic from the
individual to whom it belongs. If the adversary manages to capture a user’s pulse-
response on some compromised hardware, successfully presenting it to a sensor would
require specialized hardware that mimics the exact impedance of the original user. We
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believe that this is feasible: the adversary can devise a contraption that consists of
adhesive-covered electrodes attached to each finger-tip (five for each hand going into
one terminal) with a single wire connecting the two terminals. The pulse response of
the electrode-wire-electrode has to exactly replicate that of the target user. Having
attached electrodes to each finger-tip, the adversary can type on the keyboard and the
system could thus be effectively fooled. However, the effort required is more than in
cases of facial recognition or fingerprints, which are routinely left – and can be lifted
from – numerous innocuous locations.

Furthermore, in contrast to face or fingerprint recognition, the pulse-response can
be made to depend on the capture platform. Thus, even if the adversary captures
pulse-response on one piece of hardware, it would not match the user’s measurements
on a different capturing device. One way to achieve this is to add a specific (frequency-
dependent) resistance to the measurement platform. If the adversary uses its own
capture system to measure the user, there is an additional signature which is actually
part of the pulse-response reader.

Finally, the real power of the pulse-response recognition is evident when used for
continuous authentication (see Section 5), whereby, the person physically uses a secure
terminal and constantly touches the keyboard as part of routine work. Biometric
verification happens on a continuous basis and thus making it infeasible to use the
terminal while at the same time providing false input signals to the authentication
system. Of course, the adversary could use thick gloves, thereby escaping detection.
However, the biometric system will see input from the keyboard without the expected
pulse-response measurement to accompany it, and will lock the session.

3.2. Ethics and User Safety
As mentioned above, the pulse-response is captured by applying a low voltage pulse
to one hand of the user and measuring the resulting signal in the other. This involves
current flowing through the human body. This process naturally raises questions about
user safety and ethics. Clearly, these are important issues that we must address. The
issue of safety might be compounded by users having undocumented or undisclosed
medical conditions, including implantable medical devices, e.g., pacemakers, that may
be adversely affected by applying an external signal to the body.

The amount of current that a particular voltage induces in the human body varies
from person to person and depends on external conditions. For example, if a subject’s
hands are wet, overall conductivity is significantly higher (i.e., resistance is lower)
than with dry hands. The same is true if the subject’s hands have cuts or broken skin
close to where the signal is applied. If resistance is lowered, current strength increases
according to Ohm’s law. Normal resistance of the human body is between 1, 000 and
5, 000 Ω. However, even in very extreme conditions, resistance does not drop bellow
500 Ω. With our current limiting resistor of 10kΩ on the signal generator, the worst case
current (with 10V test signal) is 10V/10.5kΩ = 0.95 mA, which is bellow the sensitivity
limit. The vast majority of subjects were only exposed to a 1V signal, which translates
into the worst case current strength of 0.095 mA, less than the current flow induced by
touching the terminals of a standard 1.5V battery.

Such a current is on the order of what consumer-grade body-fat scales use. Body-fat
scales determine body impedance at predefined frequencies (usually 50 kHz) by sending
an alternating current of up to 0.1 mA through the body. They then estimate body fat
percentage based on the measured impedance and additional information such as body
height. Since pulse-response recognition uses similar ampere levels and body-fat scales
are intended for daily use, we believe pulse-response based recognition is also safe to
use over an extended period of time.
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Fig. 2. ATM decision flowchart.

All subjects were given detailed information about the nature of the experiment
beforehand and all were given the opportunity to opt out. None expressed any discomfort
or, in fact, any perception of the current during the experiments.

Our experimental prototype setup and its safety and methodology have been reviewed
and authorized by the Central University Research Ethics Committee of the University
of Oxford, under approval reference MSD-IDREC-C1-2014-156.

4. COMBINING PIN ENTRY WITH BIOMETRIC CAPTURE
This section describes the envisaged use of pulse-response recognition to unobtrusively
enhance the security of PIN entry systems.

4.1. System and Adversary Models
We use a running example of a metal PIN key-pad with an adjacent metal pad for the
user’s other hand. The key-pad has the usual digit (0-9) buttons as well as an “enter”
button. It also has an embedded sensor that captures the pulse-signal transmitted by
the adjacent metal pad. This setup corresponds to a bank ATM or a similar setting.

The adversary’s goal is to impersonate an authorized user and withdraw cash. We
assume that the adversary can not fool pulse-response recognition with probability
higher than that found in our experiments described in Section 7.

We also assume that the ATM is equipped with a modified authentication module
which, besides verifying the PIN, captures the pulse-response and determines the likeli-
hood of the measured response corresponding to the user identified by the previously
inserted ATM card and the just-entered PIN. This module works as depicted in Fig-
ure 2. We assume that the ATM has access to a biometric reference database of valid
users, either locally or over a network. Alternatively, the user’s ATM card can contain
a biometric reference needed to perform pulse-response verification. If stored on the
card, this data must be encrypted and authenticated using a key known to the ATM;
otherwise, the adversary (who can be assumed to be in possession of the card) could
replace it with data matching its own pulse-response.

4.2. PIN Entry Scheme
The ATM has to determine whether a biometric sample acquired from the user while
entering the PIN is consistent with the reference in the database. This requires a
classifier that yields the likelihood of a sample coming from a known distribution. The
likelihood is used to determine whether the newly measured samples are close enough
to the reference or template in the database to produce a match. Using our prototype,
we can make such decisions with high confidence; see Section 7.
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Before discussing security of the pulse-response enhanced PIN entry system, we
check whether it meets our requirements stated in Section 2.2.

Universal. A person using the modified PIN entry system must use both hands, one
placed on the metal pad and one to enter the pin. This requires the user to actually
have two hands. In contrast, a normal PIN entry system can be operated with one hand.
Thus, universality of our system is somewhat lower. This is a limitation of the biometric
mode, although a remedy could be to store a flag on the user’s ATM card indicating that
disability, thus exempting this person from the pulse-response verification. This would
allow our approach to gracefully degrade to a generic PIN entry system.

Unique and Permanent. In Section 7 we show that our prototype can determine,
with high probability, whether a subject matches a specific pulse-response. Thus, it is
unlikely for two people to exhibit exactly the same pulse-response. We also show that
an individual’s pulse-response remains fairly consistent over time.

Unobtrusive. In the envisaged setting, the scheme is very unobtrusive, since from
the user’s perspective, the only thing that changes from current operation is the added
requirement to place the free (not used for PIN entry) hand on a metal pad. Naturally,
some users might have to change their behavior while operating an ATM, as they could
be used to holding something in one hand, e.g., their wallet, or shielding their PIN
entry. However, this can be provided for by such a modified ATM. Also, there can be two
conductive pads accommodating both left- and right-handed people. In addition, the
ATM screen could display system usage instructions, even pictorially to accommodate
people who can not read. Similarly, audio instructions could be given for the sake of
those who are vision-impaired.

Difficult to circumvent. Given that the pulse-response is unique, the only other way to
circumvent it is to provide the sensor (built into the PIN pad) with a signal that would
correspond to the legitimate user. Although this is hard to test precisely, assuming that
the adversary is unaware of the target user’s pulse-response measurements, the task
seems difficult, if not impossible.

4.3. Security Analysis of PIN Entry Scheme
The additional layer of security provided by pulse-response recognition is completely
independent from security of the PIN entry system alone. Therefore, we model the
probability Pbreak that the proposed PIN entry system can be subverted, as:

Pbreak = Pguess · Psuccessful−impostor

where Pguess is the probability of the adversary correctly guessing the PIN and
Psuccessful−impostor is the average probability that the adversary can fool pulse-response
recognition by presenting his own biometric characteristic. In Section 7, we de-
termine the false accept rate to be 9% on average for a zero-effort impostor, i.e.,
Psuccessful−impostor = 0.09.

If a PIN consists of n decimal digits and the adversary has t guesses then Pguess = t
10n .

Together with Psuccessful−impostor this yields the combined probability:

Pbreak =
0.09 · t

10n

For example, if the adversary is allowed 3 guesses with a 4-digit PIN, Pbreak = 2.7 · 10−5,
whereas a 4-digit plain-PIN system has a subversion probability of 3 · 10−4. Though
this improvement might not look very impressive on its own, it is well known that most
PIN attacks are performed by “shoulder surfing” or covertly video-taping the PIN entry
sequence. These attacks do not involve the adversary guessing the PIN. If we assume
that the adversary already knows the PIN, Pbreak = 9.0% with our system, as opposed
to 100% without it.
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5. CONTINUOUS AUTHENTICATION
We now present a continuous authentication scheme. Its goal is to verify that the
same user who initially (and securely) logged into a secure terminal1, continues to be
physically present at the keyboard. Here, pulse response recognition is no longer used
as an additional layer of security at login time. Rather, the user’s pulse-response is
captured at login time and subsequent measurements are used to authenticate the user
by comparing to the initial reference.

5.1. System and Adversary Models
We continue using the example for continuous authentication introduced in Section 1.
We use this example throughout this section to make it easier to present the details of
the envisaged system. However, applicability of continuous authentication via pulse-
response is not limited to this specific scenario.

The system consists of a terminal with a special keyboard that sends out pulse signals
and captures the pulse-response. This requires the keyboard to be either made from, or
coated by, a conductive material. Alternatively, the pulse signal transmitter could be
located in a mouse that the user operates with one hand and the keyboard captures the
pulse-response. Without loss of generality, we assume the former option. The keyboard
otherwise operates normally and is used for both login and routine activity at the
terminal.

We assume that the adversary, with or without consent of the authorized (at login
time) user, physically accesses the unattended terminal and attempts to proceed within
an already-open session. In security research literature, this attack scenario is also
known as “lunchtime” attack (see, e.g., [Eberz et al. 2015]). We assume that the adver-
sary at the keyboard has full access to the active session, and that this happens some
time after the original user logged in. Our goal is to detect that the original user is no
longer present, and that the keyboard is operated by someone else. If a different user is
detected, the system consults a policy database and takes appropriate actions, e.g., locks
the session, logs out the original user, raises alarms, or notifies system administrators.

In addition to the peripherals required to capture the pulse-response signal, the
continuous authentication system consists of a software process that manages initial
login and frequency of periodic reacquisition of the biometric characteristic. This process
is also responsible for displaying user warnings and reacting to suspected violations.
We refer to it as the continuous authentication process (CAP) and assume that neither
the legitimate user nor the adversary can disable it.

5.2. Continuous Authentication Scheme
At login time, CAP measures and records an initial pulse-response measurement of
the authorized user. Periodically, e.g., every few seconds, CAP reacquires the biometric
characteristic by sending and receiving a pulse signal through the keyboard. Each
newly acquired measurement is checked against the value acquired at login. If the new
measurement is sufficiently distinct from that sampled from the original user, CAP
consults its policy database and takes appropriate actions, as discussed above. Figure 3
shows a sample CAP decision flowchart. The decision policy can obviously be further
refined. For example, in a corporate setting, all employees could have their biometric
template stored in central database to allow for a more thought-out access schema
which also includes shared resources or devices.

Before considering the security of the continuous authentication system, we look back
at our design goals:

1If the measurement apparatus and the electrodes needed to acquire pulse-response readings can be minia-
turized, smaller devices such as laptops are imaginable.
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Fig. 3. Flowchart of the Continuous Authentication Process decision procedure.

Universal. The users of the system must have two hands in order for the pulse-
response biometric to be captured. The same arguments, as in the case of PIN entry,
apply here.

Unique and Permanent. In Section 7, we show that our prototype can match a pulse-
response to previous samples (taken immediately beforehand) with very high accuracy.
Average equal error rate is as low as 2%. The fact that the pulse-response reference
is taken at the beginning of the session and is used only during that session, makes
it easier to overcome consistency issues that can occur when the reference and test
samples are days or months apart.

Unobtrusive. Provided the users of the envisioned system periodically come in touch
with the electrodes that emit and measure the pulse-response, they do not need to
modify their behavior at all and user burden is minimal. In case the electrodes are
embedded in a conductive keyboard, this would mean users need to type with both
hands. For users who consistently type with only one hand, at least one electrode would
have to be incorporated elsewhere, e.g, into the computer mouse the user operates.

Difficult to Circumvent. With a false accept rate of 2% (at equal error rate) it is
unlikely that the adversary happens to have a pulse-response similar to the original
user and can manage to continuously fool pulse-response recognition. We explore this
further in the security analysis section below.

5.3. Security Analysis of Continuous Authentication Scheme
The adversary’s goal is to subvert the continuous authentication system by using the
secure terminal after the original user has logged in. In the analysis below, we assume
that the original user colludes with the adversary. This eliminates any uncertainty that
results from the original user “discovering” that the adversary is using its terminal,
which is hard to model accurately. We consider the worst-case scenario and the detection
probability is a lower bound on security provided by the continuous authentication sys-
tem. The exact values for the parameters we use in the security analysis are estimated
through experiments (based on our data set) that reflect the worst case the proposed
scheme could encounter.

We model the security of the continuous authentication scenario with two probabili-
ties. The first is the probability that the adversary is detected immediately, i.e., the very
first time when his pulse-response is measured. This corresponds to the complement of
the average false accept rate that we report in Section 7 and we call this probability α
in the following calculations.

If the adversary’s biometric is very close to that of the original user, it might not be
detected every time biometric capture is performed. If the adversary manages to fool
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Fig. 4. Markov model of the continuous authentication detection probability. States are numbered 1 to 3 for
easy reference in text.

the classifier once, it must be because its biometric characteristic is very close to that of
the original user. Thus, the probability that the adversary is detected in subsequent
measurements is lower:

P [Xi = adv|Xi−1 = usr] ≤ P [Xi = adv]

We call this decreased probability β. In Section 8 we will estimate an experimental
lower bound for β based on our gathered data set of pulse-response measurements. We
measure false acceptance rate in the worst case, i.e., the probability of a successful
impersonation attempt for the most promising attacker-victim combination in our data
set.

We build a Markov model, shown in Figure 4, with three states to calculate the
probability that the adversary is detected after i rounds. When the adversary first
accesses the keyboard, it is either detected with probability α or not detected, with
probability 1 − α. In the latter case, its pulse-response measurement must be close
the original user’s. Thus, β is used for the subsequent rounds. In each later round, the
adversary is either detected with probability β or not detected, with probability 1− β.
To find the combined probability of detection after i rounds, we construct the state
transition matrix P of the Markov model, as follows:

P =

[
0 1− α α
0 1− β β
0 0 1

]

Each row and each column in P corresponds to a state. The entry in row q and column
r, pqr, is the probability of transitioning from state q to state r. To find the probabilities
of each state we start with a row vector ρ that represents the initial probability of being
in state 1, 2 and 3. Clearly, ρ = [1, 0, 0], indicating that we always start in state 1. The
probability of being in each state after one round (or one transition) can be represented
by the inner product ρP . Probabilities for each subsequent round are determined via
another multiplication by P . Therefore, the probabilities of being in each state after i
rounds (state transitions), is found as follows:

[1, 0, 0] · P i = [0, (1− α)(1− β)i−1, 1− (1− α)(1− β)i−1]

As expected, the probability of being in state 1 (the initial state) is 0, since the first
state transition forces a transition from the initial state and there is no way back. (See
Figure 4.) The probability of being in state 2 (i.e., to escape detection for i rounds)
is given by the second element of ρ: (1 − α)(1 − β)i−1. The probability of detection is
thus: 1− (1− α)(1− β)i−1. According to our model, using α = .98 and β = .36 (numbers
from our experimental results in Section 7 and Section 8) there is a 99.96% chance
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Fig. 5. Box plots of the binary detection error rate for four different classifiers. The distribution shown by
each box plot is the result of applying stratified 5-fold cross-validation to the data set five times in a row. We
test several different signal types, voltage levels and frequencies for each classifier. We see that narrow pulse
signals are consistently performing well.

of detecting the adversary after only 10 rounds. Thus, not surprisingly, acquisition
frequency determines the time to detect the adversary.

5.4. Handling False Rejects
False rejects refer to incorrect detection of adversarial presence. If the biometric recog-
nition is used as an additional layer of security during the authentication procedure,
this can be managed simply by restarting the login procedure, if the first attempt fails.
However, in a continuous authentication setting, where a single (and possibly incorrect)
detection might cause the system to lock up, false rejects have to be handled more
thoughtfully.

One approach is to specify a policy that allows a certain number of detection events
every n-th round, without taking any action. Such a mechanism can help mitigate
sensor reading errors or short-term environmental changes that could adversely affect
pulse-response recognition and change impedance, such as overly sweaty hands or
arms/hands accidentally touching each other or any non-involved metal object.

Another option is to integrate potentially less user-friendly (less transparent) bio-
metric recognition to deal with ambiguous detection events. For example, after a few
detection events, the user might be asked to confirm his identity by swiping a thumb
on a fingerprint scanner. Such a combined approach would be suitable for a system
with very high security requirements. It could employ pulse-response recognition to
drastically reduce authentication requests from its principal biometric which might be
more obtrusive.

6. BIOMETRIC CAPTURE SYSTEM
In this section, we describe decisions and parameters for our prototype setup that
enable us to measure the pulse-response. We conducted several experiments to test
different signal types, voltage levels and frequencies.

6.1. Signal Type
Starting out with the hypothesis that body impedance varies depending on frequency
and voltage level of the signal, we conducted a preliminary study to test the distin-
guishing power of various frequency sweeps, and pulse signals with different widths.
Although the sweep signals cover a broad range, short square pulse signals prove to be
strongly unique among our test subject population.
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The box plots in Figure 5 summarize our biometric comparison results with four
classifiers that performed well in our application: Support vector machines (SVM),
Euclidean distance, linear discriminant analysis (LDA) and 3-nearest neighbors (3-nn).
The most promising of the pulses (Pulse), linear sine sweeps (SineLin) and linear square
wave sweeps (SquareLin) are listed on the x-axis. The signal name is composed of a
signal type, a voltage and a maximum frequency (or width for pulses). The voltage
is either 1, 5 or 10 volts. Starting frequency is 1 Hz for all sweeps and the stopping
frequency is 250, 500 or 980 Hz, respectively. The width of the pulses (given in hundreds
of nanoseconds) is either 100 ns, 10 µs or 1 ms. The y-axis shows the binary detection
error rate, i.e., the amount of times the classifier failed to identify a biometric sample
correctly, normalized by the number of samples. The distribution denoted by the box
plots shows the results of the classifiers achieved by five times 5-fold cross-validation.

We see that the narrow pulse signal outperforms every other signal type by a remark-
able margin. We get consistent error rates close to zero for a pulse signal of 1 volt and a
width of 100 nanoseconds. Wider pulse signals also give decent results but the quality of
the result seems to decrease with the width of the pulse. For the sine and square wave
sweeps the results vary significantly with the choice of classifier. Using LDA, some sine
sweeps look interesting but nowhere near as good as the narrow pulse signal.

Besides shape and form of the signal, voltage levels are an important factor to consider.
It is important that the users of our system do not experience any discomfort when their
biometric information is captured. We test three different voltage levels for all signal
types: 1, 5 and 10 volts peek-to-peek (Vpp). For sine and square signal sweeps the 10
Vpp and 5 Vpp provides better separation between the subjects but also higher noise
levels. For example, in Figure 5, using the LDA classifier, we see that the SineLin-5-500
signal has a lower detection error rate than the SineLin-1-500 signal, but the latter has
less variance. For pulse signals there is no significant correlation with voltage level.
Since the pulse signal is clearly the best choice for our biometric we chose 1 volt pulses
to minimize any potential discomfort that users of our biometric system might feel.

6.2. Signal Frequency
We initially thought that (almost) all frequencies would contribute to the distinguishing
power of our classifier but our experiments show that the classifier mainly uses the
lower frequencies to distinguish between users. In fact, we see an increase in the true
positive rate when we only use the first 100 frequency bins of the FFT. This suggests
that most of the high frequency content is noise when operating at such low power
levels.

6.3. Choice of Classifier
Although we apply an FFT to the data before the classification step we can think of
our task as time series classification. This is because an FFT is a reversible linear
transformation so the euclidean distance metric is preserved. Thinking of the problem
as a time series clustering problem, there are many known approaches that work
well. One common method is to compare the first n frequency components by using
appropriate distance- or similarity metric. We compare several different classification
techniques to see which ones provide the best results for our application.

Euclidean Distance (Euclidean). A new measurement is treated as an n dimensional
point and classified according to the euclidean distance to the centroid of each class.
This classifier is conceptually very simple but still offers reasonably good results.

Mahalanobis Distance (MH). Rather than assuming uniform and orthogonal disper-
sion among the frequency components (as in the Euclidean classifier) the covariance
matrix for each class is taken into account in the distance calculation. This allows
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for a distance metric that is proportional to the shape of the class (in n dimensional
feature space). The performance of this classifier improved significantly from the Eu-
clidean distance metric, suggesting that the shape of each class has to be taken into
consideration.

Support Vector Machine (SVM). For each pair of groups we train one binary Support
Vector Machine classifier (one-against-one approach). The final prediction is found by
voting. The inverse kernel width for the Radial Basis kernel is determined by the 0.1
and 0.9 quantile of the pairwise Euclidean distance between the samples. This classifier
gives consistently good results and is our final choice of classifier when pulse-response
recognition is used for authentication.

Linear Discriminant Analysis (LDA). LDA seeks to reduce the dimensionality of the
input data while preserving as much of the class distinguishing power as possible. This
classifier turns out to be especially useful for identification. It does however not prove
as powerful as the SVM classifier for the binary classification task of authentication.

k Nearest Neighbor (k-nn). We test the k nearest neighbors classifier for k = 1 and
k = 3, using euclidean distance. It is a simple classifier that often works very well in
practice. In our case though the performance of k-nn is still not as good as SVMs or
LDA, respectively.

6.4. Proof-Of-Concept Measurement Setup
In order to gather stable and accurate pulse-response measurements we build a data
acquisition platform consisting of: (1) an arbitrary waveform generator, (2) an oscil-
loscope, (3) a pair of brass electrode handles, and (4) a desktop computer to control
the apparatus. Figure 6 is a photo of our setup. We use an Agilent arbitrary waveform
generator as the source of the pulse signal. Flexibility of the waveform generator is
useful during the initial design phase and allows us to generate the required pulse
waveforms in the final classifier. To measure the pulse waveform after the signal passes
through a test subject we used an Agilent digital storage oscilloscope which allows
storage of the waveform data for later analysis. The output of the waveform generator
is connected to a brass handle that the user holds in the left hand. The other brass
handle is connected to the oscilloscope signal input terminal. When a test subject holds
one electrode in each hand the signal travels from the generator through the body and
into the oscilloscope. To ensure exact triggering, the oscilloscope is connected to the
synchronization output of the waveform generator.

We use polished brass hand electrodes to ensure optimal electrical contact between
the measurement setup and the user. This reduces contact resistance and increases the
stability of the measurements.

The function generator and oscilloscope are controlled by a desktop computer that is
connected via USB. We wrote a custom software library to set measurement parameters
and retrieve the desired waveform data. This software is available upon request.

When measuring the biometric we make each subject follow a specific procedure to
ensure that only minimal noise is introduced into the measured data. The test subjects
are given a brief explanation of the setup and purpose of the experiment and then told
to grab a hold of the brass hand electrodes. The red lead in the left hand and the black
in the right hand. The test subjects can choose to either stand or sit in a chair while
holding the electrodes as long as they do not touch the sides of their body with their
elbows or upper arms. We do this to ensure that the current of the pulse signal has to
go through more or less the same path, for all samples and all users. Before each new
test subject is measured, the brass handles are wiped down with a disinfectant, both
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Fig. 6. Proof-of-concept measurement setup. The test subject holds two brass electrode handles [Lyra Nara
2013] and the pulse signal is generated by an Agilent 33220A (20 MHz) arbitrary waveform generator. The
receiver is an Agilent DSO3062A (60 MHz), 1 GSa/s digital storage oscilloscope.

for hygienic reasons and to ensure good electrical contact between the electrode and the
user’s palms.

While our prototype setup ensures accurate biometric measurements and shows
feasibility of pulse-response recognition, it might not translate directly to the described
application scenarios of PIN entry and continuous authentication in terms of electrode
design and other ergonomic requirements. Obviously, further practical tests would be
needed before deploying pulse-response recognition, as to find out to what degree soiled
electrodes or a change in posture have an effect on the biometric reading.

6.5. Test Subject Population
In the initial design phase, each test subject was sampled ten times for each of the
different signal types, for each voltage level and for various frequencies. Once we
selected the pulse signal with the best results, samples were acquired for two data sets.

The first consists of 20 samples for each subject, taken in one measuring session. A
total of 30 people were measured for this data set, including 9 women and 21 men. We
call it the snapshot data set.

The second data set includes 25 samples per subject from a total of 16 subjects,
obtained in five different sessions over time. To assess stability and permanence of
pulse-response, we measured the biometric over a longer period of time. We sampled all
test subjects at different times during the day over the course of several weeks. The
median timespan between consecutive sessions was 8 days and there was a minimum
time interval of at least one day between sessions.

We tried to sample subjects in order to end up with sampling conditions as diverse as
possible, for each subject, to capture various other potential factors that might influence
body impedance, such as varying body water percentage, body temperature or time of
the day.

Table I summarizes the composition of the test subject population.
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Table I. Test subject population and sample size

Data set Test subjects Females Males Samples per subject

Snapshot 30 9 21 20
Over-time† 16 2 14 25

The age band of the subject population ranges from 24 to 38.
†Test subjects were measured in five different sessions over time.
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Fig. 7. One measurement consists of 4,000 samples with the rate of 500 MSa/s. In Figure 7a it is apparent
that the measured pulse has been modified by passing through the user. The FFT data shown in Figure 7b
consists of the first 100 frequency bins of the measured waveform.

6.6. Feature Extraction
Data extracted from the measurement setup is in the form of a 4, 000 sample time-series
describing voltage variation as seen by the oscilloscope. Figure 7a shows the input pulse
sent by the waveform generator and the pulse measured by the oscilloscope. Time series
measurements are converted to the frequency domain using the FFT and the first 100
frequency bins of the FFT data are used for classification. Operating in the frequency
domain has several advantages. First, there is no need to worry about alignment of
the measured data pulses when computing metrics, such as the euclidean distance
between pulses. Second, it quickly became apparent that only lower frequency bins
carry any distinguishing power. Higher frequency bins were mainly noise, meaning that
the FFT can be used to perform dimensionality reduction of the original 4, 000 sample
time-series to the vector of 100 FFT bins. Figure 7b shows an example of the raw data
we end up with after the FFT. This data is then fed into the classifier.

6.7. Classification Performance Metrics
We use false accept rate (FAR) and the false reject rate (FRR) as binary classification
performance metrics to assess system performance of our prototype setup.

To illustrate the FAR and FRR graphically we draw the receiver operating char-
acteristic (ROC curve) which shows the relationship between these two performance
numbers. The ROC curves shown in the following are vertical averages. We compute a
ROC curve for every test person and calculate the average over all false reject rates for
given false accept rates (see [Fawcett 2006] for an algorithm on vertical aggregation of
ROC curves).

A common performance metric for biometrics is the equal error rate (EER). It denotes
the rate at which errors for acceptance and rejection are equal and is a straightfor-
ward way to compare different ROC curves. Equal error rates for the best performing
classifiers will be presented in Section 7.

To assess the performance of pulse-response recognition in identification, we compute
the ranking success Rank(N). The ranking success is a metric that measures the ratio
of query samples for which the corresponding template is amongst the first N templates
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Fig. 8. Receiver operating characteristic for authentication. The results presented are averages over all
users and obtained by applying 5 times stratified 5-fold cross-validation (ROC curves are vertical averages).
Shaded areas show the 95% confidence interval for each classifier.

out of all stored templates in the database if the templates are sorted in decreasing
order according to their similarity values. Ideally, Rank(1) = 1.0, which means that for
all query samples the corresponding template from the database has been assigned the
highest similarity value.

To obtain unbiased and realistic performance measurement numbers, the data sets
are partitioned into learning set and test set. We make sure that the test set for the
over-time data spans all five measurement sessions. For both data sets, the partitioning
into training and test set is repeated multiple times by stratified cross-validation to
acquire a robust estimate of the performance of the biometric modality.

7. EXPERIMENTAL RESULTS
In this section we present the results of our experiments with pulse-response recog-
nition, a narrow pulse signal, that resulted from our analysis as the final biometric
characteristic. The design decisions and motivations behind selecting a short square
pulse signal are described in detail in the previous section. We report system perfor-
mance figures of various classifiers when they are applied to pulse-response recognition.
To be precise, we divide the results into two different types of classifiers according to
the usage scenario of the biometric trait. We present classifiers for authentication and
for identification.

We sub-divide the results into the two underlying data sets: (1) those from the
snapshot data set, which show the inherent distinguishing power of the pulse-response,
and (2) those based on the data sampled over time, which assess stability (permanence)
of the pulse-response.

Within our data set and due to our straightforward feature extraction, we did not
experience any failure to enroll or failure to capture errors, which means the classifier
performance corresponds to the actual system performance of our prototype setup (FAR
and FRR). We therefore do not report classifier and system performance separately.
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7.1. Authentication Classifier
Authentication is a binary classification task. The classifier has to decide whether a
presented sample belongs to the group of samples reflecting a specific user or not. An
authentication classifier for pulse-response recognition is used in the running example
of Section 4 where pin entry is combined with biometric measurements and in Section 5
where pulse-response measurements enable continuous authentication. To simulate
an authentication procedure with pulse-response recognition, we separate the samples
into two classes: Samples belonging to the legitimate user and samples from all other
users. Samples from other users are collected in a large pool and represent potential
impostors. Once the classifier is trained, it is presented with unseen samples from both
classes. Then FAR and FRR are computed on the basis of the classifiers’ prediction.

In order to solve the binary classification problem we test four of the classification
algorithms described in Section 6.3: Support Vector Machines (SVM), Linear Discrim-
inant Analysis (LDA), Mahalanobis distance (Mahalanobis) and Euclidean distance
(Euclidean). Figures 8a and 8b show the performance of each of these methods when
applied to the over-time data set and the snapshot data set. The depicted ROC curves
are averages over all test subjects and describe the relationship between the FRR on
the y-axis and the FAR on the x-axis. If a higher FRR is acceptable, a lower FAR can be
achieved and vice versa, i.e., if a lower FRR is required, the classifiers show a higher
FAR. By changing the discrimination threshold the classifiers can operate on any point
on the curve if desired.

To ensure statistical robustness the ROC curves are constructed by performing 5-fold
cross-validation and averaging the results vertically. The confidence intervals reveal
that there is very little variance in the classifiers’ performance even if the data set is
partitioned into different training and test sets.

The ROC curves show that all subjects are recognized with high probability, as the
FRR and the corresponding 95% confidence intervals confirm. SVM outperforms all
other classification techniques, followed by LDA and Mahalanobis. SVM achieves a
FRR of less than 10% and a FAR of less than 10% at the same time, i.e., an EER of 10%.
Given that this assessment is based on the over-time data set it is a remarkable result.

Applying the classifiers to the snapshot data set yields even better performance as
Figure 8b reveals. At a FAR of 5%, FRR is close to 100% when using SVM as classifier.
This result suggests that pulse-response is a very viable biometric characteristic for
continuous authentication and shows remarkable distinguishing power. In a continuous
authentication system where a certain percentage of false rejects (incorrect rejection
of a legitimate user) can be accepted — such as the one described in Section 5 —
pulse-response recognition will, with high probability, detect all adversarial samples.

Moreover, pulse-response recognition seems to be especially effective as a biometric
trait if the stored biometric template is fairly recent in relation to the measurements it
has to identify. All classifiers show a significant improvement in performance if they
only have to deal with samples from a single measurement session, i.e., the snapshot
data set. Performance on the over-time data set is likely to be improved with more
measurement sessions. The classifiers will gain a clearer picture of the variability of
each subject’s body impedance if they have access to samples from additional points in
time.

7.2. Identification Classifier
Biometric identification is a multi-class classification problem. The goal is to identify a
person as accurately as possible given unlabeled biometric samples.

We test five different classifiers in the identification scenario. The conceptual general-
ization to the multi-class setting is straightforward for all classifiers: The Euclidean
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(b) Snapshot data set

Fig. 9. Ranking success rates for identification. The results presented are averages over all users and
obtained by applying 5 times stratified 5-fold cross-validation. Error bars show the 95% confidence interval
for each classifier.

and Mahalanobis distance classifiers increase the number of centroids to one centroid
per class. LDA generalizes to Multiclass-LDA by introducing one mean per class and
measuring between-class variability through the covariance matrix of the class means.

Ranking success rates obtained from the identification classifiers are shown in Fig-
ures 9a and 9b. We depict Rank(1), Rank(3) and Rank(5). The classifiers have been
trained on both, the over-time data set (Fig. 9a) and the snapshot data set (Fig. 9b).
The ranking success rates illustrated in the bar plots are averaged over all subjects and
obtained by applying 5-fold cross-validation, similar to the authentication scenario.

Even with the increased complexity of multiple classes, all tested identification
classifiers perform reasonably well on the over-time data and very well on the snapshot
data set. For the snapshot data set a ranking success close to Rank(1) = 1.0% is possible
using Multiclass-LDA as classifier. The nearest neighbor classifiers (1-nn and 3-nn) can
not quite reach the performance of the Mahalanobis distance method and Multiclass-
LDA. Clearly the conceptually simpler Euclidean distance method can not cope with
the added variability present in the over-time data set (see Fig. 9a).

All classification methods benefit from measurements that are acquired in a relatively
short time frame, e.g., the snapshot data set. They can improve performance signifi-
cantly if trained and tested on these samples only. Measurements taken far apart are
influenced by very different conditions. There might be physiological changes, such as
weight loss or gain, or there might be differences in the ambient temperature, humidity,
clothing, or a number of other factors. The added uncertainty becomes apparent in
the classification performance and in turn effects the ranking success rates (compare
Fig. 9a with Fig. 9b).

7.3. Summary
Table II summarizes the results of the best classifiers for authentication and identi-
fication achieved with our prototype setup, on both, the snapshot data set and the
data set taken over time. For authentication SVM gives the best results whereas for
identification Multiclass-LDA proves to be the most suitable classifier.
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Table II. System performance of the prototype setup averaged over all users in [%]

Authentication (SVM classifier) FAR FRR Accuracy EER

Snapshot set 2 2 96 2
Over time 9 9 87 9

Identification (LDA classifier) Rank(1) Rank(2) Rank(5)

Snapshot set 99 100 100
Over time 81 97 99

Performance metrics are calculated using five times 5-fold stratified cross-validation. Values
shown reflect the performance achieved with the best classifier for each scenario.

In an authentication scenario pulse-response recognition achieves a very low EER of
2% on the snapshot data set and an EER of 9% on the over-time data. This makes it
clear that pulse-response is a viable biometric characteristic for authentication.

If pulse-response recognition is used for identification purposes a ranking success
of almost 100% can be achieved for the static snapshot data set. According to our
experiments, even if the biometric measurements are captured in sessions that are
weeks apart pulse-response recognition will reach a ranking success rate Rank(1) of
81% and 97% for Rank(3), respectively.

8. IMPERSONATION OF PULSE-RESPONSE
In this section, we introduce an impersonation attack and measure similarity of pulse-
response samples. We experimentally estimate worst-case probabilities for different
scenarios where an attacker could impersonate a legitimate user by fooling the biometric
system using his own biometric measurements (zero-effort impersonation).

8.1. Attacker Model
We consider four attack scenarios relevant to pulse-response recognition. Similar to the
previous section we differentiate between authentication and identification. In addition,
a potential attacker who tries to impersonate a legitimate user may or may not be
known to the system. We refer to an attacker whose biometric template is known as
an internal attacker and if no biometric template or reference is know, we call it an
external attacker. Thus, an internal attacker has been registered and is enrolled in
the system. An external attacker has never used the system and no pulse-response
measurements have been gathered.

Regardless of its type, the attacker’s goal is to impersonate a legitimate user of the
system. The attacker tries to achieve this by using its own pulse-response and trick the
classifier.

To give a realistic experimental lower bound on the attack probabilities for zero-effort
impersonation, we base our analysis on the over-time data set. The results in Section
7 made evident that classifying pulse-response samples with increased variability is
more challenging. Consequently, we assume that it is also more difficult to detect an
attacker under these conditions.

The attack scenarios are limited by the scope of our data set but they nevertheless
provide an accurate view on the behavior of pulse-response recognition.

8.2. Internal attackers
We take our best classifiers from Section 7 and estimate their performance for all
possible attacker-victim pairs in our test subject population. We first train the classifiers
on the entire data set and then ask them to classify biometric samples from a predefined
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Table III. Average and worst-case performance for attack scenarios

internal attacker [%] external attacker [%]

average case worst case average case worst case

Authentication (SVM classifier)
– Sensitivity 98.8 76.0 98.8 88.0
– Specificity 99.9 99.0 95.0 36.0
Identification (LDA classifier)

– Sensitivity 99.9 76.0 99.6 80.1
– Specificity 99.5 99.0 99.0 92.0

Average and worst-case sensitivity and specificity for four attacks scenarios. We dis-
tinguish between authentication and identification and between internal and external
attackers. External attackers are not known to the classifiers.

attacker and a predefined victim only. We thereby measure sensitivity (that corresponds
to the complement of FAR, i.e., 1−FRR) and specificity (which denotes the complement
of FAR, i.e., 1− FAR) for a specific combination of attacker and victim.

This performance assessment is repeated for all possible attacker-victim combinations
which lets us compute average as well as worst-case performance of sensitivity and
specificity. The results can be found in Table III in the column labeled internal attacker.
Not surprisingly, average sensitivity and specificity attain very high numbers and con-
firm our previous findings about the classification power of pulse-response recognition.
Consistent specificity of almost 100% – on average and in the worst case – guaran-
tees that an internal attacker is very likely to be detected, whether pulse-response
recognition is used for authentication or identification.

Sensitivity seems to vary slightly more than specificity. For certain attacker-victim
combinations sensitivity only reaches 76%. This means that a particular legitimate
user is recognized in 76% of the tested samples. In all remaining cases he was rejected
because the classifier mistook him for the attacker. These numbers are congruent with
our results from Section 7 where we discover that more variability in the pulse-response
measurements affects average sensitivity to a greater extent than average specificity.

8.3. External attackers for authentication
To model an external attack on pulse-response recognition we pursue a similar proce-
dure as outlined above for internal attackers. The main difference is that no attacker
samples are included in the training phase of the classifiers. The classifier should
be able to identify adversarial samples without knowing a template describing the
attacker’s pulse-response measurements.

We exploit the nature of the binary classification problem of authentication and form
two classes of samples. Having set aside all measurements from the attacker, we define
a class containing samples from the victim and a second class consisting of samples of
any other user. Although the actual attacker is not represented in this pool of training
samples the classifier can gain a good understanding of what measurements other than
those from the victim look like. During classification, an external attacker is likely to
fall into the group of “other” users despite the fact that the classifier does not see any of
the attacker’s samples during training. In Figure 10 we show a graphical representation
of all possible attacker-victim combinations for an external attack on the authentication
classifier. Sensitivity and specificity are shown for each attacker-victim pair, as well as
average sensitivity and average specificity. The resulting matrix appears to be nearly
symmetric. If two subjects have similar pulse-response measurements it is almost
equally likely for both of them to be able to successfully impersonate the other. There
are a few deviations, however, which for instance include subjects Remo and Mason
(see Figure 10). Remo has a higher chance of impersonating Mason than the other
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Fig. 10. An external attacker tries to impersonate a legitimate user. Sensitivity and specificity for every
possible attacker-victim combination of the over-time data set based on unseen samples from both, attacker
and legitimate user (test persons have been anonymized with pseudonyms).

way round, as specificity is lower when Remo simulates the attacker. These differences
stem from the fact that the class of samples from two different users can have different
shape and dispersion in the feature space. The classifier will not necessarily create
symmetrical decision boundaries when it is trained on different subsets of the data.

From the results in Table III we see that on average the authentication classifier per-
forms almost equally well in both attacker scenarios, internal and external. Sensitivity
and specificity are above 95% in all cases. Although average performance is very high,
a few attacker-victim combinations reveal detection probabilities significantly below
average. For instance, if subject Ethan wants to impersonate David then specificity is
estimated at 36% which will result in a 64% chance for Ethan to go undetected and
successfully fool pulse-response recognition (see Figure 10). Ethan and David must
have a very similar pulse-response. The fact that some attacker-victim pairs have
similar measurements is what motivated the Markov Model in Section 5.3. The model
takes into consideration that the measurements of the attacker might be statistically
similar to the legitimate user and as a consequence the attacker successfully passes the
biometric test at first and only gets caught eventually.

8.4. External attackers for identification
When pulse-response recognition is used for identification, reliable detection of external
attackers becomes more intricate. The classifier has to distinguish between multiple
classes and detect attacker samples at the same time. It is possible to construct a binary
classifier for every single user which decides between legitimate user and attacker.
However, this approach requires an aggregation scheme that collects the classifiers’
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Fig. 11. Detecting external attackers as statistical outliers with minimal Mahalanobis distance between
sample and class means. At discrimination threshold τ the fraction of detected attackers is equal to the
fraction of recognized legitimate users.

outputs to produce the final decision whether the presented measurement is indeed
an attacker or not. Results in Section 7.2 showed that for pulse-response recognition
pairwise SVM classifiers do not perform as well as conceptually simpler methods, such
as Multiclass-LDA. Starting out with this insight we opt for a less complex model to
detect attacker samples. It is based on the assumption that samples from unknown
subjects can be detected as statistical outliers. Samples from an external attacker
originate from an unknown source as no such samples have been seen by the system
before classification. These adversarial measurements might not share any statistical
characteristics with the measurements the classifier has encountered during training
phase.

An effective approach to an outlier detection scheme is to determine mean and
covariance for each class of samples representing a registered user. This information is
used to compute the Mahalanobis distance between a new measurement and all stored
biometric templates, i.e. the Mahalanobis distance to the class means. Should a new
measurement happen to be far from all class means then the likelihood of it being an
attacker sample is high. If the minimal distance exceeds a certain threshold the sample
is declared as an attack and filtered out.

The described method is essentially the same as the Mahalanobis classifier that
we tested for pulse-response recognition in Section 7.2. This time though, we do not
assign class labels to the samples but rather compute the likelihood (i.e., the distance)
that a sample belongs to any of the stored templates. The motivation behind choosing
Mahalanobis distance for outlier detection is twofold: It showed very good classification
results for pulse-response measurements and its application to outlier detection is
straightforward. There is no need to train multiple classifiers and no additional class to
accommodate outliers is required.

The performance graph in Figure 11 shows the discrimination threshold for the
minimal Mahalanobis distance against the result of the outlier detection. Varying
the discrimination threshold not only has an effect on how many legitimate users are
recognized but also on how many attackers are detected. Ideally, the system would reject
all attacker samples and accept all samples from registered users. The threshold τ =
48.5 used in the experiments is chosen in such a way that the percentage of detected
attackers is equal to the percentage of correctly identified legitimate users. τ is found
by 2-fold cross-validation and achieves an error rate of almost 0%.

After having filtered out the attacker samples the system continues to assign class la-
bels to the remaining measurements – those which have not been found to represent an
external attacker. The classification of these samples is analogous to the scenario where
only internal attackers are considered. The biometric system employs a Multiclass-LDA
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classifier to solve the classification task, similar to the identification classifier found in
Section 7.2.

Since the system now contains two sources of possible misclassification errors (the
classifier for the user samples and the preceding outlier filtering) the performance
assessment must make sure to take this fact into account. In particular, we need to
consider the rejection of legitimate users during outlier detection. A legitimate user who
is incorrectly identified as an external attacker must be treated as a wrong assignment
and should impact the sensitivity score.

Table III lists sensitivity and specificity metrics the identification classifier is able
to achieve when samples are pre-filtered by Mahalanobis distance to detect external
attackers. Performance experiences almost no decrease compared to the scenario for
internal attackers. Average sensitivity and average specificity stay at a very high
level of 99%. Worst-case sensitivity is even increased from 76.1% to 80.1%. Worst-case
specificity is affected to a marginal extent. It changes from 99% to 92% which supports
our initial assumption that it is more challenging to detect external attackers than
internal attackers. We can still conclude, however, that there is a high chance that
impersonation attempts from external attackers are detected. This is mainly due to
the effective outlier detection scheme which filters out attacker samples before the
measurements are fed to the classifier.

9. RELATED WORK
Biometric characteristics, as a means of recognizing an individual using physiological
or behavioral traits, has been an active research area for many years. A comprehensive
survey of established physiological biometrics can be found in [Jain et al. 2006]).

While physiological biometrics tend to be relatively stable over time, they can be
sensitive to deception and presentation attacks. These include, for instance, attacks
on: (1) fingerprint identification, e.g., using mock fingers made of glycerin, gelatin or
silicon [Barral and Tria 2009; VIRDI Biometric 2009], (2) facial recognition, e.g., using
photographs or 3D models of an actual user [Nguyen and Bui 2009; Boehm et al. 2013],
and (3) iris scan, e.g., using patterned contact lenses that replicate a genuine user’s iris
[Galbally et al. 2012].

In contrast, behavioral biometrics are thought to be harder to circumvent. However,
the performance of systems that implement behavioral biometrics, in terms of false
rejection rates (FRR) and false acceptance rates (FAR), is usually lower and can re-
quire re-calibration due to varying and often erratic nature of human behavior. Initial
results on behavioral biometrics were focused on typing and mouse movements, see,
e.g., [Spillane 1975; Clarke and Furnell 2007].

In particular, keystroke dynamics gained lots of popularity through [Monrose et al.
1999], where it was used to augment password authentication similarly to our PIN
entry scenario. Keystroke dynamics make use of the typing cadence and timings of an
individual while typing on a keyboard and are a biometric recognition method that could
be added to our PIN entry scenario as an additional modality. However, as recognition
rates of keystroke dynamics greatly improve with longer sampling durations, it would
be even better suited to continuous authentication. Keystroke dynamics could serve as
an alternative or as a complement to our pulse-response based recognition. We compare
keystroke dynamics and pulse-response recognition in Section 9.1.

In contrast to keystroke dynamics, some research studies on mouse movement bio-
metrics argue that it should not be used as biometric for authentication, as it has
too high intra-class variability, is highly device-dependent [Pusara and Brodley 2004]
and requires a long sampling duration, while others report high accuracies [Nakkabi
et al. 2010; Gamboa and Fred 2004; Zheng et al. 2011]. The authors of [Zheng et al.
2011] achieved equal error rates (EER) as low as 1.3% using successive mouse actions
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between clicks. Some of the best results has been reported in [Nakkabi et al. 2010] with
a FAR of 0.36% and a FRR of 0%, although it has been suspected that this result was
influenced by recording the data on a different computer for each user [Jorgensen and
Yu 2011].

An evaluation of keystroke dynamics, mouse movements, application usage and sys-
tem footprint can be found in [Deutschmann et al. 2013]. A total of 99 users participated
in the study and biometric data covering 20 hours per week during a span of 10 weeks
was gathered. In addition to biometric traits, the system acquired CPU and RAM
usage and the computer programs that were used most often. The study comes to the
conclusion that keystroke dynamics prove most useful for continuous authentication.

9.1. Comparison to keystroke dynamics
Keystroke dynamics is one of the most researched behavioral biometrics. Some of
the first scientific studies that propose to harness the distinguishing capabilities of
keyboard characteristics for identity verification date back to the mid 1970s and can be
found in, e.g., [Umphress and Williams 1985] and [Spillane 1975]. Since then, many
different recognition methods have been proposed. The most straight-forward methods
are based on relatively simple statistics, such as mean typing times and their standard
deviations [Joyce and Gupta 1990; Araujo et al. 2005]. Over the last few years, several
pattern-recognition methods have come into vogue and been applied to keystroke
dynamics, such as e.g., neural networks [Cho et al. 2000], fuzzy logic [Tran et al. 2007],
and support-vector machines [Giot et al. 2009]. A survey on the large body of literature
on biometrics using keystroke dynamics is given in [Joyce and Gupta 1990; Banerjee
and Woodard 2012; Teh et al. 2013] and in the comprehensive background section
in [Killourhy 2012].

As mentioned, if the keyboard users are typing on is conductive, a biometric system
could be designed as to measure both biometric traits, keystroke timings and the pulse-
response, at the same time and only with minimal user intervention. Both biometric
modes do not require the user to change his normal work-flow when typing on a keyboard
which makes the biometric recognition process very unobtrusive. Clearly, these two
modalities could complement each other and result in a more powerful biometric system.
Unfortunately though, both these modalities have the drawback of not being able to
acquire biometric measurements during periods when there is no user input. Assuming
users of such a combined system do not rest their hands or fingers on the keyboard
while inactive, neither keystroke dynamics nor pulse-response recognition can bridge
the breaks between typing phases. In such cases, other recognition methods, e.g., a video
camera for face recognition, could be a better complement and increase security to a
greater extent than keystroke dynamics and pulse-response recognition in combination
with each other. We therefore compare the performance of keystroke dynamics and
pulse-response recognition in more detail.

To this end, we evaluate a scenario specifically designed for this comparison. This
allows us to compare pulse-response with performance numbers for keystroke dynamics
found in literature. We assume that users type on a conductive keyboard and every
keystroke results in only one captured pulse-response measurement. Since the square
pulse used for the capture has a duration of 100 nanoseconds, many more measure-
ments would in theory be possible during a single keystroke. The enrollment data
for this analysis is comprised of five random measurements per user, taken from our
over-time data set. The validation data consists of 17 measurements per user, randomly
sampled from the snapshot data set. Choosing training and validation data in such
a way, we simulate the verification of new measurements (captured in quick succes-
sion while the user is typing) with the help of a stored biometric template obtained
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Fig. 12. Equal error rate (EER) of pulse-response recognition in relation to the number of keystrokes.
We assume users are typing on a conductive keyboard and every keystroke results in one pulse-response
measurement, e.g., for a five-letter word, five measurements can be captured (measuring errors are omitted).
The solid line represents mean EER over all users, the shaded area shows the 95% confidence interval.

during enrollment2. The final authentication decision is made based on the aggregated
classification outcomes of each individual measurement.

Figure 12 shows the equal error rate depending on the number of captured measure-
ments, averaged over all users. The 95% confidence interval of the mean is depicted as
a shaded area. We estimated it by resampling the subsets for enrollment and validation
data 25 times for each user. After one single measurement, i.e., after one keystroke,
mean equal error rate averages to 18.0% and steadily declines to 6.14% if up to 17 sub-
sequent measurements can be captured. The performance of keystroke authentication
systems varies in a similar fashion: If verification consists of a single word, i.e., as it
is the case in password augmentation, only a small amount of keystroke data can be
captured by the system and recognition rates are consequently lower. The study in [Giot
et al. 2009] which uses a 16 character pass-phrase for both enrollment and verification
achieves an equal error rate of 6.96% (vs. 6.14% of pulse-response recognition) whereas
free text recognition (users are allowed to type anything for enrollment and verification)
can achieve equal error rates as low as 0.95% [Gunetti and Picardi 2005]. Short typing
sequences or passwords, however, yield similar results to pulse-recognition. The study
in [Bleha et al. 1990] uses passwords between 11 and 17 characters and resulted in
8.1% FRR and 2.8% FAR. [Araujo et al. 2005] operates with a text length of 10 and
achieves a FRR of 11.57% and FAR of 1.89%. Finally, the authors of [Hocquet et al.
2005] are able to get 6.0% FRR and 0.5% FAR while using a text length of 25.

Although research literature has shown that typing patterns between individuals
can have similar characteristics, and error rates are low, misidentification is possible as
in traditional fingerprinting. Recognition rates are high enough such that keystroke
dynamics can be considered unique to each individual [Killourhy 2012; Araujo et al.
2005]. However, there are research studies that question the uniqueness property of
keystroke biometrics. The most prominent one is [Tey et al. 2013] where attackers are
shown the typing pattern of their victims and make a conscious attempt to imitate.
The attackers receive training through a textual and graphical feedback interface.
After training, false acceptance rate increases from 0.20 to 0.42 if attackers have
partial knowledge of the typing statistics of the victim, and from 0.24 to 0.6 if entire
typing statistics are known. These results show that keystroke dynamics might be
questionable in high-security environments and existing commercial solutions using
keystroke biometrics might not withstand targeted attacks.

2This is different from the continuous authentication setting in Section 5 because new measurements are not
compared to an initial reference measurement (temporary template) obtained at login time, but validated
against a pre-existing, stored biometric template.
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9.2. Touch(-screen) biometrics
Nowadays, many modern personal electronic devices, such as smart phones and tablets,
usually possess a capacitive touchscreen as input device as opposed to keyboard and
mouse. Quite recently research has turned to how to make continuous user authentica-
tion work with input signals received from a touchscreen. Touchscreen biometrics, i.e.,
taps, strokes, swipes and gestures executed by one or multiple fingers on a touchscreen,
are similar to keystroke dynamics as they can only be measured and evaluated during
active user input. They are considered very unobtrusive as they measure users’ touch-
screen actions which are part of the natural work-flow when interacting with a smart
phone or similar device. If the biometric capture mechanism needed to measure body
impedance can be miniaturized in the future, pulse-response recognition might also be
used on smaller devices where it could complement touch(-screen) biometrics, similarly
to keystroke dynamics.

The first work that thoroughly investigates the applicability of touchscreen input
as a behavioral biometric can be found in [Frank et al. 2013]. The authors propose
30 behavioral features that can be extracted from a user’s interaction with a smart
phone equipped with a touchscreen. The paper concludes that touchscreen features
might not be applicable to long-term authentication, they could, however, still serve as
part of a multi-modal biometric recognition scheme or secure short absences of usage
without immediately locking the device. In [De Luca et al. 2012], for instance, touch
characteristics are used to unlock a smart phone and to enhance swipe/shape password
patterns for instant authentication. The authors achieved a recognition rate of 57% in a
two-day user study.

In [Feng et al. 2012] another framework and a prototype for continuous user au-
thentication on mobile devices is presented. It consists of a sensor glove that delivers
fine-grained features, e.g., orientation, direction, rotation, of the finger movements and
a smart phone that collects touch gesture data. This augmented approach achieves
slightly worse recognition rates, but the authors believe that their system could be used
successfully for post-authentication security for a certain amount of time after the user
authenticates by some other means, i.e., password or other biometric.

A similar approach is presented in [Holz and Knaust 2015] where a watch-like
prototype measures the user’s skin impedance profile of the wrist in order to modulate
a user-specific signal onto the user’s skin that can be picked up by a touchscreen. This
allows seamless and transparent authentication on each touch the user makes. The
authors recruited 10 participants for a lab evaluation and claim that their classifier
produces no false positives when identifying users.

9.3. Body impedance / bioimpedance-based biometrics
[Revett and de Magalhães 2010] covers recent papers on cognitive biometrics based on
the electroencephalography (EEG), the electrocardiogram (ECG), and the skin conduc-
tance, also called electro-dermal response (EDR), and describes how these biometrics
can be harnessed for user authentication. Skin conductance (EDR) is directly related
to body impedance in terms of modality and acquisition method. The main difference
is that, unlike body impedance, it captures the emotional state of an individual and
not necessarily a physiological trait. The resistance of the skin can vary significantly
due to the embedded sweat glands which are controlled by the nervous system. Body
impedance-based biometric recognition methods (such as pulse-response recognition),
on the other hand, focus on extracting physiological characteristics independent of emo-
tional state by measuring entire parts of the human body, not only skin conductance.

Probably the most related to this paper is the work in [Cornelius et al. 2012] where
bioimpedance is used as a physiological characteristic. A wearable sensor is designed
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to passively recognize wearers based on a body’s unique response to the alternating
current of different frequencies. The authors design a prototype wristband that cap-
tures electrical impedance around at the wearer’s wrist, as opposed to measuring
body impedance from one hand to the other. Experiments in [Cornelius et al. 2012]
were conducted in a family-sized setting of 2 to 5 subjects, where a person wears the
bioimpedance sensor on the wrist. They achieve recognition rate of 90%. In a more
recent study [Cornelius et al. 2014] the authors improved their prototype and increased
the number of test subjects. They report FAR and FRR of 2% for samples taken within
a day. Our biometric recognition method solves a different problem—we propose a
recognition method that works by temporarily touching two electrodes, not a wearable
device—but our technique also uses the body’s response to a signal. We achieve a similar
error rates when samples are taken in one session and slightly higher error rates when
samples are taken weeks apart.

Although not directly related to our work, it is interesting to mention a cryptographic
key generation scheme described in [Gupta and Gao 2010]. It introduces a key gener-
ation resistant against coercion attacks. The idea is to incorporate skin conductance
measurements into the cryptographic key generation. They experimentally show that
the skin conductance measurement will help to reveal user’s emotional states and
recognize the attack as a stressful event (significantly different from the state when the
keys were generated). This way, the generated keys include a dynamic component that
can detect whether a user is forced to grant an access to the system.

10. CONCLUSION
We proposed a new biometric modality based on the human body’s response to an
electric square pulse signal. This biometric characteristic can serve an additional au-
thentication mechanism in a PIN entry system, enhancing security of PIN entry with
minimal extra user burden. The same biometric characteristic is applicable to continu-
ous authentication. To this end, we proposed a continuous authentication mechanism on
a secure terminal, which ensures user continuity, i.e., the user who started the session
is the same one who is physically at the terminal keyboard throughout the session.

Through experiments with a proof-of-concept prototype we demonstrated that each
human body exhibits a unique response to a signal pulse applied at the palm of one
hand, and measured at the palm of the other. Using the prototype we could identify
users in a matter of seconds. This identification mechanism integrates well with other
established methods, e.g., PIN entry, to produce a reliable added security layer, either
on a continuous basis or at login time.

We also focused our attention on how likely a legitimate user can be impersonated
by an attacker using his own biometric data. We give average probabilities, as well as,
experimental lower bounds found through simulations of worst-case scenarios.
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