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Abstract—Air traffic tracking platforms such as the OpenSky
Network use crowdsourcing to track air traffic world wide. While
crowdsourcing allows for unprecedented coverage, it comes with
challenges concerning the integrity of the data. More specifically,
by delegating the data collection task to a mostly unknown group
of individuals, the network becomes vulnerable to data integrity
breaches by inexperienced or malicious actors. Users might —
intentionally or not — send faulty or fake data to the tracker and
in this way threaten the integrity of the information provided by
the network. In this paper, we provide unique insights into the
data integrity challenges we faced during 6 years of operating
the OpenSky Network. We analyze the different types of integrity
breaches and discuss methods to detect and filter faulty data.

I. INTRODUCTION

Crowdsourcing is a well-established paradigm in the com-
mercial air traffic tracking domain. Volunteers around the
world (the “crowd”) set up and operate large numbers of
receivers for transponder signals and send the live tracking
data to a central server via the Internet. This approach has
been used by several flight trackers such as Flightradar24,
FlightAware, and the OpenSky Network to achieve worldwide
coverage within just about a decade. This scale is considerable
given that not even aviation authorities have managed to
build a globally connected surveillance network. Backed by
a large community of aviation enthusiasts from all parts of
the world, crowdsourcing has helped to overcome financial,
organizational, and language barriers within a relatively short
amount of time.

The crowdsourced air traffic control (ATC) data is used for a
plethora of applications. Most (if not all) of these applications
have in common that they implicitly rely on the integrity
of the data. For example, commercial applications such as
automated delay compensation claims or media reports about
incidents need reliable information as they have financial and
legal implications. Also non-commercial use cases such as
incident investigation by authorities or scientific studies like
our previous reports [1], [2] |'| draw conclusions from the
data with real-world implications. By nature, each of these
applications is practically rendered unusable if the underlying
data fails to provide a sufficient level of information integrity.

I'See https://opensky-network.org/community/publications' for a more ex-
haustive list of studies
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Data integrity poses a major challenge in the crowdsourcing
context. The main reason for this is that the control over the
on-site infrastructure rests not with the network operator but
with the crowd. It is often impossible for the central network
operator to access or control the software and hardware which
produces the data sent to the network. Hence, the maintenance
of the receiving infrastructure (e.g., installing updates to fix
software bugs) depends on many independent individuals and
is often neglected. In addition, crowdsourced networks have
to be as open as possible to foster growth. This means that
they usually allow anybody to feed any data to the network,
including faulty, fake, or intentionally misleading data.

To make the benefits of crowdsourcing available to integrity-
sensitive applications nevertheless, adequate server-side meth-
ods to detect and filter the different kinds of integrity breaches
are needed. In this paper, we provide unique insights into
the data integrity challenges we encountered during the 6
years of operation of the OpenSky Network. We use a large
set of surveillance data gathered by the network to analyze
and quantify integrity aspects of the crowdsourced data. We
furthermore provide an overview of the methods used by
OpenSky to clear its data of the different kinds of noise.

This paper makes the following contributions:

o We provide a novel taxonomy of integrity breaches oc-
curring in crowdsourced air traffic control networks. In
this, we cover both intentional and unintentional breaches
that affect the quality of the crowdsourced data.

e We analyze several case studies of such breaches
occurring in the real world. The provided examples
stem from the OpenSky Network, which has been
continuously operated for six years.

The remainder of this paper is organized as follows. Section
describes the current state of the OpenSky Network. Sec-
tion outlines our definition of integrity, while Section
provides a taxonomy of breaches occurring in crowdsourced
ATC networks. Section [V] presents some real-world cases of
integrity breaches while Section [VI| suggests possible avenues
how to detect and handle them. Section discusses our
experiences and finally Section concludes this work.
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Figure 1: The growth of OpenSky’s dataset over time from June 2013 to March 2018

II. THE OPENSKY NETWORK

The OpenSky Network is a crowdsourced sensor network
collecting air traffic control (ATC) data. Its objective is to make
real-world ATC data accessible to the public and to support
the development and improvement of ATC technologies and
processes. Since 2012, it continuously collects air traffic
surveillance data. Unlike commercial flight tracking networks
(e.g., Flightradar24 or FlightAware), the OpenSky Network
keeps the raw Mode S replies as they are received by the
sensors in a large historical database which can be accessed
by researchers and analysts from different areas.

The network started with eight sensors in Switzerland and
Germany and has grown to more than 1000 active receivers
in over 70 countries. As of this writing, OpenSky’s dataset
contains five years of ATC communication data. While the
network initially focused on ADS-B only, it extended its data
range to the full Mode S downlink channel in March 2017. The
dataset currently contains more than 8§ trillion Mode S replies.
The growth of the dataset is depicted in Figure [} Besides
the payload of each Mode S downlink transmission, Open-
Sky stores additional metadata. Depending on the receiver
hardware, this metadata includes precise timestamps (suitable
for multilateration), receiver location, and signal strength. For
more information on OpenSky’s history, architecture and use
cases refer to [3], [4] or visit http://opensky-network.org.

III. DATA INTEGRITY

At first, it is imperative to provide our definition of
data integrity in the context of crowdsourced ATC receiver
networks. The definition given by the Oxford English
Dictionary specifies the ‘internal consistency or lack of
corruption in electronic data’. In information security, the
focus is on ‘maintaining and assuring the accuracy and
completeness of data over its entire lifecycle’ [5], where
we consider the lifecycle to comprise everything from the
creation of a message in an aircraft transponder over the
reception by a crowdsourced receiver until its storage in
OpenSky’s systems.

There are two distinct types of data that we collect at
OpenSky: the content of a message and its metadata.

« With respect to the content of the SSR Mode S downlink
communication (including 1090ES ADS-B), we consider
a datum being corrupted, if the bit sequence making
up the message arriving at OpenSky was never actually
transmitted by a legitimate transponder.

o With respect to the metadata (e.g., timestamps, signal
strength, and other physical layer information), a datum
is corrupted if it is inaccurate to a degree unusual for
the system’s normal operation. Note that the bounds of
normal operation can be very broad for some metadata,
for example the received signal strength of a message.

Furthermore, we explicitly consider the absence of data also
as a potential integrity problem, referenced in the definition’s
allusion to completeness. In the literature, this problem is
often covered separately as ‘availability’ [6l]. However, in the
application domain of aircraft tracking, the selective absence
of low-level message signals can have an impact on higher-
level abstractions, for example the interpolation of aircraft
tracks by the system.

Considering our definition, we have to deal with the funda-
mental problem that it is impossible to obtain absolute ground
truth on the number, types and metadata of messages that
should be received by a sensor or the system as a whole. This
means it is not possible to exactly quantify the extent of the
problem, instead, we rely only on the indicators available to
us to detect and assess the extent of the problem in our work.

IV. TAXONOMY OF INTEGRITY BREACHES

Fundamentally, we differentiate between two different types
of integrity breaches, unintentional and intentional. Whereas
the former happens without malicious purpose, the latter is
conducted by actors who want to attack and deteriorate the
data quality of the system. Fig. ] illustrates our taxonomy.

A. Unintentional Breaches

We classify seven different types of breaches that are
unintentional but negatively impact the integrity of the data
processed by the crowdsourced system. These range from
various soft- and hardware problems on both the sender and
receiver side to environmental reasons.
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Figure 2: Taxonomy of integrity breaches in crowdsourced ATC sensor networks.

In a similar vein, some ADS-B enthusiasts operate their
own multilateration (MLAT) network, -effectively using
the data of several distributed receivers to localize aircraft
independently from their position broadcasts by exploiting
the time distances of arrival of the message signals. The
intentions behind this approach are laudable, as it can increase
for example the knowledge about aircraft without ADS-B
transponders. However, feeding such data to OpenSky is
not desired by the network as it is not possible with the
current feeding protocols to distinguish between real message
transmissions and data artificially produced from MLAT
results. In addition, if the network wants to operate its own
MLAT implementation, it is not possible with this combined
data stream as it cannot separate the data from the different
receivers. Hence, the optimal solution would be to send the
data from the receivers via separate feeds rather than through
a combined feed.

1) Receiver software bugs: In the large and varied
ecosystem of software available for the decoding of Mode S
messages and feeding to crowdsourced networks, there are
invariably bugs that affect the data integrity. The previously
mentioned re-encoding of received data is error prone and
introduces new potential for problematic bugs. Thus, we have
seen many receivers sending us scrambled data which is
likely caused by bugs in the encoding software component.

2) Environmental noise: As every wireless technology,
Mode S and ADS-B suffer from typical artefacts caused
by the propagation over the wireless channel. This includes
for example multipath propagation, an effect familiar for all
radar technologies, which has the same signal arriving at the
receiver through two (or more) different paths, leading to
the duplicate reception and processing of the message. Other
physical effects, which lead to interferences with the message
signal, can lead to similar outcomes.

3) Mode S implementation: Physical layer interference
may also result in bit errors which cannot be detected.
Although Mode S employs a cyclic redundancy check (CRC)
to be able to detect bit errors, the actual implementation
of this CRC limits the protection, especially as a passive
bystander. The reason for that is that in many reply types, the
CRC is XORed with the transmitter or the receiver ID. If both
are not known a priori, the CRC is basically unusable (see
[7] for a more detailed explanation). For example, in all-call
replies, the CRC at the end of the reply is XORed with the
original interrogator ID [1]). There are 80 valid interrogator
IDs and if the uplink data stream is unknown, there is no way
to detect bit errors in the last few bits. Many receivers (e.g.,
Radarcape) have problems with this artefact, causing them to
produce a non-negligible amount of duplicates and noisy data.

4) Hardware settings: Another effect related to the
detection of seemingly valid replies from environmental noise
is due to the settings used by the widely heterogeneous
receiver hardware. Many receivers aim to provide maximum
sensitivity to produce the highest possible reception rate rather
than the highest integrity level, which is typically a direct
trade-off. High message reception rates are usually achieved
by using extremely low transmission detection thresholds. If
the threshold is sufficiently low, a receiver can pick up a high
number of random (but superficially valid) Mode S replies
from environmental noise.

5) Delayed data: Some receiver setups experience an un-
usually high delay when forwarding received data to the
OpenSky Network for reasons unknown to us. Besides the
usual Internet propagation delay, we have observed extreme
cases where data is seemingly buffered for 30-60 minutes and
then sent to our servers with a large delay. This can negatively
impact the performance and the tracking of the system as such
data needs to be properly sorted or filtered out.



6) Transponder misconfiguration: Finally, not only re-
ceivers can produce integrity breaches, we have also observed
many aircraft, which transmit erroneous data. Examples of
misbehaving transponders deployed on aircraft range from
misconfigured ICAO 24-bit identification to the broadcast
of wrong position advertisements (potentially based on false
navigational data, e.g. when based on dead reckoning, see []]
for more information).

B. Intentional Breaches

In contrast to the previously listed integrity breaches, the
following are based on actively malicious behaviour, either by
a feeder or by an outsider who manipulates the data previous
to its reception by a feeding user (i.e., on the sending side or
even while on the wireless channel).

1) User-submitted fake data: Considering the fact that
there are a) no cryptographic integrity checks in Mode S,
and b) no authentication options in the current set of feeding
protocols used by any of OpenSky’s supported sensors,
anyone can sign up and send incorrect or outright fabricated
data to a crowdsourced ATC network. Motivations for such
actions could range from the personal, e.g., to obtain free
access to services offered by the network (some of which
require to become a feeder) to ulterior motives held by
competing networks, which seek harm the reputation and
operations of another network by compromising the integrity
of their data. Where crowdsourced ATC data is used for other
purposes such as a backup to ATC surveillance or to provide
weather data (as in [7]), the aim of an attacker could also be
to subvert the processing and results of these services.

2) Hardware-submitted fake data: It is further conceivable
that hardware sets provided to users by other commercial
tracking networks might produce data that is watermarked or
otherwise modified in a particular way only known to the
original manufacturer. This could be done to compromise the
feed integrity and prevent the hardware from being used by
competitors. Similar data poisoning incidents have happened
before in other domains, e.g., in peer to peer file distribution
[9] and streaming networks [10].

3) Spoofing attacks: Finally, it has been well known for
several years that it is trivial to spoof Mode S and ADS-B
messages due to the lack of cryptographic security in these
technologies [[L1]], [12]]. An attacker can manipulate every part
of a message at will using software-defined radio transceivers
and send it over the wireless channel (using the 1090 MHz
frequency or 978 MHz in case of the UAT datalink), where
it can be picked up by receivers, which feed to crowdsourced
networks. In OpenSky we have seen users experimenting
with such attacks using their own sensors, which could easily
be filtered as the spoofed aircraft used appropriate callsigns
(e.g., ‘TEST1234’). However, filtering a more sophisticated
attack would require equally advanced defenses.

4) Wireless channel attacks: Besides spoofing, i.e., the cre-
ation of messages from scratch, it is also possible to conduct
several attacks, which affect existing legitimate signals on the
978 or 1090 MHz frequencies. It has been shown that it is
possible to modify messages sent by aircraft, if an attacker is in
the right position compared to a receiver and the target airplane
[12]. Finally, it is also possible to outright jam the signals at a
receiver, causing a denial of service. This can be done either
through broadly jamming the frequency, affecting all messages
or by selectively attacking only specific messages, for example
of a particular aircraft [13]. The absence of messages can also
affect data integrity in line with our definition.

V. CASE STUDIES

We look at several case studies of unintentional interference
with the data of OpenSky and discuss their possible reasons.

A. Data Set

The data set considered in this work is a snapshot of the
unmodified data (“raw data”) that came into OpenSky between
6am and 7am UTC on the 27th of June 2018. During this
period, 922 sensors from 70 countries reported 1.1 billion
Mode S signal receptions to the network. We decoded the
Mode S replies using the latest version of our open-source
decoding framework libadslf] and applied several preparation
algorithms to it. Most notably, we applied spacial binning
to the data, that is, we assigned a bin ID to each ADS-
B position report. Each of these bins has a horizontal size
of 10x10 km and a height of 3000 ft. The horizontal bin
was determined using Albers equal-area conic projection. This
binning allows us, for instance, to calculate the horizontal
coverage in the enroute airspace by multilying the number
of distinct horizontal bins by 100 square kilometers.

In the end, we generated two different views on the raw
data for our analyses:

1) Statistics: we generated a view containing different
statistics for each sensor and aircraft pair. These statistics
include the number of Mode S replies, the number of
ADS-B messages separated by format type code, and
the number of messages which matched the tracking
algorithm described in [7]. It furthermore includes the
type of the receiver as well as the country associated
with the ID of the transponder (according to [14]). In
total, 222,755 of these statistics were generated from the
raw data.

2) Coverage: the coverage data set contains the results of
the binning algorithm mentioned above. Each data point
in this view represents a sensor-transponder-bin relation-
ship. In other words, the view contains the information
at which point in time a certain receiver saw a certain
aircraft in a certain bin. This allows for cross-correlating
spaciotemporal information over sensors and aircraft. In
total, 3,393,258 of these data points were generated from
the raw data.

Zhttps://github.com/openskynetwork/java-adsb
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OpenSky supports four main sensor types: dumpl090,
Radarcape, GRX1090 and SBS-3. Figure [3] shows the distri-
bution of the sensors in our examined dataset. We can see
that a large majority of the 923 sensors are using a version of
the dump1090 receiver software (825 or 89.4%). Radarcapes
make up 88 devices or 9.5% of the share, while legacy SBS-3
receivers, which were the original basis of OpenSky, now only
make up 5 devices or 0.5% of all sensors, just as the newly
supported GRX1090.

B. Environmental Noise

Depending on the receiver setup, there are some receivers
with a very low detection threshold for signals. As a result,
they produce quite a high level of environmental noise in
terms of random (but seemingly valid) frames picked up
from the noise. Picking the right threshold in a conservative
receiver is a tradeoff between sensitivity and false positive
detection rate. Although this is certainly not a malicious
integrity breach, it poses many problems and produces
ambiguities when processing data from a large network such
as OpenSky.

As an indicator for noise, we calculated the ratio Ry qcked
of messages which passed the tracking algorithm described in
[7] and the total number of messages that were detected for a
certain aircraft. This ratio is a good indicator for noise since
the tracking algorithms are specifically made for eliminating
messages with erroneous transponder IDs created from the en-
vironmental noise. The distribution of every sensor’s Rqcked
is shown in Fig. [
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The vast majority of sensors work as intended, that is, they
have a Ryyqckeq close to 1. Although we are able to detect and
filter this kind of noise, there are still reasons to measure this
indicator and exclude sensors with a low tracked ratio from
the data collection. For example, if the fraction of useful data
coming from a sensor is extremely small, the network operator
might not want to waste resources (storage, CPU time, network
bandwidth) on these sensors’ data. In addition, a low tracked
ratio might indicate software bugs or setup problems which
could be solved by the users.

Thus, it may be sensible to chose a threshold Rtmcked to
minimize such effects. If we want to allow sensors to have
at most 10% of ‘random’ frames in their data, or, having a
Rtmcked = 0.9. The number of sensors that do not satisfy this
requirement in our data set was 85 or 9.2%.

It is worth noting that there were notable differences
between the four sensor types (see Fig. [5). Whereas the
dump1090 sensors making up the bulk of OpenSky’s feeders
had an average noise of 2.8% (calculated as 1 — Rirgcked)s
and the GRX1090 sensors even the lowest noise at 0.1%, the
other types exhibit quite significant differences. Radarcapes
came in at 10.3% while for the older SBS-3 boxes more than
a third of all messages (35.2%) could only be attributed to
noise. This indicates a systematic problem for this sensor
type. As for the other types, the Ry qckeq variance seems
to depend on several possible factors such as antenna, SDR
version, or software version.
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Finally, we look at how the Ry qckeq correlates with the
average number of messages per aircraft transponder ID
seen by a sensor. Fig. [6] shows that the sensors which have
seen a particularly low number of messages per aircraft are
those with the highest noise level. On average, they have
only received very few messages per transponder ID which
indicates that the different observed transponder IDs were
merely a result of bit errors and invalid replies.

If we turn our focus on aircraft rather than sensors, there
are many random aircraft in the data set that are merely an
artefact of the random data picked up from the RF channel’s
noise. Indeed, the large majority of observed transponder
IDs received from decoded messages have no (or almost
no) valid data. This is explained by the fact that the vast
majority of transponder IDs were seen in Mode S replies that
did not pass the tracking filter. If we remove the IDs with
Riracked = 0, the number of remaining IDs in the dataset
is 34782, or 0.23% of the originally 15 million observed
IDs. Thus, a huge portion (more than 99%) were products of
decoding noise. If we filter these data out, 6 of the sensors
even produce no valid data at all.

C. Velocity vs. Position Change

While the previous case study targeted decoding noise,
we now analyze implausible data that was either really sent
by aircraft or artificially generated by a receiver. As long
as ADS-B transponders and airborne equipment work as
expected, the reported positions should change according to
the reported velocity. Based on our experience with ADS-B
data, some transponders do not update their positions at the
same rate as they broadcast it. As a result, we need to apply
some averaging here since, for example, the same position
might be reported several times although standing still is
literally impossible for airborne airliners.

Fig. [/| shows the distribution per aircraft regarding the ratio
of position-velocity mismatches compared to the total number
of position messages seen from an aircraft. Notably, there is a
significant number of aircraft with high mismatches. Whenever
these aircraft were seen by many sensors, we can safely say
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Figure 8: Percentage of invalid ICAO 24-bit transponder
IDs reported by each of the receivers.

that they were real aircraft transmitting real ADS-B messages.
However, if the position-velocity mismatch ratio is still very
high, there might be an issue with the ADS-B equipment. We
checked some examples manually and found that, for instance,
some transponders have bugs and transmit a constant longitude
of 0 (prime meridian), resulting in implausible positions.
Interestingly, 9 out of the worst 10 transponders (according
to the position-velocity mismatch metric) belong to Aeroflot.
In fact, the vast majority (45) of the 50 worst transponders
belong to Aeroflot or other Russian carriers. This suggests that
their aircraft have some issue with the fitted transponders.

D. Invalid Transponder IDs

In the third case study, we examine the phenomenon of
ICAO 24-bit transponder IDs showing up in the sensor-
provided data, which are not assigned to any real aircraft.
This could happen due to either intentional or unintentional
interference with the data, before or after reception.

The range of ICAO 24-bit transponder addresses is split
into blocks which are assigned to countries (see [14], [15]]
for the full allocation). There are some unused blocks and we
have seen receivers sending us suspiciously many unassigned
transponder IDs. In this way, sensor operators could possibly
include some sort of ‘watermark’ into their data without
actually destroying the good data.

Most sensors have a percentage of invalid ICAO 24-bit
transponder addresses of at most 50%. While this sounds
much, the reader should keep in mind here that this metric is
very prone to decoding noise since it produces many random
transponder IDs.

Fig. [§| plots the percentage of invalid ICAO identifiers for
each sensor against the percentage of tracked messages. These
results emphasize again the fact that decoding noise is again
an issue since all five SBS-3 stations are having a percentage
close to 50%. This is further illustrated in Fig.[9} where again
the SBS-3 sticks out with a high percentage of invalid data;
across all sensors of this type, almost 50% of all seen ICAO
transponder IDs were invalid. The similarity to Fig. [5] confirms
that the main factor producing these high numbers of invalid
transponder IDs is still decoding noise and not any malicious
behaviour.
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The outlier in the top-right corner of Fig. [§] has an excep-
tionally high percentage of invalid ICAO IDs. More specif-
ically, 28 of the 31 aircraft seen by this sensor have invalid
transponder IDs. By looking closer at the reported transponder
IDs, we found that the transponder IDs reported by this sensor
followed a pattern. A deeper analysis of the raw data revealed
that this sensor is located next to a Traffic Information Service-
Broadcast (TIS-B) transmitter. In TIS-B, 24-bit transponder
addresses are replaced by 12-bit Mode A addresses plus a track
ID if a certain flag is set in the payload. This was the case for
all seemingly invalid transponder IDs observed by this sensor.
We therefore conclude that this sensor is not malicious, neither
did it report false information. There is just a TIS-B transmitter
nearby broadcasting these incompatible addresses. We also
searched specifically for TIS-B messages and found more
sensors seeing TIS-B messages from systematical transponder
IDs. However, the other IDs were mostly mapped on valid
ID ranges (Italy) which is why they did not appear in this
analysis. Notably, all sensor which received TIS-B messages
are located right next to a major US airport. For our analysis,
however, we can ignore them as they do not pose an integrity
breach.

E. Malformed Sensor Coverage

In this case, we present two examples of non-malicious
integrity issues: randomized data and multiple sensors as one
stream. Both present deliberate efforts to tamper with the data
fed into Opensky, but neither show signs of being malicious
in the sense of attempting to inject false but realistic data.

1) Data Randomization: Sensor x reports a typical number
of tracked messages compared to nearby sensors, but has
a coverage area close to three times larger than the sensor
with the next largest coverage area. Naturally, this implies
that the data reported by the sensor is problematic. On closer
inspection, messages collected have callsigns replaced with
random strings, yet does not modify the ICAO address. It also
randomizes velocities and positions which then results in the
unusually large coverage area of the sensor.

We can infer that this is deliberate tampering since
individual messages are modified and the checksums are
recalculated—something which should not be due to a

Figure 10: Example case of output from a ‘multiple
streams’ sensor, where data from more than one sensor
is being fed into Opensky Network as a single sensor.

software issue. Furthermore, the changes affect a specific set
of data fields which is consistent across different tampered
messages. This kind of message modification is problematic
for the sensor network, especially since the ICAO address
is the same. When fed into the network and merged with
data from other sensors, it distorts the network-level view
of ADS-B messages. Even though the message tampering
is clearly random rather than deliberately modifying with
realistic values, it causes wider integrity issues.

2) Multiple Sensors as a Stream: A different form of
the same problem is where a sensor operator merges data
collection from multiple sensors into a single feed, then passes
this onto Opensky. An example of this can be seen in Fig.
where two US-based sensors are being fed into the network
as a single sensor. We can identify this by both the coverage
range and disparate centers of ADS-B message clusters. More
extreme examples exist; one sensor feeds multiple sensors
located across Europe and the US as a single sensor.

Whilst this approach to feeding a network provides a lot
of data and is not malicious, it creates a number of integrity
issues. Firstly, it removes the ability to verify messages based
on coverage range, location and message rates, since there is
no single location of the sensor to do this with. Furthermore, it
reduces the ability to verify at the message level—the network
operators can no longer rely on the reported timestamps
especially in the case of multiple sensors spanning timezones.

VI. DATA HANDLING AND COUNTERMEASURES

Ideally, we wish to to filter as much problematic data as
possible without loosing too much ‘good’ data. In order to
do this we must ensure that any filtering techniques used
are accurate. We now discuss how Opensky can handle the
integrity issues described above, using different indicators for
integrity breaches and derive adequate filter thresholds where
possible.

A. Data Handling

In order to give the most accurate picture of the airspace,
Opensky needs to filter out as many of the integrity issues
as possible. However, the network provides a number of



abstraction levels for different applications. Raw data,
decoded data, state vectors and flight data are the provided
layers in order of increasing abstraction. Importantly, not
all of these need to be filtered for integrity, with the divide
falling between the raw data and decoded data levels.

1) Raw Data: This should not be filtered for integrity
at all, since it provides the most fundamental view of the
received messages. Indeed, the examples given in Sec. [V|can
be identified by looking at the raw data. On top of this,
it is important to leave this type of data untouched so that
research on other topics including receiver performance or
crowdsourced networks can take place.

It is also worth noting that integrity countermeasures at
this level are difficult without having direct control of the
receiving hardware and software. As discussed by Strohmeier
et al. in [16], using cryptographic integrity protection is also
a significant challenge as it would require onboard avionics
to be changed.

2) Higher Layers: Above raw data, layers are focussing
on the information content of the messages. As such, these
layers need to provide integrity where possible, but to do so
we need logical countermeasures relevant to that layer. We
discuss integrity approaches for these layers below.

B. Countermeasures

We can further divide countermeasures for integrity issues
into technical and organizational measures.

1) Technical: We first outline the following three technical
integrity countermeasures:

+ Network redundancy allows cross-checking of message
reception at a given sensor with other sensors. Within
Opensky’s total coverage area, 71% is covered by two
or more sensors. This enables the network to check
messages collected by a sensor against nearby sensors,
identifying differences in content as well as whether or
not the message was received.

« Plausibility checks on the data can significantly reduce
the incidence rate of integrity problems by checking
message content is within bounds with respect to the
sensor. For example, if a sensor is observing messages
originating from outside the typical coverage area, we
can deduce that this sensor has lower integrity.

o Sensor scoring can be used to quantify the integrity
of the data fed to Opensky by continuously running
plausibility and integrity checks on said data. Of course,
sensors which have lower scores will be able to increase
it by fixing problems causing integrity issues.

2) Organizational: Naturally, these technical measures
feed into to some organizational approaches which are
enacted at the network operator level:

o Trust modelling based on the technical countermeasures,
adjusted based on the tolerance for integrity issues by
the network. Such a modelling approach would use both
network redundancy and sensor scoring, and build on
work in [17]].

« Sensor operator interaction involves contacting sensor
owners who are feeding the network with problematic
data. This can be assessed based on on sensor scoring
and trust modelling, with the primary aim being to gain
information on their sensor setup and fix it.

Although the technical measures will need to be imple-
mented before organizational, they can be done gradually to
assess the impact of each.

VII. DISCUSSION

As demonstrated in this paper, integrity issues are ob-
served on ADS-B and Mode S data fed into the Opensky
Network; it is highly likely that similar issues exist for all
crowdsourced flight tracking platforms. So far, unintentional
integrity breaches are under control on the Opensky Network.
However, malicious integrity problems are likely to be a long-
term arms race made more difficult by operating on a noisy
channel. To defeat this we will then need some way of trusting
receivers or inbuilt encryption.

One of the most promising ways to defend against ex-
ternal attackers trying to compromise integrity is through
adding more receivers with overlapping coverage. This has
seen success in other wireless localization scenarios such as
GPS [18]]. Both increasing sensor coverage redundancy and
adding positional variety to the network makes it considerably
more difficult for malicious actors to inject tampered data into
the network. Such an approach will also help defend against
individual malicious sensors trying to directly inject tampered
data into the network.

Arguably the most significant threat to these participatory
sensor networks is a coordinated insider attack, known as
a Sybil attack [19], [20]. This category of attack involves
attackers controlling a number of sensors on the network
which initially operate benignly to build reputation. After some
period of time, they collude in order to deceive the network.
They do this in such a way to only outvote sensors which they
overlap with, so as not to make such an attack obvious.

Under this kind of attack, data integrity is very hard to
establish. One way to defend against this to individually verify
each sensor joining the network (and those already added).
Such an approach would increase the time and effort required
to place enough sensors on the network to attack it. However, it
would also adds significant workload to operating the network
which only gets worse as the network scales up.

VIII. CONCLUSION

Clearly, there are a range of challenges to integrity for Mode
S and ADS-B collection by crowdsourced sensor networks.
Some of these cannot be easily controlled, such as environ-
mental noise, whereas others come from misconfiguration.
Regardless of cause, low integrity data is problematic for the



network operator as it can cause significant inaccuracies in the
view of the airspace.

Since deploying encryption on the Mode S link is unlikely to
happen in the near-term future, we propose a range of technical
and organization approaches to identify and defend against
these integrity problems. Each of these approaches leverage
the nature of crowdsourced networks, namely redundancy and
ability to distributed, unpredictable positioning.

We do note, however, that so far there is no evidence of
efforts by a malicious party to reduce data integrity—though
with no cryptographic security in place, this is likely to be a
matter of time.
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