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Figure 2: Proposed split-RNN layer (bottom). T is a variable
denoting the length of an input motion sequence.

on off-the-shelf smartwatches, by slimming the proposed deep
network and parallelising inference.

THE DEEPAUTH FRAMEWORK

The proposed DeepAuth framework consists of three major
components, as shown in Fig. 1. In the participatory motion
sensing module, smartwatch users voluntarily contribute their
motion data to DeepAuth when entering passwords, in ex-
change for more secure authentication. Such crowd-sourced
data, together with the associated user IDs are then used by
the deep representation learning module, to learn an opti-
mal feature extractor that can best distinguish the password
input behaviour of legitimate users from attackers. Finally,
the learned feature extractor is used by the in-situ authentica-
tion module, which runs as a daemon on smartwatches and
authenticates the users when they enter passwords.

Participatory Motion Sensing

To make sure we obtain data from legitimate users, DeepAuth
only initialises data collection when the smartwatches are in
authenticated states, e.g. paired with the trusted smartphones.
In this way, we implicitly leverage the strong authentication ca-
pabilities of smartphones, e.g. fingerprint or face recognition,
to bootstrap DeepAuth. When detecting such an event, we
sample both accelerometer and gyroscope to extract motion
data segment pertaining to that password input. The data and
associated user identity are uploaded to the cloud for further
learning. DeepAuth only samples and transmits motion data,
and need not to know the actual passwords. In OS level, e.g.,
Android, sending motion data from device to cloud without
compromising the actual passwords is cheap and safe.

Deep Representation Learning with Limited Data

With motion sensing, DeepAuth obtains a set of motion data
from different users when they input passwords on smart-
watches. Each data point is a pair (x,y), where x is the motion
data and y is its corresponding identity label. DeepAuth aims
to learn a feature extractor f , which maps the motion data x
to a lower-dimensional feature representation fx = f (x), and
further to user identity yi under a certain model.

Ideally, we would like f to be password agnostic, and robust
against unknown imposters. The former requires that, given
new motion data x∗ entered by user yi, which is generated
from an unseen password, the extracted feature fx∗ should still
be mapped to identity yi. More importantly, when a malicious
attacker mimicked the legitimate user yi to input the stolen

password (generating motion data x̃), we require that in the
feature space, fx̃ shouldn’t be mapped to identity yi.

However, learning such an extractor f is very challenging,
especially given limited training data available: it is not possi-
ble to obtain motion data of all password combinations, nor
any prior data from the unknown imposters. To address this,
DeepAuth employs a deep Recurrent Neural Network (RNN)
for feature learning, and considers a novel composite loss to
enable the network to work with limited training data. In the
following, we first briefly explain the RNN used in DeepAuth,
and then show how we design appropriate loss functions to
learn the optimal feature representation.

Deep Representation Learning: In DeepAuth, we consider
a many-to-one network architecture, where the input motion
data is firstly pre-processed by a fully-connected layer, and
then fed into a RNN layer. This RNN layer can be imple-
mented in different ways. Fig. 2 shows our split-RNN model
(discussed later in Sec. 2.3). The output of the RNN layer
is forwarded to a fully-connected bottleneck layer, and then
to the output supervised via loss functions. We extract the
activations of the bottleneck layer as the learned features f,
because by design it is compact in size, and should encode
sufficient information since it is the last fully-connected layer
before output. Now we explain how to train the above network
to obtain the optimal feature extractor.

Composite Loss: To make the learned features password
agnostic, DeepAuth prepares the training data by indexing over
identity labels, i.e. for a given user yi, all her motion data is fed
into the training process directly, regardless of the password
contents. This allows the network to pick up common patterns
when a user enters different passwords, and produces password
neutral features. More concretely, given the training data of
m samples collected from g users (yi ∈ {1, . . . ,g} , we use a
combination of softmax loss and center loss to train a deep
recurrent neural network:
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=−
m

∑
i=1

log
e

W T
yi

fi
+byi

∑
g
j=1 e

W T
j fi
+b j

+

λ

2

m

∑
i=1

‖fi − cyi
‖2

2

(1)

fi ∈ R
n is the extracted feature of the i-th input sample and

current network. W and b are weights and bias are learn-able
parameters the network. cyi

∈ Rn be the centre of features for
label yi, which will updated as well during network training.
The rationale of the centre loss term is that we found that f
learned in practice can successfully distinguish between the
known users, but is not robust to unknown imposters. As
shown in Fig. 3(a) and (b), features of different users (points)
are separable, but the clusters are not compact enough to reject
potential imposters (see Fig. 3(b)). This is because by using
softmax loss we implicitly train the network only for classi-
fication within labels {yi}, but not extrapolation. To address
this, we introduce a centre loss function in the training process,
to pull the learned features towards their centres. Centre loss
is proved to be effective in clustering face images [6] and
enhance intra-class compactness. Therefore in DeepAuth, we
propose to use the composite loss function in training deep
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Figure 3: t-SNE visualisation of features learned using only softmax loss (a, b), and the proposed composite loss (c, d)

recurrent neural network. The hyper-parameter λ determines
the trade-off between softmax and centre loss, and is obtained
via cross validation. Fig.3 (c) and (d) show the effect of using
composite authentication loss.

In-situ Authentication on Smartwatches

DeepAuth deploys the learned feature extractor f to the users’
smartwatches, which is used to authenticate users from mali-
cious imposters. For a user y (who may not appear in training),
DeepAuth firstly builds a behavioural model locally, which
encodes her unique motion signatures when entering pass-
words. Concretely, it collects password input motion data in
authenticated states, e.g. when the smartwatch is paired with
her own smartphones, and fits the extracted features with a
multivariate normal (MVN) model: fy ∼ N (µ,Σ). When a
correct password has been input on her smartwatch, DeepAuth
extracts the feature fnew, and evaluates its distance from the
user’s behavioural model:

d(fnew, fy) =
n

∑
j=1

‖fnew( j)−µ ( j)‖

Σ( j, j)
(2)

Here we assume that individual feature elements are inde-
pendent. If distance d(fnew, fy) is below a certain threshold,
DeepAuth accepts that the password was indeed entered by
the legitimate user, and otherwise rejects this attempt.

Efficient Inference with split-RNNs: A key step of the
above authentication process is to compute the feature fnew

from the observed motion data in real-time on the user’s smart-
watch. This is particularly challenging since resources (both
computation and memory) on smartwatches are much more
constrained than other platforms, and standard RNN inference
is not feasible as it requires recursive processing of the input
sequence.

However, we observe that in our context it is not always nec-
essary to perform inference over the full sequence, because
the correlation between the head and tail of the input may
not be significant. For instance when entering an APL, the
last few digits won’t depend much on what was entered at the
beginning. Therefore, it is possible to break the long input
sequence and parallelise inference. Based on this intuition,
DeepAuth splits the standard RNN model and distributes the
inference task across two split-RNNs, as shown in Fig. 2.

The benefits are two-fold. Firstly, the RNN model size is re-
duced significantly, since the weight matrices in split-RNNs
are halved, resulting in a much lower memory footprint. More

Methods
User
Ratio

Precision Recall
F1

Score
Accuracy

DeepAuth

0.2 0.75 0.77 0.76 0.92
0.4 0.85 0.84 0.84 0.95
0.6 0.87 0.85 0.86 0.96
0.8 0.90 0.88 0.89 0.97

DeepAuth-
Softmax
Loss

0.2 0.67 0.84 0.71 0.87
0.4 0.71 0.86 0.76 0.89
0.6 0.78 0.87 0.81 0.93
0.8 0.79 0.88 0.82 0.93

ICNP14
0.4 0.64 0.85 0.65 0.79
0.8 0.72 0.91 0.77 0.89

MobiCom13
0.4 0.69 0.87 0.73 0.87
0.8 0.75 0.87 0.80 0.92

Table 1: Authentication performance of DeepAuth and com-
peting approaches.

importantly, inference on split-RNNs can be performed in
parallel, and is more efficient since nearly half of the compu-
tation can be avoided. As shown later in Sec. 3.2, by using
split-RNNs, DeepAuth can achieve real-time authentication
on off-the-shelf smartwatches (<0.5s).

EVALUATION

We evaluate the proposed DeepAuth framework extensively
on large-scale real world datasets, collected in three different
sites: Oxford, Shanghai and Harbin1.

Experiment Setup

Online Password Survey: We consider Android Pattern
Locks (APL), which are the default authentication approach on
most of Android smartwatches. To make sure DeepAuth works
with realistic passwords, we have surveyed 112 anonymous
users online, and together with the results from [4], we built a
set of 64 mostly used APLs, which are expected to be selected
as passwords by ∼30% of users.

Data Collection: We recruited 155 participants (38% female)
from the three sites, with age ranging from 20 to 35. Each
participant is given 6 APLs randomly selected from the above
64, and is asked to enter them on a smartwatch worn on left
wrist, for multiple times across different days. In total, we
have collected 27,145 valid samples, each of which contains
the motion data segment, and anonymous user identity.

Competing Approaches: We compare DeepAuth with three
competing approaches: DeepAuth-Softmax, which is a naive
version of DeepAuth using only softmax loss; ICNP14 [7]; and

1The study has received ethical approval R50768.
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Figure 4: Efficiency and model sizes of different RNN layers
across three smartwatch platforms and a desktop GPU. Model
sizes and F1 score are on the legend.

Mobicom13 [5]. The latter two are the state-of-the-art smart-
phone authentication approaches using behavioural biometrics.
We port their implementations to smartwatch platforms and
trained on our data. Unlike DeepAuth, they use handcrafted
features with shallow classifiers such as SVMs.

Metrics and Evaluation Protocol: We evaluate the compet-
ing approaches with the following metrics commonly consid-
ered in existing work [7, 5]: accuracy, precision, recall and F1
score. For each subject, we randomly split all her instances
of 6 APLs into a training and a test set, at the ratio of 7:3.
Then in evaluation, we mix both seen and unseen passwords
(outside 6 APLs of the subject) entered by imposters, and
examine the authentication performance for every subject. We
guarantee that each subject has data in both training and test
sets, and 30% data in her test set are labelled as the positive
and the data entered by impostors are marked as the negative.

Implementation: We train DeepAuth in an end-to-end man-
ner with Adam optimizer. The initial learning rate is set to
10−3 and the hyper-parameter λ is set to 0.001. The batch size
in training is 512. In order to avoid overfitting, we implement
dropout in every fully connected layer and the dropout ratio
is set to 0.2. All hyper-parameters, including the threshold
of MVN model, are determined on a held-out validation set
(15%) from the training set.

Results

Overall Authentication Performance: We first evaluate the
overall authentication performance of DeepAuth and the com-
peting approaches with respect to different amount of training
data. We alternate the ratio between users and imposters in
training and testing sets, from 0.2 meaning that only data from
20% of the participants is used for training, while the rest
80% is considered as unknown imposters in the test set, to
0.8 which is the other way around. In Tab. 1, we see that
overall DeepAuth is able to achieve much better performance
even with limited training data. On the other hand, using
only the softmax loss (DeepAuth-Softmax) doesn’t perform
well: the F1 score when facing only 20% imposters is infe-
rior to that of DeepAuth with 60% imposters. In addition,
we see that approaches using handcrafted features (ICNP14
and MobiCom13) generally perform worse than DeepAuth.
When facing 60% imposters, their F1 scores are far inferior
to DeepAuth’s. DeepAuth outperforms them in facing 60%
imposters, even if competing approaches only faces 20% im-
posters. The significantly lower precision scores make compet-
ing approaches impractical for authentication. This means that
they struggle in distinguishing legitimate users from imposters.

In-situ Authentication on Smartwatches: Now we evaluate
the performance of DeepAuth when executed on off-the-shelf
smartwatches. We deploy DeepAuth on three different watch
models, including Sony SW3, Samsung Gear Live and Moto
360 Sports. We consider three variants of DeepAuth with
different RNN implementations: 64-unit and 128-unit standard
RNN, and the proposed 128-unit split-RNN (see Fig. 2). For
all variants, the feature extractor is trained with the composite
loss, on datasets with 0.4 user/imposter ratio. As shown in
Fig. 4, we see that although on desktop GPUs (TITAN X)
the inference time is comparable, on resource constrained
smartwatches, standard RNN may take more than 5s to process
one authentication request, which is clearly not practical. On
the other hand, the proposed 128-unit split-RNNs can speed
up inference up to ten-fold compared to the 128-unit standard
RNN, and is even 3-4 times faster than the 64-unit RNN, due to
the effective parallelisation and reduced computation. This is
because for both 64-unit and 128-unit RNNs, the computation
is sequential while with 128-unit split-RNN, we can parallel
the computation of two sub sequences halved from the original
one. In addition, as shown in lengend of Fig. 4 the size of
split-RNN is ∼30% smaller than the standard 128-unit model,
while the F1 score is comparable (only 2% lower). Above
results imply that DeepAuth with split-RNNs can reduce both
inference time and memory footprint significantly, offering
real-time authentication on smartwatches.

CONCLUSION

In this paper, we presented DeepAuth, a novel authentication
framework for smartwatches based on behavioural biometrics.
DeepAuth uses a novel slimmed deep neural network with
composite loss functions, to learn robust features from noisy
motion data across different users, which can run in real-time
on resource constrained smartwatch platforms. Extensive ex-
periments with real-world data confirm that DeepAuth is able
to provide a natural and user-friendly authentication mecha-
nism on smartwatches in addition to traditional passwords, and
can achieve impressive performance against unseen attackers
even with limited training data.
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