
1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 1

Efficient Indoor Positioning with Visual
Experiences via Lifelong Learning

Hongkai Wen∗, Ronald Clark†, Sen Wang‡, Xiaoxuan Lu§, Bowen Du∗, Wen Hu¶ and Niki Trigoni§
∗Department of Computer Science, University of Warwick, UK

†Dyson Robotics Lab, Imperial College London, UK
‡Institute of Sensors, Signals and Systems, Heriot-Watt University, UK

§Department of Computer Science, University of Oxford, UK
¶School of Computer Science and Engineering, University of New South Wales, Australia

Abstract—Positioning with visual sensors in indoor environments has many advantages: it doesn’t require infrastructure or accurate
maps, and is more robust and accurate than other modalities such as WiFi. However, one of the biggest hurdles that prevents its
practical application on mobile devices is the time-consuming visual processing pipeline. To overcome this problem, this paper
proposes a novel lifelong learning approach to enable efficient and real-time visual positioning. We explore the fact that when following
a previous visual experience for multiple times, one could gradually discover clues on how to traverse it with much less effort, e.g.
which parts of the scene are more informative, and what kind of visual elements we should expect. Such second-order information is
recorded as parameters, which provide key insights of the context and empower our system to dynamically optimise itself to stay
localised with minimum cost. We implement the proposed approach on an array of mobile and wearable devices, and evaluate its
performance in two indoor settings. Experimental results show our approach can reduce the visual processing time up to two orders of
magnitude, while achieving sub-metre positioning accuracy.

Index Terms—Visual Positioning, Mobile and Wearable Devices, Lifelong Learning

F

1 INTRODUCTION

The majority of indoor positioning systems to date represent a
person’s location using precise coordinates in a 2D or 3D metric
map, which has to be globally consistent. However, in many
scenarios this could be an overkill: we don’t really need global
maps to find a particular shop in the mall, as long as someone, e.g.
the shop owners, could guide or “teach” us step by step. Therefore,
we envision that in the future locations should be merely labels,
which are associated with objects, people, or other pieces of
relevant information. In the same way as people exchanging
mobile phone contacts, they can share locations, or to be more
precise, the look and feel along the ways towards them, where
others can ask their mobile phones or smart glasses to take them
to “Jackie”, “Terminal 1” or “Mona Lisa”, by following navigation
instructions extracted from previously constructed experiences.

Recently, this teach-repeat approach is gaining its popularity
and has been implemented with various sensing modalities [1], [2],
[3]. Comparing to the traditional solutions which seek to compute
the global coordinates of the users [4], [5], [6], those teach-repeat
systems require much less bootstrapping and training effort. For
instance, the Escort system [1] navigates a user towards another
by combining her previously recorded inertial trajectories with
encounters from audio beacons. The FollowMe system [2] collects
traces of magnetic field measurements as someone walks towards
a destination, e.g. from the building entrance to a particular room.
Later when another user tries to navigate to the same place, her
position is estimated by comparing the live magnetic signal and
step information with the stored traces. However in complex envi-
ronments, the discriminative power of 1D sequence matching on
magnetic field magnitude is limited. On the other hand, the Travi-

Corresponding author: Bowen Du, b.du@warwick.ac.uk

Fig. 1. The user interface of the proposed positioning system on smart
glasses running in a museum environment.

Navi system [3] uses vision for teach-repeat navigation, which
is promising since appearance is more informative than other
modalities. In addition, with the emerging smart glass technology,
vision-based solutions become more advantageous, since smart
glasses are rigidly mounted on the head of the users, with cameras
that are able to capture first-person point of view images (as shown
in Fig.1). This is particularly useful in applications that require
real-time and hands-free positioning, such as personal guidance
for the visually impaired, remote assistance in industrial settings1,
and augmented reality.

However in practice, achieving real-time visual positioning on
mobile and wearable devices presents a number of challenges.
Firstly, processing visual data can be prohibitively expensive for

1. “SAP and Vuzix bring you the future of Field Service”. https://www.
youtube.com/watch?v=UlpGDrSmg38

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 2

Image Acquisition
(~30ms)

Feature Detection
(~6000ms)

Feature Quantisation
(~8000ms)

BOW Comparison (~40ms)

[]...

...

[]...

[]...
[]...

[]...
0.02

0.89

0.01

R
ef

 Im
gs

Fig. 2. Typical processing pipeline and running time (estimated on a
Google Glass) of the Bag-of-Words image comparison approach [9].

resource constrained platforms. For instance, Fig. 2 shows a
typical pipeline of the Bag-of-Words (BOW) image processing
approach used by Travi-Navi. Given an image, the detected fea-
tures are quantised into a vector of visual words (i.e. the scene
elements) with respect to a pre-trained vocabulary. This BOW
vector is then compared against a database of reference vectors,
where the likelihood that two vectors represent the same scene is
determined by certain distance metric. In our experiments we find
that on the off-the-shelf smart glasses, just the feature detection
and quantisation steps can take more than 10s to complete, which
is impossible for real-time visual positioning. Some of the existing
work [7] considers offloading the computation to the cloud, but it
may not be cost-effective because: a) communication channels
such as WiFi/4G are not always available or stable in some
environments, e.g. construction sites; and b) the delay during
localisation can be high due to different network conditions. The
Travi-Navi system [3] bypasses this by only sampling images
sparsely for pathway identification (not localisation), but this does
not exploit the full power of visual positioning.

Our previous work [8] reduces the image processing time
by pruning the visual vocabulary based on mutual information
between words. However, such a global optimisation approach
treats the entire environment equally, and doesn’t consider the ap-
pearance variations across different locations. For instance Fig. 3
shows an example of images when following a previous visual
experience in a museum. We see that place A is a large hall with
many different visual elements, while the scene at place B contains
much fewer, but more distinctive features. This means the optimal
visual vocabulary for place B may not work at place A, since it
may fail to include enough words to describe the complex scene
there. On the other hand, when comparing images at place B, it
is not necessary to consider the complete visual vocabulary as in
A, but only a subset would be sufficient. Also comparing to A,
most of the features in B are close to the camera, which can still
be detected at lower resolutions. Thus at place B we can safely
configure the camera to sample low resolution images to save
processing time, but not vice versa. In addition, at place C most
features are clustered on the left, and thus we can just process
those parts instead of full images, which is not possible at A or B.

In this paper, we aim to address the above challenges by
moving away from the one-shot teach-repeat scheme, to a novel
lifelong learning paradigm. The idea is that after following a visual
experience across the space for several times, we can gradually
learn visual processing parameters that are key to localisation
success at different places, e.g. the minimum set of visual words,

C
B

A

CB
A

Previous
Experience

Current
Experience

Fig. 3. Scene properties e.g. feature distribution and types of visual
elements may vary significantly within a visual experience.

the lowest possible image scale, and the salient image regions.
The learned knowledge is then annotated to the saved experiences
as metadata, and is used to dynamically adjust the localisation
algorithm when experiences are followed in the future. In this
way, we can massively reduce computation on visual processing,
where the positioning system only needs to process the minimum
necessary information to stay localised, and thus make real-time
visual positioning possible. Concretely, the technical contributions
of this paper are:
• We propose a novel lifelong learning paradigm, which infers

key knowledge on how to follow previously collected visual
experiences with minimum possible computation from sub-
sequent repetitions. The learned parameters are annotated to
the experiences, and are continuously improved over time.

• We design a lightweight localisation algorithm, which dy-
namically adjusts its visual processing pipeline according to
the annotated visual experiences. This allows us to build a
positioning system that is infrastructure-free, requires little
set-up effort, and runs in real-time on resource constrained
mobile and wearable devices.

• We implement the proposed positioning system on various
mobile phones and smart glasses, and evaluate it in two
different indoor settings. Experiments show that comparing
to the competing approaches, our system is able to reduce
the running time up to two orders of magnitude, and achieve
real-time positioning with sub-metre accuracy.

The rest of the paper is organised as follows. Sec. 2 provides
an overview of the proposed approach. Sec. 3 explains how to
learn optimal parameters for visual processing and annotate them
to the experiences, while Sec. 4 presents the real-time localisation
algorithm that takes the annotated experiences into account. Sec. 5
evaluates our system, and the related work is covered in Sec. 6.
Sec. 7 concludes the paper and discusses possible future work.

2 OVERVIEW

Before presenting the proposed learning approach, in this section
we first discuss our key assumptions on visual experiences and the
problem of real-time localisation in Sec. 2.1, and then we describe
the architecture of our positioning system in Sec. 2.2.

2.1 Model and Assumptions
Visual Experiences: A visual experience E is a chain of nodes
n1, ..., nM , which contain the images captured as the user moves
across the indoor space [10]. A directed edge ei−1,i that links

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 3

(b)(a)

(ri , si , wi)

D

C

BA

ni

ei -1,i

Fig. 4. (a) Two annotated experiences, where each node ni is as-
sociated with visual processing parameters (ri, si, wi). The dashed
lines are co-location links, through which the user can transit from
one experience to another. (b) The global embedding of the annotated
experience graph over the floorplan.

two nodes ni−1 and ni represents the metrical transformation
between them, as shown in Fig. 4(a). In this work, ei−1,i is
estimated using a pedestrian dead-reckoning (PDR) approach [11].
If multiple images are captured within one step, the edges be-
tween them are computed by interpolation. Conceptually, a visual
experience E describes the appearance of the environment along
the user trajectory towards a specific destination. Therefore when
navigating to the same destination in the future, we can follow
this experience E, by comparing the live images and motion
measurements against those in E and work out where we are.
It is also worth pointing out that an experience E doesn’t have
to be globally consistent, e.g. it is well known that PDR suffers
from long-term drift and the generated inertial trajectories may
have accumulated errors (e.g. Fig. 4(a)). However as discussed
later, our system only considers relative localisation with respect
to previous experiences, and thus as long as the user can follow
those experiences locally, she can be successfully navigated to the
desired destination step by step.
Visual Processing Pipeline: When following experiences, our
system uses a Bag-of-Words (BOW) based [9] visual processing
pipeline to process images. Without loss of generality, we use
SURF [12] to extract image features, which are then quantised
into vectors (i.e. bags) of visual words based on the pre-trained
visual vocabulary. For instance, if the image contains a feature
corresponding to a window, while the i-th word in the vocabulary
represents a typical window (e.g. the average of different win-
dows), then the i-th element of the generated BOW vector should
be 1. Essentially the pipeline maps an image into a BOW vector,
which describes the scene elements appear in that image, and the
similarity between two images can be evaluated by the distance
between their BOW vectors.
Visual Processing Parameters: At runtime, the cost of our visual
processing pipeline is determined by two factors: the total volume
of image pixels it has to process, and the amount of visual words
to be compared with (see Fig. 2). Therefore, in this paper we
consider the following parameters to configure the pipeline: a)
the sampling image scale (i.e. resolution) r of the camera; b) the
salient region s of the captured image given the scale r; and c) the
set of key visual words w used by the pipeline to quantise image
features. Intuitively, s and r together determine the cost of feature
extraction step of the processing pipeline, while w governs the
feature quantisation cost under the given s and r.
Annotated Visual Experience: In practice when following a pre-
vious experience, it is not necessary to use the same configuration

for the visual processing pipeline throughout, since the appearance
at different parts of the experience can vary significantly (as shown
in Fig. 3). Therefore, we augment the visual experience E to in-
corporate the place dependent visual process parameters. For each
node ni ∈ E, we attach the parameters (ri, si, wi), representing
the optimal configuration of visual processing pipeline when the
user is at the location of ni (as shown in Fig. 4(a)). In this way,
the annotated experience E doesn’t only describe the appearance
of a route across the workspace, but also specifies how we should
follow it in different places. The ways of creating and updating the
annotated experiences will be discussed in Sec.3 in more detail.
Topometric Experience Graph: As the users continue to explore
the indoor environment, our system uses a topometric experience
graph to represent the saved experiences from different users, as
shown in Fig. 4. In such a graph, each node has an Euclidean
neighbourhood, but globally we assume no consistency. For exam-
ple the two highlighted nodes in Fig. 4(a) are in fact at the same
position (see Fig. 4(b)), but are represented differently due to the
accumulated errors in inertial tracking. We also exploit the spatial
overlapping between experiences by creating undirected links
between nodes with similar visual appearance. Those co-location
links increase the connectivity of the graph, from which one could
transit between different experiences. For instance, in Fig. 4(a), to
go from A to D, one could start with the experience on the left,
then transit to the experience on the right via any co-location link,
and follow it afterwards. Note that it is straightforward to use other
sensing modalities, such as WiFi or Bluetooh beacons, to create
co-location links [13], if a reliable similarity metric is provided.
Localisation with Visual Experiences: We consider relative
localisation, where at a given time, the location of the user is
specified by a pair (ni, T). ni is the node in the experience
graph that is the closest to the current user position, and T is
the user’s relative displacement from ni. Intuitively, we match the
observed sensor measurements with those in the experience graph
to “pin down” the user, and then use the motion data to track
her accurate position with respect to matched node. Therefore in
our context, localisation is not performed in a globally consistent
map, but only the topometric experience graph which can be
viewed as a manifold [10]. This is particularly useful in navigation
scenarios, where our system can just localise the users within the
experience graph and navigate them to their destinations, without
the expensive process of enforcing a global Euclidean map. On the
other hand, if the graph can be embedded to a consistent frame of
reference, e.g. by map matching [6], localisation against the graph
is equivalent to positioning within the global map (see Fig. 4(b)).

The problem tackled by this work is how to make such
localisation efficient, and run in real-time on resource constrained
mobile and wearable devices. To address this, we propose a
positioning system that continuously learns the optimal visual
processing parameters (i.e. ri, si and wi) from localisation results,
and annotates the learned parameters to the previous experiences.
When being tasked later, our system actively tunes the visual
processing pipeline according to such knowledge, to stay localised
with minimum possible computation. Now we are in a position to
explain the architecture of the proposed system.

2.2 System Architecture
Fig. 5 shows the architecture of the proposed positioning system,
which consists of a front-end that runs on the mobile devices, and
a back-end which resides on the cloud.
Front-end: The front-end localises the users with respect to the
previous experiences (i.e. the experience graph) based on live

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 4

Front-end Back-end

Motion
Estimation

Visual
Processing

State
Estimation

CameraIMU

Experience
Management

Key words
Discovery

Salient Region
Detection

Min Scale
Estimation

Absent Words
Elimination

Non-informative
Region Exclusion

Ec

 Ep

Learned Ep

 Ec & Ec Ep
Parameter
Smoothing

Fig. 5. The architecture of the proposed system, where the front-end
runs on the user carried devices, and the back-end resides on the cloud.

sensor observations. In practice, it is possible to localise with
respect to more than one experiences, i.e. the sensor observations
can be matched to co-located nodes from different experiences,
but for simplicity here we only localise using the best matched
experience in the graph. Let Ep be the experience, and ni ∈ Ep
be the node that the user is currently localised to. Then the live
frame is passed through the visual processing pipeline, which is
adjusted according to the parameters encoded in ni. The matching
results is then fused with measurements from IMUs, and the
user position is determined by a state estimation algorithm. At
the meantime, the front-end saves the current experience Ec by
logging the live images and motion data, which will be used by
the back-end later. We consider a motion-guided image sampling
strategy as in [8], while the sampling rate depends on the accuracy
requirement and energy budget set by the users (typically <1Hz).
When localisation fails, i.e. the user can no longer be localised
within the current experiences, the front-end pauses the state
estimation process and only saves the observed sensor streams
as a new experience En, until localisation can be reinstated.
In practice, such localisation failure would occur if the user
starts to explore a new route that hasn’t been covered by exiting
experiences, or when the appearance of a previously traversed
route has changed dramatically, e.g. due to variations in lighting.
Note that in our system, we tend to record dense En by sampling
images at a much higher rate, to build an initial survey of the
new environment/appearance. In typical indoor environments, this
process won’t happen frequently, and the experience graph tends
to converge as more experiences are accumulated.
Back-end: Once the user finishes following a previous experi-
ence Ep (assuming it has been annotated with visual processing
parameters), the current experienceEc and the localisation results,
i.e. the mapping between nodes in Ec and Ep will be uploaded
to the back-end for learning when appropriate, e.g. the device is
charged and/or connected to WiFi. If a new experience En has
been created, e.g. the user has just explored a new trajectory,
the saved En will also be uploaded. In the former case, the
back-end iteratively computes the minimum key word set wi,
the optimal image salient region si and scale ri, with which
the correspondence between Ec and Ep can still be maintained.
The learned parameters are used to update those in Ep, and are
referred to by the front-end when the user is localised against
Ep in the future. On the other hand, given the new experience
En, for each node ni ∈ En, the back-end computes the initial
estimates of the visual processing parameters by pruning the
redundant visual words and non-informative image regions (details
will be discussed in Sec. 3.1). Then it assembles the annotated
experience to the experience graph by exploiting co-location links
(e.g. as in our previous work [13]), where the updated graph will

be downloaded and used by the front-end in next localisation.
In practice, the above experience annotation process runs on the
cloud infrastructure or local cloudlet [7], which typically have
sufficient computational power to handle the overhead. In addition,
our system doesn’t require real-time experience annotation or
constant communication between the front-end and back-end.
When the annotated experiences are ready and downloaded to
the front-end, it can operate without the cloud. Therefore, in our
system localisation performance won’t be affected by network
latency, which is very desirable in practice.

In this way the proposed system forms a feedback loop, which
doesn’t just learn about the indoor environment for once and
then localise the users with this one-shot learned experiences, but
also continuously learns from the subsequent traversals to improve
itself and work smarter over time.

3 EXPERIENCE ANNOTATION

This section discusses the proposed approach of experience an-
notation, which continuously learns how to configure the visual
processing pipeline to achieve more efficient localisation in the
future. As discussed in Sec. 2.1, the computational bottleneck of
visual processing is the feature extraction and quantisation steps
(see Fig. 2), whose cost is determined by: a) the total volume of
pixels one has to process; and b) the amount of visual words to be
compared against. For a given node ni in an experience, the former
is actually the size of the salient region si under the image scale
ri (denoted as |si|ri), while the latter is the cardinality |wi| of the
key word set. Therefore our goal is to find the set of parameters
ri, si and wi, which yield the minimum possible |si|ri and |wi|.
In Sec. 3.1, we first discuss how to compute the initial estimates of
the parameters given a newly created experience. Then in Sec. 3.2
we show how the parameters can be continousely optimised by
learning from subsequent repetition of the experiences.

3.1 Parameter Initialisation
As discussed in Sec. 2.2, when the user explores a trajectory
for the first time, or the appearance of a previously traversed
route has changed significantly, the front-end creates a new visual
experience En and upload it to the cloud when communication is
available. At this stage, our system tries to compute good initial
estimates of the visual processing parameters by exploiting the
scene properties at different parts of En (as shown in Fig. 6).

3.1.1 Eliminate Absent Visual Words
In the standard visual processing pipeline, each image has to be
quantised with respect to the complete visual vocabulary, which
could be substantial. For instance, FAB-MAP [14] uses a vocab-
ulary of roughly 10k words for outdoor place recognition, and
our experiments considers around 4k words trained from various
indoor environments. In this case, comparing against each word in
the vocabulary is prohibitively expensive for resource constrained
devices: as shown in Fig. 2, this needs∼8s to complete on Google
Glasses. However in practice, we find that different parts of the
experience tend to contain very different sets of visual words.
For example, in a corridor with many doors alongside, we would
expect to see lots of door handles or frames; while in an atrium
with stairs, the scene could be occupied by elements such as
railings (as shown in the first and third image in Fig. 6). Therefore,
we don’t need to compare against all the words in the vocabulary,
but just have to consider the words that appear within a local area.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 5

New Exp.

Exp. with
init params

Scale: 1 (800×600)
Key words:

Scale: 1 (800×600) Scale: 1 (800×600) Scale: 1 (800×600)

...
Key words:

...
Key words:

...
Key words:

...

Fig. 6. For a newly created experience, the proposed system estimates
the initial parameters by pruning unnecessary information.

Based on this intuition, for each node ni in the newly created
visual experienceEn, we initialise the key word set wi as follows.
We consider a sliding window of 2k nodes [ni−k+1, ..., ni+k]
centred at ni. The images within the window are fed to the visual
processing pipeline, where features are extracted and quantised
into Bag-of-Words vectors with the original visual vocabulary.
Assuming the vocabulary contains N visual words w1, ..., wN .
Then the window of images can be represented as a 2k × N
matrix F . Each row F (l, :) represents a particular image, and the
n-th element F (l, n) is the frequency that word wn appears in
that image. Finally, whether the word wn should be included in
the key word set wi is given by the indicator function:

1(wn) =

1,

i+k∑
l=i−k+1

F (l, n) > 0

0,
i+k∑

l=i−k+1
F (l, n) = 0

(1)

This effectively rules out the visual words that never present within
the neighbourhood of an experience node ni, and selects a much
smaller set of key words that have to be compared against, as
shown in Fig. 8(a) and (b).

3.1.2 Prune Non-informative Image Regions
In addition to removing the unseen visual words, at this stage
our system also tries to find a smaller salient region si for the
image stored in node ni. Note that here we keep the image scale
ri unchanged, because for now we are unable to determine the
minimum possible ri for successful localisation with respect to
the experience En (we will show how to learn the optimal scale
ri with more experiences in the next section). Concretely, for each
node ni our system tries to locate the image patches containing no
features (e.g. the slice of white wall in the first image of Fig. 6),
or only the non-informative features (as discussed below), and
eliminate those patches from the salient region si.

Let fk be an extracted feature of the image in node ni. During
the image quantisation step, for each word wn in the vocabulary,
we compute the distance between feature fk and word wn. Then
fk is quantised to the word with the smallest distance, indicating
that fk belongs to the same type of visual element represented
by that word. Let d(fk) be the smallest distance when quantising
feature fk. d(fk) indicates how well the feature fk can be described
with the current vocabulary. In practice, large d(fk) means that the
vocabulary doesn’t contain visual elements similar to the feature
fk, i.e. we are not sure what fk represents. For instance, the
highlighted feature in the third image of Fig. 6 is the reflection of a
light on the window, which can’t be well represented by the current
visual vocabulary. As a result, such a feature won’t contribute to

Scale: 1 (800×600)
Key words:

Scale: 1 (800×600) Scale: 1 (800×600) Scale: 1 (800×600)

...
Key words:

...
Key words:

...
Key words:

...

Current
Exp.

Scale: 0.2 (160×120)
Key words:

Scale: 0.4 (320×240) Scale: 0.4 (320×240) Scale: 0.2 (160×120)

...
Key words:

...
Key words:

...
Key words:

...

Exp. with
init params

Exp. with
opt params

Fig. 7. Given the localisation results, our system updates the experience
annotations by learning the optimal parameters for visual processing.

the BOW matching process but could introduce noises. Therefore,
our system prunes those features and set the initial salient region
si according to the bounding box of the rest visual features (as
shown in Fig. 6). In practice, we typically set the initial si to be
slightly larger than the bounding box, to account for potential view
point changes when following the experience En. In addition, if
the computed bounding box is too small comparing to the image
dimension (in our experiments we consider <50%), e.g. when
images contain very few informative features due to blurriness,
we set the initial si as the original image size for now and leave it
to the later learning stage.

After the above initialisation process, the newly created expe-
rience En has been annotated with the initial estimates of visual
processing parameters. As discussed in Sec. 2.2, this annotated
experience will be assembled to the experience graph through
co-location links, and downloaded to the user devices when it
is needed for future localisation.

3.2 Lifelong Parameter Learning
With the initial estimates of the visual processing parameters,
our system is able to exclude some unnecessary information
during image processing, e.g. the redundant visual words or non-
informative images regions. This can already reduce the runtime
cost when following the experiences. However in many cases,
we could further improve performance by learning from the
subsequent repetitions of the previous experiences, just like what
humans would do. For instance, when we first follow someone
along a trajectory, we tend to stay alert throughout and watch
out for as many visual clues possible. However after a few more
traversals, we become more familiar with the route, and will
discover place-dependent information that is vital for localisa-
tion/navigation success, e.g. in some places we may only need to
pay attention to a few landmarks to keep on the right track. Follow
this intuition, our system employs a lifelong learning paradigm,
which keeps calibrating the optimal visual processing parameters
through continued use.

Let us assume the user has followed a previously annotated
experience Ep, and the front-end of our system has saved the
live sensor observations during this localisation as the current
experience Ec. In this context, the localisation results can be
viewed as the mapping between the nodes of current and previous

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 6

All words

All nodes in exp.

w1 w2 wN...
n1

n2

nM

...

ni

...

(a)

Nodes within 2k
sliding window in exp.

w'1 w'2 w'N'...
ni-k+1

...

ni

...

(b)

Present
Words

ni+k

Nodes within 2k
sliding window in exp.

w'1 w'2 w'N'...
ni-k+1

...

ni

...
(c)

Present
Words

ni+k

...

Discriminative words

Live image Live image Live image

Fig. 8. During localisation, a live image can be compared with (a) all nodes using the complete vosual vocabulary (stanrdard approach); (b) a sliding
window of nodes using only the present words (after parameter initialisation); and (c) the most discriminative words (after parameter learning).

experiences Ec 7→ Ep. Note that here the visual processing
parameters encoded in Ep can be either computed by the ini-
tialisation step as above, or from the previous learning iteration.

In our case, the goal of the learning process is to compute the
optimal visual parameters (ri, si,wi) given the known correspon-
dence between experiences Ec 7→ Ep, which are the solution of
the following constrained optimisation problem:

minimize
ri,si,wi

|si|ri , |wi|

subject to p(hj 7→ ni|Ep, ri, si,wi) ≥ ε,
hj ∈ Ec, ni ∈ Ep

p(hj 7→ ni|Ep, ri, si,wi) is the likelihood that the image in
node hj matches that of ni given the current parameters, and
is evaluated with the FAB-MAP [14] approach. The constraint
requires the matching likelihood of hj to ni exceed a threshold
ε. In out implementation we typically require ε > 0.5, so that
in the majority cases the node hj should be correctly matched to
node ni. Intuitively, |si|ri and |wi| in the objective function are
correlated. Images at lower scale or with smaller salient region
(i.e. smaller |si|ri) tend to contain fewer visual features, and thus
could require a sparser key word set to quantise. On the other hand,
if just a few words are essential for correct matching, we can work
at lower image scales, and/or only on image patches corresponding
to those key words. Therefore, the proposed system optimises the
two parts of the objective function iteratively. In each iteration,
we first find the set of key visual words wi that are vital for
successful matching (Sec. 3.2.1). Then given the computed wi,
we estimate the salient region si together with the suitable scale
ri (Sec. 3.2.2). In the next iteration, the estimated ri and si are
used to evaluate a new key word set wi accordingly. This process
terminates when the parameters (ri, si,wi) converge, or a certain
number of iterations has been reached. In practice, it is possible
that before the learning process the matching likelihood p(hj 7→
ni|Ep, ri, si,wi) is already below the threshold ε. In those cases,
our system resets the parameters to their initial values and starts
learning from there. Finally, the learned parameters are smoothed
within a local neighbourhood to improve robustness and account
for spatial correlations (Sec. 3.2.3). Now we are in a position to
explain the optimisation steps in more detail.

3.2.1 Discover the Most Discriminative Visual Words
For each node ni in the previous experience Ep, the key word
set wi has been initialised as the words that appear within
its neighbourhood of 2k nodes, as discussed in Sec. 3.1.1 (see

Fig. 8(b)). Given the known mapping hj 7→ ni (from the local-
isation results), our system further reduces wi, to only include
the most discriminative words, with which the images in nodes
hj and ni can be matched. For instance, in our experiments we
found visual elements representing the carpet tiles are common
in most of places, which contribute very limited discriminative
power when matching images, and thus should be excluded from
the key word set. Therefore, we wish to find a minimum subset
of the current key words wi so that the mapping hj 7→ ni holds.
In this process, our system also considers a sliding window of 2k
nodes, and works as follows. Firstly, with the current parameters
(ri, si,wi), the images within the window are processed into
Bag-of-Words (BOW) vectors. Assuming the current key word
set contains N ′ visual words w′1, ..., w

′
N ′ . Like in the previous

Sec. 3.1.1, here we also consider a 2k×N ′ matrix F ′ to represent
the images in BOW format, whose elements are the frequency of
words. For a given word w′n, we define its discriminative power
within the 2k window as:

H(w′n) = −
i+k∑

l=i−k+1

F ′(l, n) lnF ′(l, n) (2)

In fact, if we normalise the n-th column F ′(:, n) into a distri-
bution, the above H(w′n) is essentially its information entropy.
Intuitively, the word w′n that only appears in a few images is more
promising to distinguish them from the others. In this way, by
ranking the entropy H(w′n) (i.e. discriminative power of words),
we obtain a ranked word set

⇀
wi.

Finally, our system evaluates a new key word set w′i based on
the computed

⇀
wi. Conceptually, this can be done by iteratively

adding words to w′i, until the node hj can be reliably matched
to ni. To speed up this process, we initialise w′i as the first
half of ranked set

⇀
wi (those are more informative), while the

rest is considered as a candidate set. Then in each iteration, we
use the current w′i to compare the image of hj against those
within the sliding window, and evaluate the matching likelihood
p(hj 7→ ni). If p(hj 7→ ni) exceeds ε, we reduce w′i by half in
the next iteration; otherwise we move the first half of the words
in the candidate set to w′i. After at most log2 |

⇀
wi| iterations,

the desired w′i can be computed, which contains the minimum
amount of words to support the known mapping hj 7→ ni within
the neighbourhood of 2k nodes. By applying the above process
to each ni ∈ Ep, our system learns the most informative visual
elements across different segments of the previous experience Ep.
Therefore in future localisation, it only needs to query a very
sparse key word set when processing the live image frames (as

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 7

(a) (b)

ni ∈ Ep ni ∈ Ep

hj
0.25: p = 0.03

hj
0.5: p = 0.51

hj
1: p = 0.95

hj
0.25: p = 0.53

hj
0.5: p = 0.72

hj
1: p = 0.99

hj ∈ Ec hj ∈ Ec

Fig. 9. Matching results of image pyramids for cases where dominating features are (a) far away from; and (b) close to the camera. Blue bounding
boxes illustrate the estimated salient regions at different layers.

shown in Fig. 8(c)). In Sec. 5, we will show that comparing
to the standard approach, using the minimum key words sets in
localisation could reduce up to 80% of feature quantisation cost.

3.2.2 Detect Salient Regions at Multiple Scales
Now we show how to further minimise the total amount of pixels
|si|ri to be processed given the current key word set wi. |si|ri
is a function of the sampling image scale ri and the salient
region si, and has direct impact on the cost of feature extraction
and quantisation. Intuitively, ri indicates the level of detail one
should consider, e.g. if most of the visual features are close to the
camera (see Fig. 9(b)), it would be sufficient to sample images at
lower scales to maintain the correct mapping. On the other hand,
under a fixed scale ri, the dominating visual elements may be
well clustered within certain salient region si, e.g. as shown in
Fig. 9(b), most of the informative features are within the top left
part of the image. Therefore, if we assume the device’s point of
view remains relatively stable, when localising against previous
experiences, it is sufficient to sample live images at the lowest
possible scales and only process the smallest salient regions.

Our system considers a progressive approach to evaluate the
optimal ri and si for each ni ∈ Ep. Let hj ∈ Ec be the node
matched to ni. We first create an image pyramid for hj by down-
sampling at different scales. Fig. 9 shows an example of image
pyramids with three layers, where the lowest layer h1j contains the
original image (scale 1), and top two layers contain images at scale
0.5 and 0.25 respectively (i.e. 1/4 and 1/16 in size of the original
image). In practice, the scales of the pyramid are determined
by the camera hardware (e.g. limited by the supported sampling
resolutions), and the number of layers can be tuned for different
environments. Then from h1j upwards, images at different scales
are passed through the visual processing pipeline, and compared
with images in the previous experience Ep. To capture the scene
variations in different parts of Ep, we also consider a sliding
window of 2k nodes centred at ni. In addition, our system only
uses the learned key word set wi for image quantisation, where
visual features do not appear in wi are pruned.

At the layer with scale r, if the likelihood p(hrj 7→ ni) exceeds
the threshold ε, we further try to estimate the salient image region.
Concretely, our system initialises the candidate salient region s in
the same way as discussed in Sec. 3.1.2, and then reduces its size
by removing features in s iteratively. Let f1, ..., fK be the set of
features left in the current iteration. For simplicity, we assume a
feature fk can be represented as an image patch (e.g. the circles
in Fig. 9), and the current salient region s is the bounding box
containing all the K features. For each feature fk, we evaluate
the gain and residual if it is removed from the current feature

Algorithm 1 Salient region detection
1: Set salient region s as the bounding box of all features
2: while s is not minimum do
3: Set max gain Gmax = 0; feature to be removed f∗ = φ
4: for each feature fk do
5: Evaluate the gain G(fk) and residual R(fk)
6: if R(fk) ≥ ε and G(fk) > Gmax then
7: Set Gmax = G(fk); f∗ = fk
8: end if
9: end for

10: if f∗ 6= φ then
11: Remove feature f∗ and set the new s = s[−f∗]
12: else
13: Return the current s
14: end if
15: end while

set. Let s[−fk] be the hypothetical bounding box if feature fk
is removed. We define the gain of removing fk as the reduced
amount of pixels between the hypothetical and current bounding
boxes G(fk) = |s| − |s[−fk]| (Line. 5 in Algo. 1). On the other
hand, the residualR(fk) of excluding fk is defined as the mapping
likelihood evaluated using features without fk. Then we loop over
all features and try to remove the one with the highest possible
gain, whose residual is still beyond the threshold ε. If such a fk
exists, the salient region is updated to s[−fk] and we proceed to
the next iteration. Otherwise the current s is already minimum,
and the algorithm terminates. The detailed algorithm of salient
region detection is shown in Algo. 1.

In this way, our system processes each layer of the image
pyramid and stops when it reaches the highest layer where the
mapping likelihood exceeds ε. This means there is no scope to
further reduce |si|ri any more, and the learned si and ri are
considered to be optimal. In practice, the estimated si and ri
could vary across different parts of the experience. For instance,
in Fig. 9(a) the estimated salient region is at scale 0.5, while that
in Fig. 9(b) is at scale 0.25 (∼4 times smaller). This is because in
the scene of Fig. 9(a), most of the features are quite far away from
the camera, and would disappear when considering lower scales.
On the other hand, in Fig. 9(b) most of the features are relatively
close, and thus images at lower scales can still be reliably matched.

3.2.3 Smooth the Learned Parameters
With the learned parameters, at node ni in future localisation the
complexity of feature extraction can be reduced by a factor of
|si|ri / |I|, where |si|ri is the size of the learned salient region si

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 8

xt-1 xt+1xt

u1:T

vt-1 vt

…

vt+1

fu(xt-1, xt, ut)

fv(xt, vt)

…

...

pn1
t+1

pnM
t+1

(d1, θ1)

(dt, θt) ...
...

fθ(xt, θt-ω, t)

Fig. 10. The CRF model used in the proposed system.

under optimal scale ri, and |I| is the original image size. Similarly,
the complexity of feature quantisation can also be reduced at least
by a factor of |wi| /N , where |wi| is the number of words in the
learned vocabulary, while N is the size of the initial vocabulary.

However, as discussed in Sec. 2.2, when following a previous
experience Ep, to reduce energy consumption the current experi-
ence Ec saved by the front-end typically contains sparser nodes
than Ep. This means in one learning iteration we could only
update the parameters in some of the nodes in Ep. In addition,
although those learned parameters are considered to be optimal
for localisation, they reduce the information quite aggressively.
In practice we want to increase the stability of our system, and
avoid adjusting the visual processing pipeline too often. Therefore,
our system also applies a smoothing process at the end of each
learning iteration.

Let us consider the 2k nodes centred at ni in the experience
Ep. Suppose that through the learning process, we have updated
the parameters in a subset of nodes Nnew

i within the 2k window,
while the parameters associated with the rest of the nodes Nold

i

remain unchanged. Let Wnew
i be the union of the key words of

the newly updated nodes Nnew
i , while W old

i be the set of words
that appear in the 2k window but not in Wnew

i . We first let the key
word set wi of the node ni to be Wnew

i , and then add the top q%
words in W old

i based on how frequent they appear. In this way,
we guarantee that the key words discovered through the learning
iteration is included, while also keep some common key words
appeared in the neighbourhood. For the image scale ri and salient
region si, we consider a weighted voting/average scheme within
the 2k window. We typically assign more weight to the newly
learned parameters, i.e. those associated with nodes in Nnew

i , and
then use a Gaussian kernel to take the spatial correlations into
account. Therefore with the smoothed parameters, when localising
the users with respect to the previous experiences, the proposed
system is less prune to environmental dynamics e.g. view point
changes caused by head movement, and can achieve better trade-
off between computational efficiency and robustness.

4 LOCALISATION WITH ANNOTATED EXPERIENCES

4.1 Conditional Random Fields (CRFs)
In this section, we present the design and implementation of the
proposed localisation algorithm, which is used by the front-end
of our system to position the users with respect to the previously
annotated experiences, as discussed in Sec. 2. Let us assume that
a user is following an annotated experience Ep, which has been
downloaded to her mobile device already. To position the users
in real-time on resource constrained mobile and wearable devices,

ut = (dt, θt)

t t +1 t +2 t +3
time

pt
n1...

pt
nM

ut+1 ut+2 ut+3

Delay δ

Restore particle states to t

Re-propagate states forward

vt =

Cache particle states at t

Fig. 11. The proposed system handles the delayed visual measure-
ments by rolling back to particle states when the images were taken,
and re-propagating the states with the user motion observed afterwards.

the localisation algorithm has to be extremely lightweight, and
able to cope with the delay of visual processing (see Fig.11). To
address this, our system models the position of user with respect
to the previous experience Ep as the latent states, and considers
a delay-tolerant sequential state estimator to fuse the inertial and
visual data. In particular, we consider the undirected Conditional
Random Fields (CRFs), because they are more flexible in handling
correlated measurements from heterogeneous sensing modalities.

Latent States: As discussed in Sec. 2.1, the position of the user
xt can be represented as a pair (ni, T) where ni is the node in
Ep that is the closest, and T is the relative transformation from
the position of ni to xt. In practice, T can be estimated from the
motion/odometry data, and thus localisation against the previous
experience Ep can be cast into that of finding the matching
nodes in Ep that can best explain the sensor measurements.
Therefore, in this paper we define the state space as the set
S = {n1, ..., nM , φ}, where n1, ..., nM are the nodes of the
experience Ep, and φ is an empty node. The event xt = ni
indicates that the current user position xt is matched to node ni
(subject to transformation T), while xt = φ means localisation
failure, i.e. the user can’t be localised with respect to Ep. In
practice, for big enviornments the state space S can be large,
which would have a negative impact on localisation performance.
However this can be mitigated by using other sensing modalities
such as WiFi fingerprints to first estimate a coarse location of the
user, and then positioning her within the identified subgraph.
Motion Measurements: At discrete time t, our motion engine
generates ut = (dt, θt), which is the displacement and heading
change of the user since time t − 1, as shown in Fig. 10. We
consider a zero crossing detector with linear stride length model
to estimate steps from the acceleration domain. For heading
estimation, unlike most of the existing pedestrian dead-reckoning
(PDR) solutions that require absolute heading, we only care about
the relative heading with respect to the previous timestamp. To
this end, our system uses an unscented Kalman filter to fuse
the magnetic and gyroscope signals efficiently. It is well known
that such a lightweight approach is not robust to abrupt device
movements (e.g. rotating head when wearing smart glasses) and
long term sensor drift [11]. However, our system is inherently
resilient to those noises, since as shown later the estimated motion
is only compared with small trajectory segments of the previous
experiences, and the accumulated error is likely to be corrected by

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 9

visual measurements later on.
Visual Measurements: Unlike the existing systems such as
Travi-Navi, our visual processing pipeline is configured dynam-
ically according to the current state belief and experience annota-
tions. Let xt = ni be the predicted state at time t. We retrieve the
parameters (ri, si,wi) annotated to node ni, and task the camera
to take an image at scale ri. Then only features appear within
the salient region si are extracted, and quantised into a Bag-of-
Words vector according to the key word set wi. Finally, the BOW
vector is compared with the images of the previous experienceEp.
Therefore, the visual measurement at time t allows us to derive a
distribution vt = [ptn1

, ..., ptnM
] (as shown in Fig. 10), where ptnk

is the likelihood that the captured image matches nk in Ep.

4.2 Feature Functions
In our model the conditional dependencies between states and
observations can be factored as products of potentials:

p(x1:T |u1:T ,v1:T) = c−1 ·
T∏
t=2

Ψ(xt−1, xt,u1:T ,v1:T) (3)

c is a normalising constant, which integrates over all state se-
quences: c =

∫ ∏
Ψ(·)dx1:T . The potentials Ψ is the log-linear

combination of feature functions f :

Ψ(xt−1, xt,u1:T ,v1:T) = exp{w · f(xt−1, xt,u1:T ,v1:T)}
(4)

where a feature function f ∈ f specifies the degree to which
the observed sensor data supports the belief of the consecutive
states. The weights w indicate the relative importance of different
features functions, and the way of learning w will be discussed
later in this section. We consider the following feature functions:
Instant Motion: This feature function models how the currently
observed user motion supports the transition between two consec-
utive states, and is defined as:

fu(xt−1, xt,ut) = −(ut−ûxt−1:xt
)TΣ−1u (ut−ûxt−1:xt

) (5)

where ut is the motion measurement from t−1 to t, and ûxt−1:xt

is the noise-free motion between states xt−1 and xt, which is
derived directly from the previous experience Ep. Σu is the
covariance, which captures the important correlations between
user displacement and heading changes, e.g. people typically slow
down when turning at corridors.
Accumulated Heading Change: This feature function checks the
compatibility between state xt and the observed heading changes
over a time window [t− ω, t]:

fθ(xt, θt−ω,t) = ln
1

σθ
√

2π
−

(θt−ω:t − θ̂x̂t−ω :xt)
2

2σ2
θ

(6)

where θt−ω:t is the observed change in heading from time t − ω
to t. θ̂x̂t−ω :xt

is the heading change computed between the
previously estimated state x̂t−ω and current state xt, and σθ
is the variance of heading changes from the covariance matrix
Σu in Eqn. (5). Unlike fu which only cares about instant user
motion, here fθ correlates the current state with a longer history
of previous heading changes. Therefore, fθ tends to reward the xt
with a neighbourhood that matches the “shape” of the observed
user motion, and is especially discriminative when the user turns.
Visual Matching: The final feature function fv describe how the
observed image at time t supports the current state xt. Recall that
the visual measurement vt is a distribution [ptn1

, ..., ptnM
], where

Algorithm 2 State Estimation with Delayed Measurements
1: Initialisation: sample a set of particles from the initial state

distribution
2: while a new motion measurement ut arrives do
3: for each particle do
4: Prediction: predict particle state by sampling from

exp{fu(xt−1, xt,ut)}
5: Weighting: update particle weights according to

exp{fθ(xt,ut−ω:t)}
6: end for
7: Re-sample: generate new particles based on their weights
8: if an image has been captured then
9: Cache the current particle states

10: end if
11: if a visual measurement vt′ is available (t′ < t) then
12: Rollback: Restore particle states cached at time t′

13: Weighting: update particle weights according to
exp{fv(x′t,vt′)}

14: Re-propagate: update particle states until t, as shown
from Line 3 to Line 7

15: end if
16: end while

ptni
is the likelihood that the image captured at t matches the node

ni in the previous experience Ep. Then we directly define fv as:

fv(xt,vt) = ptxt
(7)

which is the likelihood of the state xt according to the current
visual matching result.

4.3 State Estimation
Initialisation: We consider a particle filter algorithm for state
estimation on the above CRF model, which can handle complex
distributions, and scales well when the state space grows, e.g. as
more experiences are accumulated. In practice, we bootstrap our
algorithm when a sufficient number of consecutive images can be
strongly matched to the previous experiences. In some cases if the
experience graph has been embedded to a global map, the initial
state may be determined by certain external signals or landmarks,
e.g. the card swipe event at the main entrance. Our algorithm
randomly draws a set of particles according to the initial state, and
iteratively performs the following steps as the user moves.
Incorporating Motion Features: Firstly, given the observed user
motion ut, for each particle we propagate its state by sampling
from the feature function fu(xt−1, xt,ut), which evaluates the
consistency between the observed motion ut and the expected
ûxt−1:xt

given the consecutive states (see Eqn. (5)). Then the
particles are weighted according to fθ(xt, θt−ω,t), where those
agree more with the local shape of the observed user trajectory are
favoured. Finally, the particles are re-sampled according to their
weights.
Processing Delayed Visual Measurements: In our context a
visual measurement can be delayed due to the cost of visual
processing. For instance, as shown in Fig. 11, the image captured
at t takes time δ to be processed, i.e. the visual measurement
vt is only seen by the state estimation algorithm at time t + δ,
and by then the user has moved. To cope with such delay, we
cache the particle states when capturing the image at t. Once
the visual measurement vt is ready, our system waits until the
next motion measurement comes (at t + 2 in Fig. 11), and then

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 10

(a)

Localised

Uncertain

Lost

strong Lv
 seq.

weak Lv
 seq.

(b)

Ep Ec

peek in Lθ

strong Lv
 seq.

Init/Recovery
Localised
Uncertain
Lost

Fig. 12. (a) The decision model used by our system to handle localisa-
tion failure. (b) An example where the user tries to explore a new route.

restores the cached particles at t. At that point, the particles are
re-weighted according to the feature function fv , and then re-
propagated forward with all the motion measurements (until t+ 2
in Fig. 11) as discussed above. In this way, by periodically rolling
back, our state estimation algorithm tolerates the processing delay
of images, and fuses motion and visual measurements efficiently.
The detailed state estimation algorithm is shown in Algo. 2.
Learning Model Parameters: In the above state estimation algo-
ritm, the particles are weighted based on both motion and visual
feature functions. In the proposed CRF model, the parameter
ω (see Eqn. 4) indicates the relative importance of different
features, and is learned from the data using ground truth iteratively.
Concretely, in each iteration we randomly pick a training sequence
with ground truth states x∗, motion measurements u and visual
measurements v. Then we use current parameter ω to estimate
the posterior state sequence x̂ as in Algo. 2, and compute the
values of feature functions f(x̂,u,v). On the other hand, we also
evaluate the feature values using the ground truth as f(x∗,u,v).
The difference ∆f = f(x∗,u,v)−f(x̂,u,v) is used to update
the parameter as ω′ = ω + s∆f , where s is learning rate. Then
we use the computed ω′ to re-run the state estimation process.
If the localisation error exceeds certian threshold, we reduce the
learning rate s by half, and estimate a new ω′ again, otherwise
we terminate this iteration. We repeat this training process until
the new parameter ω′ converges or certain iterations have been
reached.

4.4 Handle Localisation Failure
Our system declares localisation failure when the user can no
longer be localised with respect the current experience graph. In
practice, this may be caused by a) the user gets lost or starts to
explore a new path; or b) the current appearance of a previously
traversed route has changed significantly. It detects this with a
decision model (as shown in Fig. 12), by continuously monitoring
the following two variables over a sliding window [t− ω, t]:

Lθ = 2σ−2θ (θt−ω:t − θ̂x̂t−ω :x̂t
)2 (8a)

Lv = [max(vt−ω), ...,max(vt)] (8b)

Lθ describes the difference between the observed heading change
θt−ω:t and that evaluated from the estimated states θ̂x̂t−ω :x̂t

since
time t − ω. σθ is the variance as in Eqn. 6. Lv is the array of
maximum image matching likelihood within the time window.

When Lθ rises over a certain threshold, it is likely that the user
has made a turn which is not present in the previous experience
Ep that she is currently following, or vice versa. In this case,
our system raises an alert and watch Lv for further confirmation.

Fig. 13. Two different experiment sites. Top: the office building, where
left two images are taken at two different floors. Bottom: the museum.

If no consecutive strong image matchings can be found, i.e. Lv

keeps low, localisation failure is confirmed. This means the live
images are very different from those in the experience Ep, i.e.
now the user is exploring a route that hasn’t been traversed before.
On the other hand, if we directly observe low Lv sequences,
our system also declare localisation failure since the current
appearance of the environment is significantly different from the
previous experiences. In both cases, we pause state estimation,
and save the current sensor observations as a new experience
En (as discussed in Sec 2.2). When the system observes a
sequence of consecutive strong image matchings, it believes that
the user is back to the previous experience Ep, and reinstates
the state estimation process. In this way, our system handles
localisation failure gracefully, and continues to accumulate a more
comprehensive representation of the workspace.

5 EVALUATION

5.1 Experiment Setup
Sites and Participants: The proposed approach is evaluated in
two different indoor settings: an office building and a museum.
The office site is a four-storey building with similar layout and
appearance at each floor (roughly 65×35m2), as show in the top
row of Fig. 13. Note that the left two images are taken at different
locations across two floors. The museum site is much bigger in
size (∼110×55m2), and has lots of open space and complex
objects such as shelves and statues, as shown in the bottom row
of Fig. 13). We recruited five participants of different genders,
heights and ages, and asked them to walk normally in both sites.
During the experiments, the participants wore smart glasses, and
held mobile phones in their hands (cameras facing forward) while
walking. In our experiments, the cameras of the glasses and mobile
phones were facing towards the moving direction for most of the
time. However, this is not a restriction of the system, since if the
device orientation changes significantly, our system will create
new experiences to capture the appearance of the environment
from new angles, which can be used in subsequence localisation.
The participants have repeated a set of trajectories for several
times, where we randomly select a subset (across different users)
to form experience graph, and use the rest for testing.
Implementation and Devices: The back-end of our system is built
under Linux 3.19, and runs as a deamon process on a Ubuntu 14.04
server. The front-end is implemented under Android systems (≥
4.4), and has been tested on multiple mobile devices, including
Google Glasses, Nexus 4, HTC One M8 and Nexus 6. These
devices differ greatly in terms of hardware specifications and

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 11

TABLE 1
Hardware specs and computational capability of different devices.

Device CPU RAM MFLOPS
Google Glass Dual core @ 1.0GHz 1GB 53.13

Nexus 4 Quad core @ 1.5GHz 2GB 137.21
HTC One M8 Quad core @ 2.3GHz 2GB 311.95

Nexus 6 Quad core @ 2.7GHz 3GB 606.29

1 2 3 4 50

.2

.4

.6

.8

1

Localisation Error(m)

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

1 2 3 4 50

.2

.4

.6

.8

1

Localisation Error(m)

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

(a) (b)

SVM
FAB-MAP
NaviGlass
L-Learning

Google Glass
Nexus 6

Fig. 14. (a) Error distribution of offline localisation. (b) Error distribution
of online localisation on different devices.

computational power (see Table. 1), but as shown later in Sec. 5.2,
the proposed approach is able to achieve significant performance
gain on all of them. Our visual processing pipeline (for both
front-end and back-end) is built with OpenCV 2.4.10, and uses
SURF [12] to extract visual features.
Ground Truth: We use the Conditional Random Fields (CRFs)
based map matching approach (in [6]) to generate ground truth.
We assume the accurate metrical maps (i.e. floorplans) are avail-
able, and at certain points of the trajectories, the true positions of
the users can be inferred from the captured images (e.g. at turns, or
when passing by a unique landmark). Those known positions are
manually labelled and fed into the CRFs model as priors, which
help the map matching process converge to the correct estimates.
Competing Algorithms: We compare the proposed lifelong learn-
ing approach (referred to as L-Learning hereafter) with the
following three competing algorithms: 1) SVM, which is our
implementation of the existing Travi-Navi [3] system. It uses
pedestrian dead-reckoning (PDR) to estimate the displacement of
the user, and the Bag-of-Words (BOW) model to represent images.
Given a trajectory, the images captured at nearby locations (e.g.
within 3-step range) are clustered into groups to train a linear
Support Vector Machine (SVM). During localisation, the observed
images are matched to the saved ones based on the trained SVM.
2) FAB-MAP, which also uses PDR to compute the inertial
trajectories, but considers the more advanced FAB-MAP model [9]
for image matching. Comparing to the above SVM algorithm, it
takes the important correlations between the visual words into
account, and evaluates the similarity between images with a
graphical model. However it does not incorporate any optimisation
of the visual processing pipeline: it uses the whole vocabulary and
full images at the same scale. 3) our previous work NaviGlass [8],
which uses a similar processing pipeline as FAB-MAP, but with
a globally reduced visual vocabulary. Note that comparing to the
proposed L-Learning approach, it doesn’t consider the optimal
image scales/regions, nor the spacial variations in visual words:
it just uses a smaller visual vocabulary throughout. To be fair,
for all algorithms we use the same PDR implementation, SURF
parameters, and state estimation algorithm as in Sec. 4.

Nexus 6 HTC One M8 Nexus 4 Google Glass

10 1

102

103

104

Pr
oc

es
si

ng
 ti

m
e(

m
s)

10 0

L-LearningSVM
FAB-MAP

Feature Extraction
Feature Quantisation
BOW Comparison NaviGlass

Fig. 15. The running time of feature detection and quantisation per
image for different devices. The proposed approach is up to 50× faster
than the competing algorithms.

5.2 Experiment Results
Localisation Accuracy: The first set of experiments evaluate the
localisation accuracy of the proposed (L-Learning) and competing
(SVM, FAB-MAP and NaviGlass) algorithms given their different
visual processing techniques. We first consider the ideal offline
scenarios, where the mobile devices are allowed to process all of
the captured images beforehand, and report user positions later.
Fig. 14(a) shows the distribution of localisation errors in offline.
We can see that the naive SVM has much larger errors comparing
to FAB-MAP, NaviGlass and the proposed L-Learning, and the
gap between the latter three algorithms is very small. This means
although L-Learning only processes a tiny portion of information
comparing to FAB-MAP and NaviGlass, it is able to achieve
nearly the same accuracy. On the other hand, in online localisation
scenarios, the accuracy of SVM, FAB-MAP and NaviGlass drops
significantly, as shown in Fig. 14(b). This is because the expensive
visual processing pipeline severely limits the image rate, e.g. on
Nexus 6 it takes about 4s to process one 800×600 image and
Google glasses need almost 20s to finish (see Fig. 15). Thus
those algorithms can’t correct the fast growing drifts of PDR in
time during online positioning. However, the proposed L-Learning
algorithm does not suffer from such a problem since it is much
more lightweight (<100ms on Nexus 6), and is able to localise in
real-time with high accuracy (mean error 0.96m).
Visual Processing Cost: As discussed above, the cost of visual
processing has enormous impact on the accuracy when localising
online. The second experiment studies the visual processing time
of the competing algorithms on different mobile devices. Fig. 15
(note the log scale) shows the break down of the average wall
clock time of processing one image. Firstly, we see that the major
computational bottleneck is feature extraction and quantisation,
where the cost of BOW comparison is negligible for all algorithms.
Secondly, on all devices the proposed L-Learning algorithm re-
quires much less time in both feature extraction and quantisation
than competing approaches (up to 50× faster). This is expected,
since our algorithm learns to only work on a) the minimum neces-
sary scale/region of the image, and b) the most discriminative key
words in the visual vocabulary. Note that comparing to SVM and
FAB-MAP, NaviGlass is able to reduce roughly half of the cost on
feature quantisation since it only considers a subset of the visual
words. However, comparing to the proposed L-Learning, it doesn’t
optimise the image scale/region, nor considers the minimum key
words at different parts of the experience. Finally, the cost on
different devices varies significantly, where the wearable smart
glasses require much more processing time than the phones.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 12

16 8 4 2 1 .5 .25
0

4

8

12

0

1

2

0 2 4 6 8 10 12

20

40
Lo

ca
lis

at
io

n
Er

ro
r (

m
)

Energy C
onsum

ption (W
)

0 2 4 6 8 10 12

20

40

C
PU

 L
oa

d
(%

)

Image Sampling Interval (s) Time (s)

(a) (b)

L-Learning Power
NaviGlass Power

L-Learning Error
NaviGlass Error

NaviGlass

L-Learning

Fig. 16. (a) Localisation accuracy and energy consumption under dif-
ferent image sampling intervals. (b) Normalised CPU load of NaviGlass
(top) and L-Learning (bottom) when sampling images every 4s.

TABLE 2
Estimated battery life (hours) of running NaviGlass and L-Learning.

Sampling Interval (s) 16 8 4 2
NaviGlass 6.9 6.6 6.3 5.2

L-Learning 7.5 7.3 7.0 6.3

Accuracy vs. Resource Consumption: The third set of experi-
ments investigate the trade-off between localisation accuracy and
resource consumption of the proposed system. Fig 16(a) shows the
mean localisation error and the energy consumption of our system
and the state-of-the-art NaviGlass when the image sampling in-
terval varies from 16s to 0.25s. Note that here we only evaluate
the systems on the Nexus 6 (with Qualcomm Trepn Profiler [15]),
since on other devices NaviGlass takes too long to process images
(see Fig. 15). As shown in Fig 16(a), NaviGlass is only able
to process images every 2s, while the proposed L-Learning can
process 4 images per second. In addition, for both approaches
smaller image sampling intervals lead to lower localisation error,
but also cause higher energy consumption. Table. 2 shows the
estimated battery life of NaviGlass and the proposed L-Learning,
which is evaluated by running the algorithms for one hour period,
and then projecting the expected battery life based on the observed
energy consumption. We repeat this procedure for five times and
report the average. We see that for L-Learning, when capturing
images at 1Hz, the positioning error has already dropped around
1m, while the gain in accuracy becomes marginal when the image
sampling rate further increases. Finally, although the localisation
error of NaviGlass is comparable to L-Learning, to process the
same amount of images, L-Learning only consumes about half
energy of NaviGlass. As a result, on Nexus 6 L-Learning can
achieve up to 21% longer battery life than NaviGlass, as shown
in Table. 2. This is because NaviGlass takes much longer time
to process each image, where the CPU is constantly occupied, as
shown in Fig. 16(b). Therefore, when energy is not an issue, only
L-Learning has the option to sample denser images to improve
accuracy: as in Fig. 16(a), comparing to the best performance
produced by NaviGlass, L-Learning can further reduce the locali-
sation error to about 1/3.
Impact of Key Word Discovery: This set of experiments evaluate
the proposed key word discovery techniques. We keep images at
the original scale without salient regions, but vary the size of the
key word set, from 10% to the complete vocabulary. To exclude the
impact of the inertial measurements, here we consider the image
matching error, which is the mean distance between the locations
of the matched images and the ground truth. Fig. 17(a) shows
the image matching accuracy when using different amount of key

0

5

10

15

10 20 30 40 50 60 70 80 90 100
Amount of key words(%)

M
ea

n
im

ag
e

m
at

ch
in

g
er

ro
r(m

)

10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

Amount of key words(%)

Fe
at

ur
e

qu
an

tis
at

io
n

tim
e

(s
)

(a) (b)

Greedy
Random

Google Glass
Nexus 6

Fig. 17. (a) Mean image matching error, and (b) running time of feature
quantisation per image when considering different amount of key words.

0 1 2 3 4 5 6 7 8m0

10

20

0 1 2 3 4 5 6 7 8m0

10

20% %

Pe
rc

en
ta

ge

Pe
rc

en
ta

ge
Distance until recoveryDistance before detecting lost

(a) (b)

Fig. 18. Distance travelled between (a) the actual deviation point and
when detecting localisation failure, and (b) the actual return point and
when successful localisation is resumed.

words. We compare our greedy key word discovery algorithm
with a baseline approach that randomly selects words. We can see
that as more words are incorporated, the error of our approach
drops much quicker than the baseline, and after 30∼40% the
improvement becomes marginal. This confirms that in most cases
only a small amount of informative words are necessary to secure
the correct matching. On the other hand, as shown in Fig. 17(b),
the feature quantisation time increases linearly (note that the
increasing rate of Google glasses is much steeper than that of
Nexus 6). Therefore, the proposed key word discovery approach
is able to reduce the cost on feature quantisation greatly without
compromising accuracy, e.g. when using 30% keywords, the mean
error of L-Learning is only 1.19m larger than that of using the
complete vocabulary, but the running time is reduced to about 1/4.
Impact of Image Scales and Salient Regions: This set of exper-
iments investigate the trade-off of using variable image scales,
and performance gain of the proposed salient region detection
approach under a fixed visual vocabulary. Firstly, using images
with lower scales increases the matching error, as shown in
Fig. 19(a). However, note that from the original image (800×600)
at scale 1 to scale 0.3 (240×180), the average image matching
error only increases by 0.67m, while from scale 0.3 down to 0.1,
the error grows drastically. This indicates that we can process
images at lower scales while still maintain reasonable accuracy.
In addition, we see that the gap between only processing salient
regions (red line with triangles) and the full images (blue line
with diamonds) is tiny, i.e. the proposed salient region detection
approach won’t jeopardise the matching accuracy. Secondly, the
relative sizes of the detected salient regions vary at different scales.
As shown in Fig. 19(b), at lower scales the detected salient regions
typically occupy large parts of the images (e.g.∼80% of the image
size at scale 0.2), while at higher scales the ratio becomes much

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 13

0

5

10

15

.1 .2 .3 .4 .5 .6 .7 .8 .9 1
Image scales

M
ea

n
im

ag
e

m
at

ch
in

g
er

ro
r(m

)

0

.2

.4

.6

.8

1

.1 .2 .3 .4 .5 .6 .7 .8 .9 1
Image scales

Sa
lie

nt
 re

gi
on

 ra
tio

w/o salient region(SR)
with salient region(SR)

0

1

3

5

7

9

.1 .2 .3 .4 .5 .6 .7 .8 .9 1

Fe
at

ur
e

ex
tra

ct
io

n
tim

e(
s)

0
.1 .2 .3 .4 .5 .6 .7 .8 .9 1

1

3

5

7

9

Fe
at

ur
e

qu
an

tis
at

io
n

tim
e(

s)

(a) (b) (c) (d)

Glass w/o SR
Glass with SR

Nexus 6 w/o SR
Nexus 6 with SR

Glass w/o SR
Glass with SR

Nexus 6 w/o SR
Nexus 6 with SR

Image scales Image scales

Fig. 19. (a) Mean image matching error at different image scales, with/without salient region detection. (b) Relative sizes of the detected salient
regions (percentage comparing to the full image) at different scales. (c) Running time of feature detection, and (d) quantisation at different image
scales.

0

10

20

30

40

50

0

10

15

20

25

30

(b)

(b2)

(b1)

%

(a)

(a1)

(a2)

Fig. 20. (a) The optimal percentage of key words (relative to the complete vocabulary), and (b) pixels (relative to the original image size) learned by
the proposed algorithm across the visual experiences at the museum site.

smaller (<30% at scale 1). This is because higher scale images
typically contain more detail, and thus features extracted from
smaller salient regions are sufficient to achieve correct matching.
Thirdly, using variable image scales has effect on the running time
of both feature extraction and quantisation. As shown in Fig. 19(c)
and (d), the feature extraction time increases quadratically with
respect to image scales, but the growth of quantisation time
slows down at higher scales. This is also expected because under
the BOW model, the quantisation cost is proportional to the
number of unique words, where higher scale images tend have
a lot of repetitions of the same visual elements. Finally, using
salient regions won’t be able to save much in feature quantisation
(Fig. 19(d)), but could significantly reduce the feature extraction
time, especially at high scales (Fig. 19(c)). This confirms that
our salient region detection algorithm can effectively reduce the
amount of pixels needed to be processed, while still keep most of
the important visual elements appear in the images.
Spatial Variations: This experiment shows the spatial variations
of the parameters learned by the proposed approach. Fig. 20(a)
illustrates the sizes of optimal key word sets (percentage of the
full vocabulary) across space, and Fig. 20(b) is the amount of
pixels (percentage of all pixel in the original image) contained
in the detected salient regions. Firstly, we see in most areas the
learned parameters only contain a small portion of the original
vocabulary or pixels, e.g. we only have to consider at most half
of the whole vocabulary, while the average amount of pixels
needed to be processed is roughly 10∼15% of the original image.
However, we do observe clear spatial variations. For instance in
image Fig. 20(a1), the scene is dominated by common visual
elements, such as lights or door frames, and thus more words
are required to distinguish it from the others within that area. On

the contrary, image Fig. 20(a2) contains very unique features, e.g.
statues and glass cabinets, so it is sufficient to achieve correct
matching with just a few words. Similarly, Fig. 20(b1) and (b2)
show two cases where different scales and salient regions are
considered. As we can see, the experience segment containing
image Fig. 20(b2) passes through large open space, where visual
features are faraway and uniformly distributed. Therefore in that
area we need higher scale images with wide salient regions to
capture informative features. On the other hand, Fig. 20(b1) covers
a narrow corridor where most features are clustered on the left, and
thus lower scales with smaller salient regions are sufficient.
Localisation Failure Detection and Recovery: The last set
of experiments illustrate our system’s ability of detecting and
recovering from localisation failure. In our experiments, we asked
the participants to deliberately explore new routes (e.g. as shown
in Fig. 12(b)), and consider those trajectories as the cases where
the users get lost. In addition, we also synthesise deviations from
the collected experiences. We first randomly select two nodes nd
and nr of the current experience Ec, as the deviation and return
point respectively. Then at the deviation point nd, we create a turn
with random heading change (drawn from a Gaussian distribution
learned from the data), simulating the scenarios where the user
deviates from following the previous experience. Then we replace
the experience segment between nd and nr with a segment sam-
pled from the experiences collected in another environment. In this
way, we create a synthetic “new route” (starting at nd and ending
at nr), and we use this modified Ec to evaluate how our system
handles with localisation failure. Fig. 18(a) shows the distribution
of the distance travelled between nd, i.e. the real deviation point,
and the point where our system reports localisation failure. As we
can see that, the system is able to detect localisation failure quite

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 14

quickly: in most cases it only needs 2∼3m (3∼5 steps). On the
other hand, Fig. 18(b) is the distribution of gap between nr , i.e. the
actual point where the user returns, and the point where our system
is able to resume localisation. We see that it generally takes longer
to recover from localisation failure, since our decision model
(as shonw in Fig. 12) requires a consecutive sequence of strong
image matchings to reinstate successful localisation. However, we
observe that in our experiments at most after 8m, the proposed
system is able to re-localise the user.

6 RELATED WORK

Teach-repeat Navigation: Teach-repeat navigation has been
widely used in guiding robots in GPS-denied scenarios [16]. Re-
cently, this teach-repeat idea has been applied to indoor navigation,
and various sensing modalities have be considered such as radio,
magnetic field and vision [3], [1], [2]. In this context, the teach
phase is performed by a group of motivated users, such as the shop
owners, who walk through the predefined routes (e.g. from the
main entrance to their shops) and record the sensor measurements
with their mobile phones. When a user being navigated through
these routes, the live sensor observations are compared against
previously saved measurements to track her current position, and
navigation instructions are provided accordingly. To cope with the
temporal and spatial variations of the sensor readings, e.g. the
lighting changes, the experience-based navigation (EBN) [10] au-
tomatically switches to teach mode to save the new features unseen
before. The proposed approach is based on EBN framework, in the
sense that we also maintain variable visual experiences at different
areas, but it is fundamentally different from the above teach-repeat
systems. Our approach doesn’t just allow the users to repeat the
previously taught experiences, but also proactively learns how to
follow those experiences more efficiently from the repetitions.
Vision-based Indoor Positioning: Vision-based indoor position-
ing techniques have attracted a lot of interests. One of the popular
solutions is Structure from Motion (SfM) [17], [18], which uses
images taken from different angles to reconstruct the 3D positions
of feature points/lines. During localisation, the camera poses are
computed by matching the live features against the constructed
feature cloud with known positions. Typically SfM is expensive
in computation since it has to compute the 3D model of the
scene, which limits its application on resource constrained de-
vices. The other class of approaches uses visual odometry (VO)
techniques [19], which estimates the camera poses by evaluating
the metrical transformation between adjacent image frames. With
monocular cameras (equipped on most mobile devices), VO ap-
proaches can only estimate the user positions up to a scale since
no depth information is available. The recent vision-aided inertial
tracking [20] fuses inertial measurements with visual odometry,
and works well on commodity mobile phones. However, VO
based approach rely heavily on good initialisation, and it is very
difficult to re-converge after any localisation failure, e.g. abrupt
device orientation changes. Moreover, both SfM and VO based
approaches require high image sampling rate (∼30Hz). On the
other hand, visual matching based approaches such as Travi-
Navi [3] uses sparser images, but unlike the proposed approach,
the matched images are mainly used for pathway identification
rather than localisation. In addition, the proposed approach aims
to make real-time visual positioning practical and efficient for
resource constrained devices such as wearables, which is different
from most of the existing techniques.
Managing Computation on Resource Constrained Devices:
There has been a large body of work on reducing computation on

mobile phones and wearables devices. One common solution is to
offload the heavy computation to the cloud [7], [21]. For real-time
systems, the main challenge is to achieve good trade-off between
communication delay and computational cost. For instance, [7]
considers the cloudlet architecture, which uses local servers to
achieve low-latency interactions with wearable devices. The work
in [21] consider the visual place recognition problem on mobile
phones, and reduces the amount of data to be transmitted by only
offloading the most informative features. Unlike those systems,
the proposed approach doesn’t require constant offloading during
operation, and thus has much less communication overhead. The
other line of research tries to reduce the dimension of data to be
processed. For example, [22] uses random matrix to approximate
images for face recognition on mobile phones, while [23] uses
compressive sensing techniques to reduce data volumes in mobile
crowdsourcing. The proposed system shares similar ideas, but is
also very different: rather than one time optimisation, it keeps
the optimisation results (learned parameters) for future use, and
continues to improve as more experiences are accumulated.
Learning Place-dependent Scene Signatures: The proposed
approach is also closely related to the research on understanding
unique features at different places. For instance, [24] shows that
images captured at one city can be effectively distinguished
from those captured at another by learning place-specific SVM
classifiers on image patches. The work in [25] and [26] extends
this idea to localise robots under extreme scene changes. At the
training phase, for images captured from a known location, it
learns the image regions that are robust to lighting and weather
changes. During localisation, image patches from those regions
are extracted and used as bespoke feature detectors to estimate the
camera motion. Our approach also learns place-dependent scene
properties, but is orthogonal to such work in that a) the learned
place-dependent parameters is used to reduce the visual processing
cost, but not for pose estimation; and b) our system learns not only
the informative image regions, but also the optimal image scales
and visual vocabulary that are essential to localisation success.

7 CONCLUSION AND FUTURE WORK

This paper proposes a novel lifelong learning approach, which
makes indoor positioning with visual experiences efficient and
practical. We show that by continuously learning from following
the previously accumulated experiences, we are able to construct a
series of visual processing parameters, which encode the optimal
settings at different parts of the experiences. In future localisation,
our positioning system actively tunes its visual processing pipeline
according to the learned parameters, to achieve accurate and real-
time localisation on resource-constrained platforms. We imple-
ment the proposed approach on an array of mobile and wearable
devices, and extensive experiments have demonstrated that: a)
with the learned parameters, the cost of visual processing can be
reduced up to two orders of magnitude without jeopardising the
localisation accuracy; b) in most cases, a small set of most distinc-
tive key visual words are sufficient to guarantee the correct image
matchings, which could save most of the feature quantisation cost;
c) using images at suitable scales reduces cost on both feature
extraction and quantisation significantly, while only processing
the salient image regions could further cut the feature extraction
cost, especially at high scales; d) the learned parameters capture
the spatial variations of indoor environment, where different key
word sets, image scales and salient regions are considered to seek
the best trade-off between cost and accuracy. For future work, we

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2852645, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON XXX, VOL. X, NO. X, XX 2018 15

plan to combine the proposed approach with global localisation
techniques such as SLAM, incorporate more types of sensing
modalities, and shift from the hand-crafted features to learned
features, e.g. using deep neural networks.

REFERENCES

[1] I. Constandache, X. Bao, M. Azizyan, and R. R. Choudhury, “Did you
see bob?: Human localization using mobile phones,” in Proc. MobiCom,
2010.

[2] Y. Shu, K. G. Shin, T. He, and J. Chen, “Last-mile navigation using
smartphones,” in Proc. MobiCom, 2015.

[3] Y. Zheng, G. Shen, L. Li, C. Zhao, M. Li, and F. Zhao, “Travi-navi:
Self-deployable indoor navigation system,” in Proc. MobiCom, 2014.

[4] J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and A. Ag-
garwal, “Efficient, generalized indoor wifi graphslam,” in Proc. ICRA,
2011.

[5] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee: zero-
effort crowdsourcing for indoor localization,” in Proc. MobiCom, 2012.

[6] Z. Xiao, H. Wen, A. Markham, and N. Trigoni, “Lightweight map
matching for indoor localisation using conditional random fields,” in
Proc. IPSN, 2014.

[7] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proc. MobiSys, 2014.

[8] Y. Zhang, W. Hu, W. Xu, H. Wen, and C. T. Chou, “Naviglass: Indoor
localisation using smart glasses,” in Proc. EWSN, 2016.

[9] M. Cummins and P. Newman, “Appearance-only slam at large scale with
fab-map 2.0,” The International Journal of Robotics Research, vol. 30,
no. 9, pp. 1100–1123, 2011.

[10] W. Churchill and P. Newman, “Experience-based navigation for long-
term localisation,” The International Journal of Robotics Research,
vol. 32, no. 14, pp. 1645–1661, 2013.

[11] Z. Xiao, H. Wen, A. Markham, and N. Trigoni, “Robust pedestrian dead
reckoning (r-pdr) for arbitrary mobile device placement,” in Proc. IPIN,
2014.

[12] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Proc. ECCV, 2006.

[13] H. Wen, Y. Shen, S. Papaioannou, W. Churchill, N. Trigoni, and P. New-
man, “Opportunistic radio assisted navigation for autonomous ground
vehicles,” in Proc. DCOSS, 2015.

[14] M. Cummins and P. Newman, “Fab-map: Probabilistic localization and
mapping in the space of appearance,” The International Journal of
Robotics Research, vol. 27, no. 6, pp. 647–665, 2008.

[15] “Qualcomm trepn power profiler,” https://developer.qualcomm.com/
software/trepn-power-profiler, accessed: 2016-04-06.

[16] P. Furgale and T. D. Barfoot, “Visual teach and repeat for long-range
rover autonomy,” Journal of Field Robotics, vol. 27, no. 5, pp. 534–560,
2010.

[17] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof, “From structure-
from-motion point clouds to fast location recognition,” in Proc. CVPR,
2009.

[18] B. Micusik and H. Wildenauer, “Descriptor free visual indoor localization
with line segments,” in Proc. CVPR, June 2015.

[19] S. Hilsenbeck, A. Moller, R. Huitl, G. Schroth, M. Kranz, and E. Stein-
bach, “Scale-preserving long-term visual odometry for indoor naviga-
tion,” in Proc. IPIN, Nov 2012.

[20] M. Li and A. I. Mourikis, “Vision-aided inertial navigation with rolling-
shutter cameras,” The International Journal of Robotics Research,
vol. 33, no. 11, pp. 1490–1507, 2014.

[21] G. Schroth, R. Huitl, D. Chen, M. Abu-Alqumsan, A. Al-Nuaimi,
and E. Steinbach, “Mobile visual location recognition,” IEEE Signal
Processing Magazine, vol. 28, no. 4, pp. 77–89, 2011.

[22] Y. Shen, W. Hu, M. Yang, B. Wei, S. Lucey, and C. T. Chou, “Face recog-
nition on smartphones via optimised sparse representation classification,”
in Proc. IPSN, 2014.

[23] L. Xu, X. Hao, N. D. Lane, X. Liu, and T. Moscibroda, “More with
less: lowering user burden in mobile crowdsourcing through compressive
sensing,” in Proc. UbiComp, 2015.

[24] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. Efros, “What makes
paris look like paris?” ACM Transactions on Graphics, vol. 31, no. 4,
2012.

[25] C. McManus, B. Upcroft, and P. Newmann, “Scene signatures : localised
and point-less features for localisation,” in Robotics: Science and Systems
X, University of California, Berkeley, CA, July 2014.

[26] C. Linegar and P. Newman, “Made to measure: Bespoke landmarks for
24-hour, all-weather localisation with a camera,” in Proc. ICRA, 2016.

Dr. Hongkai Wen is an Assistant Professor in
the Department of Computer Science, Univer-
sity of Warwick. He obtained his D.Phil at the
University of Oxford, and worked as a post-
doctoral researcher in Oxford Computer Science
and Robotics Institute. His research interests are
in mobile sensor systems, human-centric sens-
ing, and pervasive data science.

Dr. Ronald Clark is a research fellow at the
Dyson Robotics Lab, Imperial College London.
He obtained his PhD from the Department of
Computer Science, University of Oxford. He is
interested in the general topic of visual machine
perception which is needed to enable mobile
devices to model, explore and understand their
surroundings.

Dr. Sen Wang is an Assistant Professor in
Robotics and Autonomous Systems at Heriot-
Watt University and a faculty member of the Ed-
inburgh Centre for Robotics. Previously, he was
a post-doctoral researcher at the University of
Oxford. His research focuses on robot percep-
tion and autonomy using probabilistic and learn-
ing approaches, especially autonomous naviga-
tion, robotic vision, SLAM and robot learning.

Xiaoxuan Lu is currently a third-year PhD stu-
dent in Department of Computer Science, Uni-
versity of Oxford. Before that, he obtained his
MEng degree at Nanyang Technology University,
Singapore. His research interest lies in Cyber
Physical Systems, which use networked smart
devices to sense and interact with the physical
world.

Bowen Du received the B.E. and M.E. degrees
in Software Engineering from Tongji University,
Shanghai, China in 2013 and 2016 respectively.
He is currently pursuing his Ph.D. in computer
science at the University of Warwick, Coventry,
U.K. His research interests focus on Cyber Phys-
ical Systems, mobile computing and artificial in-
telligence in sensor systems.

Dr. Wen Hu is a senior lecturer at School of
Computer Science and Engineering, the Univer-
sity of New South Wales (UNSW). Much of his
research career has focused on the novel ap-
plications, low-power communications, security
and compressive sensing in sensor network sys-
tems and Internet of Things (IoT). He is a senior
member of the IEEE.

Prof. Niki Trigoni is a Professor at the Depart-
ment of Computer Science, University of Ox-
ford. She is currently the director of the EPSRC
Centre for Doctoral Training on Autonomous In-
telligent Machines and Systems, and leads the
Cyber Physical Systems Group. Her research
interests lie in intelligent and autonomous sensor
systems with applications in positioning, health-
care, environmental monitoring and smart cities.

