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Abstract. Most TLS clients such as modern web browsers enforce coarse-
grained TLS security configurations. They support legacy versions of the
protocol that have known design weaknesses, and weak ciphersuites that
provide fewer security guarantees (e.g. non Forward-Secrecy), mainly
to provide backward compatibility. This opens doors to downgrade at-
tacks, as is the case of the POODLE attack [18], which exploits the
client’s silent fallback to downgrade the protocol version to exploit the
legacy version’s flaws. To achieve a better balance between security and
backward compatibility, we propose a DNS-based mechanism that en-
ables TLS servers to advertise their support for the latest version of
the protocol and strong ciphersuites (that provide Forward-Secrecy and
Authenticated-Encryption simultaneously). This enables clients to con-
sider prior knowledge about the servers’ TLS configurations to enforce a
fine-grained TLS configurations policy. That is, the client enforces strict
TLS configurations for connections going to the advertising servers, while
enforcing default configurations for the rest of the connections. We imple-
ment and evaluate the proposed mechanism and show that it is feasible,
and incurs minimal overhead. Furthermore, we conduct a TLS scan for
the top 10,000 most visited websites globally, and show that most of the
websites can benefit from our mechanism.

1 Introduction

Websites1 vary in the sensitivity of the content they serve and in the level
of communication security they require. For example, a connection to an e-
banking website to make a financial transaction carries more sensitive data than
a connection to an ordinary website to view public news. A close look at how
mainstream TLS clients (e.g. web browsers) treat these differences reveals that
they enforce coarse-grained TLS security configurations, i.e. a “one-size-fits-all”
policy. They2 support legacy versions of the protocol that have known design

1 Throughout the paper we use the terms website, server, and domain, interchangeably
to refer to an entity that offers a service or content on the Internet.

2 We tested the following browsers: Google Chrome version 67.0.3396.87, Mozilla

Firefox version 60.0.2, Microsoft Internet Explorer version 11.112.17134.0,
Microsoft Edge version 42.17134.1.0, and Opera version 53.0.2907.99.



weaknesses and weak ciphersuites that provide fewer security guarantees, e.g.
non Forward-Secrecy (non-FS), and non Authenticated-Encryption (non-AE),
mainly for backward compatibility.

Supporting legacy versions or weak ciphersuites provides backward compat-
ibility, but opens doors to downgrade attacks. In downgrade attacks, an active
Man-in-the-Middle (MitM) attacker forces the communicating parties to operate
in a mode weaker than they both support and prefer. Several studies illustrate
the practicality of downgrade attacks in TLS [1,8,9,10,11,12,18]. Despite numer-
ous efforts to mitigate them, they continue to appear up until 2016 in a draft for
the latest version of TLS, TLS 1.3 [11]. Previous attacks have exploited not only
design vulnerabilities, but also implementation and trust model vulnerabilities
that bypass design-level mitigations such as the handshake messages (transcript)
authentication. For example, the POODLE [18], DROWN [8], and ClientHello

fragmentation [10] downgrade attacks.
Clearly, disabling legacy TLS versions and weak ciphersuites at both ends

prevents downgrade attacks: There is no choice but the latest version and strong
ciphersuites. However, the global and heterogeneous nature of the Internet have
led both parties (TLS client vendors and server administrators) to compromise
some level of security for backward compatibility. Furthermore, from a website
perspective, supporting legacy TLS versions and weak ciphersuites may not only
be a technical decision, but also a business decision not to lose customers for
another website.

However, we observe that if the client has prior knowledge about the servers’
TLS configurations, a better balance between security and backward compatibil-
ity can be achieved, which reduces the downgrade attack’s surface. Given prior
knowledge about the servers’ ability to meet the latest version of the protocol
and strong ciphersuites, the client can change its behaviour and enforce a strict
TLS configurations policy when connecting to these advertising servers.

In this paper, we try to answer the following question: How to enable do-
main owners to advertise their support for the latest version of the
TLS protocol and strong ciphersuites to clients in a usable and au-
thenticated manner? This is in order to enable clients to make an
informed decision on whether to enforce a strict or default TLS con-
figurations policy before connecting to a server.

Our contributions are as follows: First, we propose a mechanism that en-
ables domain owners to advertise their support for the latest version of the TLS
protocol and strong ciphersuites. This enables clients to enforce strict TLS con-
figurations when connecting to the advertising domains while enforcing default
configurations for the rest of the domains. We show how our mechanism aug-
ments clients’ security to detect certain types of downgrade attacks and server
misconfiguration. Second, we implement and evaluate a proof-of-concept for the
proposed mechanism. Finally, we examine the applicability of our mechanism in
real-world deployment by conducting a TLS scan for the top 10,000 most visited
websites globally on the Internet.



2 Background

2.1 Domain Name System (DNS)

Domain Name System (DNS) [17] is a decentralized and hierarchical naming
system that stores and manages information about domains. DNS introduces
different types of information which are stored in dedicated resource records.
For example, the A resource records are used to point a domain name to an
IPv4 address, while TXT records are introduced for storing arbitrary human-
readable textual information. DNS is primarily used for resolving domain names
to IP addresses, and usually this process precedes the communication between
hosts. Whenever a client wants to find an IP address of a domain, for exam-
ple “www.example.com”, it contacts the DNS infrastructure that resolves this
name recursively. Namely, first, a DNS root server is contacted to localize an au-
thoritative server for “com”, then this server helps to localize “example.com”’s
authoritative server, which at the end returns the address of the target domain.
To make this process more efficient, the DNS infrastructure employs different
caching strategies.

2.2 Domain Name System Security Extension (DNSSEC)

DNS itself does not provide (and was never designed to provide) any protection of
the resource records returned to clients. DNS responses can be freely manipulated
by MitM attackers. DNS Security Extensions (DNSSEC) [7] is an extension of
DNS which aims to improve this state. DNSSEC protects DNS records by adding
cryptographic signatures to assert their origin authentication. In DNSSEC, each
DNS zone has its Zone Signing Key (ZSK) pair. The ZSK’s private-key is used
to sign the DNS records. Signatures are published in DNS via dedicated RRSIG

resource records. The ZSK public-key is also published in DNS in the special
DNSKEY record. The DNSKEY record is also signed with the private-key of a Key
Signing Key (KSK) pair, which is signed by an upper-level ZSK (forming a trust
chain). To validate authentication of the DNS received responses, clients have
to follow the trust chain till the root.

2.3 Transport Layer Security (TLS)

Transport Layer Security (TLS) is one of the most important and widely-deployed
client-server protocols that provides confidentiality and data integrity on the In-
ternet. It was formerly known as the Secure Socket Layer (SSL). TLS consists
of multiple sub-protocols including the TLS handshake protocol that is used for
establishing TLS connections. A particularly important and security-sensitive
aspect of the handshake is the selection of the protocol version and the crypto-
graphic algorithms with their parameters (i.e. ciphersuites). Every new version
of TLS prevents security attacks in previous versions. Some ciphersuites provide
more security guarantees than others. For example, Forward Secrecy (FS) is a
property that guarantees that a compromised long-term private key does not



compromise past session keys [16]. Both finite-field Ephemeral Diffie-Hellman
(DHE) and Elliptic-Curve Diffie-Hellman (ECDHE) key-exchange algorithms pro-
vide the FS property. On the other hand, RSA does not provide this property.
Similarly, Authenticated Encryption (AE) provides confidentiality, integrity, and
authenticity simultaneously such that they are resilient against padding oracle
attacks [27][29]. GCM, CCM, and ChaCha-Poly1305 ciphers provide the AE prop-
erty while the CBC MAC-then-Encrypt ciphers do not provide authentication and
encryption simultaneously, and hence do not provide the AE property.

2.4 TLS Version and Ciphersuite Negotiation

We base our description on TLS 1.2 [24]. The coming version TLS 1.3 is still
a draft [25]. At the beginning of a new TLS handshake, the client sends a
ClientHello (CH) message to the server. The ClientHello contains several pa-
rameters including the supported versions and ciphersuites. In TLS 1.2 the client
sends its supported versions as a single value which is the maximum supported
version by the client vmaxC , while in TLS 1.3, they are sent as a list of sup-
ported versions [v1, ..., vn] in the supported versions extension. The vmaxC is
still included in TLS 1.3 ClientHello for backward compatibility and its value
is set to TLS 1.2. The supported versions extension is not for pre TLS 1.3 ver-
sions [25]. The client’s supported ciphersuites are sent as a list [a1, ..., an]. Upon
receiving a ClientHello, the server selects the version and ciphersuite that will
be used in that session, and responds with a ServerHello (SH) containing the
selected version vS and the selected ciphersuite aS . Ideally, these two values are
influenced by the client’s offered versions and ciphersuites. If the server selected
a version lower than the client’s maximum version, most TLS clients fall back
silently to the lower versions (up to TLS 1.0 in all mainstream browsers today).
The silent fallback mechanism can be abused by attackers to perform downgrade
attacks as shown in the POODLE [18], a variant of DROWN [8], and ClientHello
fragmentation [10] downgrade attacks.

2.5 TLS Downgrade Attacks

In a typical downgrade attack, an active MitM attacker interferes with the pro-
tocol messages leading the communicating parties to operate in a mode weaker
than they both support and prefer. Downgrade attacks have existed since the
very early versions of TLS, SSL v2 [30]. They can exploit various types of vulner-
abilities (design, implementation, or trust-model), and target various elements
of the protocol (algorithm, version, or layer) [3]. In the absence of handshake
transcript authentication, downgrade attacks can be trivially performed. Start-
ing from SSL v3, the handshake transcript is authenticated at the end of the
handshake to prevent downgrade attacks. However, experience has shown a series
of downgrade attacks that circumvent the handshake transcript authentication.
For example, [9][1][18][10]. Figure 1 shows version downgrade as in the POODLE
[18] attack.



Client (C) Attacker (MitM) Server (S)

CH(vmaxC ,...)

Dropping
Fallback: vmaxC =
vmaxC − 1

repeat until vmaxC = SSL v3.0

SH(SSL v3.0,...)SH(SSL v3.0,...)

The rest of the handshake The rest of the handshake

Fig. 1: Version downgrade in the POODLE attack [18].

3 Preliminaries

3.1 Strict versus Default TLS Policy

Our mechanism affects the client’s fine-grained TLS configurations. Namely, the
protocol version and ciphersuites. In addition, it affects the client’s fallback mech-
anism. In our proposed mechanism, there are two pre-defined policies (or con-
texts) for the TLS client configurations: strict and default. The strict policy
enforces strong TLS configurations and disables the fallback. We define strong
TLS configurations as those that support only the latest version of the protocol
and only strong ciphersuites. We define strong ciphersuites as those that sup-
port both FS and AE properties simultaneously. The fallback is a mechanism
that instructs the client to retry the handshake with weak configurations if the
handshake with strong configurations has failed. On the other hand, the de-
fault policy enforces both strong and weak TLS configurations, and enables the
fallback. Weak configurations are defined as those that support both the latest
and the legacy versions of the protocol, and both strong and weak ciphersuites.
Weak ciphersuites are defined as those that support non-FS or non-AE. Table 1
summarises the strict versus default policies that we define in our mechanism.
Our prototypical TLS client implementation supports TLS versions: 1.0, 1.1, and
1.2, and 14 ciphersuites (similar to those supported in Firefox browser version
60.0.2 except that our client does not support the DES ciphersuite). Although
TLS 1.3 is present, in our implementation and evaluation (section 6) we con-
sider TLS 1.2 as the latest TLS version. The reason is that TLS is currently in a
transition state from version TLS 1.2 to TLS 1.3. TLS 1.3 has not been officially
approved as a standard (is still a draft [25]), and is still in its beta version in most
mainstream implementations such as OpenSSL. However, this does not affect our
concept in general as it is applicable to the current deployment where TLS 1.2
is the latest version. Finally we note that in TLS 1.3, FS and AE ciphersuites
are enforced by design [25], i.e. strong ciphersuites are implied by TLS 1.3 as
a version. Therefore, in TLS 1.3, the strict configurations policy boils down to
the protocol version and the fallback mechanism. However, there is still a value
in our mechanism’s ciphersuites policy even in TLS 1.3. Our policy enforces the



Table 1: The strict versus default TLS policies that we define in our DSTC mechanism
(3denotes enabled and 7denotes disabled).

Policy TLS Version TLS Ciphersuites Fallback

Strict TLS 1.3 FS and AE 7

Default TLS 1.3; TLS 1.2; TLS 1.1; TLS 1.0 FS; AE; non-FS; non-AE 3

client to refine its ciphersuites before the ClientHello is sent which provides
downgrade resilience even when the server is flawed. This is unlike most TLS 1.3
clients, weak and strong ciphersuites are sent in the ClientHello, relying on
the server to select the right version and ciphersuite. Experience shows that
servers’ flaws can be exploited to make the server select the wrong version as in
ClientHello fragmentation [10].

3.2 Problem Statement

Achieving both security and backward compatibility is challenging. A strict TLS
client configurations policy provides stronger downgrade resilience than the de-
fault one. However, the strict policy may render many ordinary legacy servers
unnecessarily unreachable, which results in a difficult user experience. On the
other hand, the default policy (such as mainstream web browsers today), provide
backward compatibility but this is achieved at the cost of security. Experience
shows that the default policy can be abused by attackers to perform down-
grade attacks as shown in the POODLE attack [18]. Can we achieve a better
balance between the two extremes? Can we enable clients to enforce
fine-grained TLS configurations based on prior knowledge about the
servers’ TLS configurations? Can we design a usable and authenti-
cated mechanism that allows servers to advertise their support for
strong TLS configurations so that clients can enforce a strict TLS
configurations policy for connections going to these servers while en-
forcing a default configurations policy for the rest of the connections?

3.3 System and Threat Models

Our system model considers the following parties: a TLS client, a TLS server,
and a DNS server. A TLS server is identified by its domain name, and the domain
owner controls its DNS zone. These parties are standard for TLS connections
and are assumed to be honest. As is the case of most real-world systems, the
client and server support multiple protocol versions and ciphersuites that vary in
the security guarantees they provide. Some of the versions and ciphersuites that
the client and server support are weak, and are supported by both parties to be
used if and only if their peer is indeed a legacy one that does not support the
strong configurations. The client and server aim to establish a TLS session using
strong configurations. For example, if both parties support the latest version of
the protocol (as of this writing, TLS 1.3), then both parties aim to use TLS 1.3.



The DNS supports DNSSEC and uses strong signature algorithms and strong
keys to sign the zone file which contains all the DNS records. The DNS keys are
authenticated keys through a chain of trust in the DNS hierarchy.

In terms of threat model, we consider a MitM attacker who can passively
eavesdrop on the transmitted messages, as well as actively modify, inject, drop,
and replay messages during transmission. The attacker cannot break sufficiently
strong cryptographic primitives (e.g. RSA signatures with 2048 bit ore more)
that are properly deployed. The attacker does not have access to the DNS
private-key that is used to sign the DNS zone file. We also assume the absence
of MitM attackers in the first connection from the client to the DNS server for
each domain. However, the MitM can exist in subsequent connections from the
client to the DNS server.

3.4 System Goals

Our system goals can be summarised as follows:
– Authentication: TLS clients should be able to verify that the statement ad-

vertising the domain’s support for the strong TLS configurations in the DNS
is genuinely produced by the domain owner.

– Usability: The mechanism should be usable to the clients’ end users. It should
not incur additional manual configurations on the users.

– Compatibility: The mechanism should be compatible with existing Internet
infrastructure. It should not require additional infrastructure or trusted third
parties above those in a typical TLS connection.

– Performance: The mechanism should be lightweight. It should incur minimal
overhead on the clients’ performance.

4 The DSTC Mechanism

4.1 Overview

Our mechanism aims to provide a usable and authenticated method that allows
domain owners to advertise their support for strong TLS configurations to TLS
clients. This provides the clients with prior knowledge that enables them to take
an informed decision on whether to enforce a strict or default TLS configurations
policy, before connecting to a domain. Throughout the paper, we refer to the
DSTC record in the DNS as the DSTC policy record.

4.2 DSTC Policy Syntax

In what follows, we describe each directive used in the DSTC policy syntax.
Figure 2 shows an example of an ideal DSTC record in a DNS zone file.
– name: Specifies an identifier for the DSTC records. Our mechanism uses a

general purpose DNS record (TXT). Therefore, the record must be identi-
fied as a DSTC to be interpreted by clients as a DSTC policy record. This
directive value must be set to DSTC.



tls12 IN TXT 

"name:DSTC;validFrom:01-06-2018;validTo:01-06-2019;tlsLevel:strict-config;

includeSubDomain:0;revoke:0;report:config-errors@tls12.com"

Fig. 2: An example of a DSTC record in the DNS for the domain “tls12”.

– validFrom: Specifies the DSTC policy issuance date. It indicates the recency
of the policy. It acts as a version number for the policy when there are
multiple issued policies. The most recent must be the effective one. This
directive value takes a date in a dd-mm-yyy format.

– validTo: Specifies the DSTC policy expiry date. It indicates the validity of
the policy. This directive value takes a date in a dd-mm-yyy format.

– tlsLevel: Specifies the TLS level that the server advertises. This directive
value must be set to strict-config for the strict TLS configurations policy
to be enforced by the client.

– includeSubDomain: Specifies whether the policy should be enforced to sub-
domains or not. It takes either 0 to disable the option or 1 to enable it.

– revoke: Specifies whether the domain wants to opt-out from the DSTC
policy or not. It takes either 0 to disable the option or 1 to enable it. If
enabled, it acts as a poisoning flag. When a server wants to opt-out from the
DSTC, it should keep advertising a revoke with value 1 until the expiry date
of any previously published DSTC policy. This instructs clients to delete the
revoked DSTC from their storage if exists.

– report: Specifies the email address of the domain owner. It takes a string
in an email address format. The email can be used by TLS clients to allow
the user to report a domain’s failure of complying with the advertised policy
to the domain owner.

4.3 Details

The mechanism can be summarised in three main phases as follows:
1. Policy Registration:

(a) The policy must be defined by the domain owner according to the policy
syntax in section section 4.2.

(b) The policy needs to be published as a TXT record in the DNS by the
domain owner.

(c) The policy needs to be signed by the domain owner using the private-key
of the ZSK. By the end of this step, the signed DSTC policy is publicized
in the DNS in the domain’s TXT record.

2. Policy Query and Verification:
(a) When a client wants to connect to a website, the client queries the DNS

to retrieve the domain’s DNS records. The DSTC is returned in a signed
TXT record.

(b) The client verifies the signature using an authenticated public-key of
the ZSK. If the signature is valid, the client verifies the rest of the DSTC
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Fig. 3: A high-level overview of the DSTC mechanism.

policy directives. Based on the verification result, this step returns a
value that signals the TLS configuration policy to be enforced: either
strict or default along with a message to clarify the status (e.g. invalid
signature) and the reporting email. The strict policy is returned only
when all the verifications pass. Otherwise, the policy remains default.

3. Policy Enforcement:
(a) The client receives the TLS configuration policy from the previous step

(Query and Verification).
(b) The client enforces the policy according to the policy received: either

strict or default.

After the TLS configurations policy is enforced, which affects the TLS Clien-

tHello offered versions and ciphersuites parameters, the client connects to the
server. Figure 3 illustrates the DSTC system and the actors involved. The TLS
connection is not part of our mechanism phases, but we include it in Figure 3
to provide a complete view of the system.

5 Security Analysis

In our system, the attacker wins under two conditions: First, if he can forge a
DSTC policy and present it to a DSTC-supported TLS client as a valid policy.
Second, if he can perform an undetectable TLS version or ciphersuite downgrade
attack that makes a DSTC-supported TLS client accept weak TLS configurations
despite the downgrade-resilience that the DSTC policy provides.

5.1 DSTC Forgery

An active MitM attacker can achieve DSTC forgery if he can add, modify, delete,
drop, or replay a DSTC policy record for a particular domain. The attacker’s
gain from each method can be summarised as follows: First, adding a policy for



a domain that did not register a DSTC policy can cause a Denial of Service
(DoS) attack for that domain. When DSTC-supported clients enforce a strict
configurations policy for a domain that actually did not register a DSTC record
and does not comply with the policy’s requirements (e.g. uses a legacy protocol
version), this will result in aborted handshake by the client. Second, modifying a
DSTC policy record’s directives can cause either DoS or Denial of Policy (DoP)
for the concerned domain, depending on the modified directive. DoP prevents
a policy from being enforced despite the domain’s registration, which results in
default client configurations which in turn provides weaker downgrade-resilience
than desired. For example, modifying the validTo directive to an earlier date
than it actually is, results in DoP since the policy will be marked as expired by
the client at some point of time, and will not be enforced, while it is expected to
be enforced by the domain. On the other hand, modifying the validTo directive
to a later date results in DoS since the policy will be enforced for a domain
that is not advertising the policy and may no longer complying with it. Third,
deleting a DSTC policy record will result in DoP since the client does not get
the DSTC record and enforces the default TLS configurations, which provides
weaker downgrade-resilience. Fourth, replaying a non recent or revoked policy
that has a valid signature can cause a DoS or DoP attacks as explained above.

In our system, adding, modifying, or deleting a DSTC policy record for a
domain is defeated by the digital signature. The DNSSEC is a mandatory com-
ponent of the system where DSTC records are signed by the domain owner using
the private-key of the ZSK. The attacker does not have access to the DNS private-
key and does not have the power to break it or break the signature algorithm.
Regarding replay attacks, the client stores the policy locally and updates or re-
vokes (deletes) it when a signed, more recent (i.e. more recent validFrom date),
and non-expired policy is received. A replayed outdated or revoked policy will
have a less recent issuance date than the stored one, and hence will be detected
even if it has a valid signature. Finally, dropping attacks are also defeated by the
stored policy from the first connection which is received under the assumption
of the absence of MitM in the first connection from client to DNS. If the client
has a non-expired stored policy, and the client has not received any new revoke-
enabled policy to instruct the client to delete it, the absence of the DSTC record
in subsequent DNS queries signals a DSTC dropping attack. Note that connec-
tions after the stored DSTC policy expires are considered a first connection and
assumed to be in a MitM-free connection.

5.2 TLS Downgrade Attacks

We now show how the DSTC mechanism prevents a class of downgrade attacks
that abuse the client’s support for legacy configurations and silent fallback. We
demonstrate it on real-world downgrade attack scenarios.

The first scenario is inspired by the ClientHello fragmentation version
downgrade attack [10]. In this attack, due to a flawed TLS server implementa-
tion, if an attacker fragments the ClientHello, the server falls back to TLS 1.0.
A default client will silently fall back to TLS 1.0 under the assumption that



Client (C) Attacker (MitM) Server (S)

CH(vmaxC ,...) CH'(vmaxC − 1,...)

SH(vR,...)SH(vR,...)

Fig. 4: Illustration of a version downgrade attack with a DSTC-supported client.

it is connecting to a legacy server. However, with a DSTC-supported client and
registered server, this attack is defeated as the client enforces a strict TLS policy
and does not fallback, hence the attack will be detected and the handshake will
be aborted.

The second scenario is inspired by the POODLE version downgrade attack
[18]. In this attack, the attacker drops the ClientHello message one or more
times. Some TLS clients interpret this as a server compatibility issue and retry to
send the ClientHello using a lower version. With a DSTC-supported client, the
client does not fallback since it has prior knowledge about the server’s support
for strong configurations, hence the attack will be detected and the handshake
will be aborted.

6 Implementation and Evaluation

6.1 Applicability

To get an insight into the applicability of our proposed mechanism, we con-
duct a TLS scan (IPv4 space) for the top 10,000 most visited Internet domains
globally. The scan provides quantitative data about the supported and preferred
TLS versions and ciphersuites in real-world servers. We retrieve the top 10,000
domains list3 from Alexa Internet [5] on the 5th of May 2018. To run the scan,
we use sslscan 1.11.11 [23], a state-of-the-art open source TLS scanning tool
that can perform TLS versions and ciphersuites enumeration through multiple
TLS handshakes. The tool supports SSLv2 up to TLS 1.2, and 175 ciphersuites.
We run the scan from the SUTD university’s campus wired network between
the 6th and 12th of May 2018. In terms of ethical considerations, our scan does
not collect any private or personal data. The TLS versions and ciphersuites are
public data which can be viewed by TLS clients through TLS handshakes. The
number of handshakes the tool performs does not represent a danger of DoS.

The total number of servers that completed a successful TLS handshake with
one or more TLS versions and ciphersuites is 7080 (70.80%). We do not inves-
tigate the reasons of handshake failure as this is outside our scope. However,

3 The list gets updated daily, according to Alexa’s support (in a private communica-
tion).



a recent study that performed domain name-based TLS scans for various do-
mains [4], reports 55.7 million and 58.0 million successful TLS handshakes out
of 192.9 million input domains (29.48% on average). Given the fact that our scan
is for top domains, our TLS response rate sounds normal. However, one possible
contributing factor to the handshake failure in our scan can be due to SUTD
university’s Internet censorship system that blocks some website categories such
as porn and gambling.

In terms of TLS versions, of the responding servers in our results, there are
6888 (97.29%) servers that support TLS 1.2. TLS 1.2 is the preferred version
in all the servers that support it. However, there are only 373 (5.27%) servers
that support TLS 1.2 exclusively (without any other versions). On the other
hand, the number of servers that support at least two version, both TLS 1.2 and
TLS 1.1, either exclusively or with other lower versions, is 6462 (91.27%). And
the number of servers that support at least three versions, TLS 1.2, TLS 1.1 and
TLS 1.0, either exclusively or with other lower versions, is 6202 (87.60%).

In terms of ciphersuites, we examine the servers’ ciphersuites in version
TLS 1.2 only. The most frequent number of supported ciphersuites (the norm) is
20 ciphersuite, which appeared in 938 servers (13.62%). To count the servers that
support FS and/or AE, in each domain in our results, we labeled each supported
ciphersuite by one of the following labels: FS+AE, FS+nonAE, nonFS+AE,
or nonFS+nonAE. The four labels are based on the two properties: FS and
AE. FS is identified by checking if the ciphersuite starts with ECDHE or DHE,
while AE is identified by checking if the ciphersuite contains GCM, CCM, CCM8,
or ChaCha20 strings. There are 6500 (94.37%) TLS 1.2 servers containing at
least one FS+AE ciphersuite, either exclusively or with other labels. We find
6483 (94.12%) TLS 1.2 servers that support non-FS or non-AE (i.e. labeled with
nonFS+AE, FS+nonAE, or nonFS+nonAE) in addition to one or more FS+AE
ciphersuite.

The results show that top domain servers support the strong TLS configura-
tions. At the same time, they maintain support for weak configurations that have
known weaknesses and provide fewer security guarantees. Ideally, the clients’
configurations influence the servers’ selected configurations. Asserting servers’
strong configurations to clients adds a value by providing clients with the con-
fidence to enforce a strict TLS configurations policy for connections to these
servers, which reduces the downgrade attack surface as we showed in section 5.2.

6.2 Feasibility

To test the feasibility of our concept, we implement a Proof-of-Concept (PoC)
for the mechanism. On a machine equipped with 16 GB Random Access Memory
(RAM) and Intel Core i7 2.6 GHz processor, and runs Windows 10 (64-bit)
OS, we build a virtual private network with a virtual host-only Ethernet adapter
using VirtualBox [19]. It includes four virtual machines: Three TLS web servers,
a DNS server, and a TLS client. The web servers are equipped with 2 GB of
RAM, Intel Core i7 CPU 2.60 GHz processor, and 1000 Mbps wired network
card. They run Apache 2.4.18 [6] on Ubuntu 16.04 (64-bit) Operating System



Table 2: Test-case scenarios carried from our python DSTC-supported client to TLS
servers and the effect of DSTC (3denotes DSTC registered domain and 7denotes un-
registered) on the TLS handshake (3denotes successful and 7denotes failed).

No.
TLS Server Configurations Successful

HandshakeVersion Ciphersuites Feature DSTC

1 TLS 1.2 FS and AE 3 3

2 TLS 1.0 non-AE 3 7

3 TLS 1.1 non-AE 7 3

(OS). The DNS server is similar to the web servers in specifications except that it
has 4 GB RAM and runs BIND 9.10.3 [15]. The DNS server supports DNSSEC
and the zone file is signed with a 2048 RSA ZSK. The ZSK is signed with a
2048 RSA KSK. We assume the KSK is validated through a chain of trust. To
evaluate a DSTC-supported client, we implement a TLS client using Python

3.6.5 [20] and python’s TLS/SSL library [21] on a Linux Ubuntu 18.04 (64-
bit) OS on a device equipped with 4 GB of RAM, Intel Core i7 CPU 2.60 GHz
processor, and 1000 Mbps wired network card. The client uses OpenSSL 1.1.0g

that is shipped with Ubuntu 18.04. In our PoC we assume the highest version of
TLS is TLS 1.2. Therefore a DSTC-compliant server should comply to TLS 1.2
and strong ciphersuites. Our client initiates a handshake with the three TLS
web servers. The servers are configured as follows: First, to represent a DSTC
compliant server that has registered a DSTC record, we configure a TLS 1.2
server with strong ciphersuites, and register a DSTC policy record for it in the
DNS. Second, to represent a downgrade attack or misconfigured server, we use
a straight-forward method to make the server’s version lower than the DSTC
requirements, we configure a TLS 1.0 server and add a DSTC policy record for
it. Third, to represent a server that has not registered a DSTC record which
should not be affected, we configure a TLS 1.1 which does not comply with the
DSTC requirements and we do not register a DSTC policy record for it.

As depicted in Table 2, the handshake with the first server succeeds as the
server complies with the DSTC requirements. The handshake with the second
server fails as the server fails to comply with the DSTC requirements. The hand-
shake succeeds with the third server as the server did not register a DSTC policy
record. Our experiment confirms that the concept is technically feasible.

6.3 Performance

To get an insight into the computational cost that our mechanism adds over an
ordinary TLS connection, based on scenario 1 in Table 2 (assuming no cached
policy in the client) we measure the execution time for the following functions:
SigVerify for the DNS TXTRRset records signature verification, QueryVerify
for the DNS records query and verification (which includes SigVerify), En-

force for the TLS policy enforcement based on the QueryVerify output, and
finally, the time for the three functions together. Table 3 presents the measure-
ments using the processor timer in python’s 3.6 time module [22], which is



Table 3: The mechanism’s computational overhead in milliseconds.

No. Function Max. Min. Avg.

1 SigVerify 1.40 0.63 0.72
2 QueryVerify 4.99 2.74 3.09
3 Enforce 0.86 0.38 0.41
4 All 3 functions 6.10 3.23 3.58

processor-wide timer. Each measurement is repeated 500 times. A TLS socket
connection establishment in our client takes 8.16 ms on average (without certifi-
cate validation). The mechanism’s overall average overhead costs 3.58 ms. We
conclude that the computational overhead is affordable which is about 43.87%
additional overhead on the TLS socket connection. Our mechanism’s overhead
can be considered an upper-bound as there is a room for improvements through
code optimisation.

7 Related work

Schechter [26] proposes the HTTP Security Requirements in the Domain Name
System (HTTPSSR DNS). It allows domain owners to assert their support for
the TLS protocol to prevent TLS layer downgrade (a.k.a. stripping) attacks.
However, experience shows that asserting TLS (as a layer only) is not sufficient.
Several downgrade attacks that target TLS configurations such as the proto-
col version or ciphersuite as in the POODLE version downgrade [18] have been
shown successful. Dukhovni and Hardaker [13] propose the DNS-based Authen-
tication of Named Entities (DANE). It allows domain owners to bind their own
CA public keys or certificates to detect faked TLS certificates to prevent domain
impersonation attacks. Hallam-Baker [14] proposes the Certificate Authority Au-
thorisation (CAA). It allows domain owners to whitelist specific Certificate Au-
thorities (CAs) for their domains to prevent mis-issued certificates. Alashwali
and Rasmusssen [2] propose client strict TLS configurations against whitelisted
domains as a downgrade attacks defense. The domains are added either by the
client’s users or through servers’ HTTP headers. While adding domains through
the servers’ headers is usable, the strict policy can only be enforced starting
from the second connections (the first connection is configured before the head-
ers are fetched and hence uses default configurations). Our scheme extends this
work by leveraging DNS which allows the strict policy enforcement before the
first connection in a usable and authenticated manner without extra effort from
clients’ users. Finally, Varshney and Szalachowski [28] propose a general DNS-
based meta-policy framework. Overall, none of the previous work have looked at
using DNS to enable domain owners to assert strong TLS configurations.



8 Conclusion

We propose a mechanism that allows domain owners to advertise their support
for strong TLS configurations through a signed DNS record. The client inter-
prets this record and changes its behaviour to the strict policy which affects the
TLS version, ciphersuite, and the fallback mechanism. Our prototype implemen-
tation and its evaluation show the feasibility of our mechanism. Furthermore,
our Internet scan results depict that the majority of servers are ready to benefit
from the proposed mechanism.
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