Propositional Logic Programming and

Knowledge Representation with Horn Clauses

Logic Programming

- Important Formalism for Knowledge Representation and Reasoning (KRR)
- Has its roots in Theorem Proving, based on the Resolution Calculus (Robinson)
- Express knowledge in terms of facts and rules
- Algorithm = Logic + Control (Kowalski)
- PROLOG emerged a general purpose programming language
- Modern languages: enhanced with features such as constraint solving, non-monotonic negation for KRR
- Here: Consider core language, plus some extensions

Positive Propositional Logic Programs

```
shut_down: - overheat

shut_down: - leak

leak: - valve_closed, pressure_loss

valve_closed: - signal_1

pressure_loss: - signal_2

overheat: - signal_3

signal_1: -

signal_2: -
```

- This program captures (simplified) knowledge about a steam engine equipped with three signal gauges.
- Informally, the rules tell that the system has to be shut down if it is in a dangerous state.
- Such states are connected to causes and signals by respective rules.

Logic Program Syntax

A Horn clause is a rule of the form

$$A_0 \leftarrow A_1, \dots, A_m \quad (m \ge 0),$$

where each A_i is a propositional atom.

- The parts on the left and on the right of "←" are called the head and the body of the rule, respectively.
- A rule r of the form $A_0 \leftarrow$, i.e., whose body is empty, is called a *fact*.
- A logic program is a finite set of Horn clauses.

Logic Program Semantics

• An atom A is true w.r.t. program P (denoted $P \models A$), if A is a classical consequence of P.

```
shut_down : - overheat

shut_down : - leak

leak : - valve_closed, pressure_loss

valve_closed : - signal_1

pressure_loss : - signal_2

overheat : - signal_3

signal_1 : -

signal_2 : -
```

• $P \models signal_1, P \models signal_2, P \models valve_closed, \dots P \models leak, \dots$

Relationship to the SAT Problem

- ullet Each program P can viewed as a classical CNF $\phi(P)$
- Each rule r corresponds to a clause $\phi(r)$:

$$A_0 \leftarrow A_1, \dots, A_m \quad \Rightarrow \quad A_0 \vee \neg A_1 \cdots \neg A_m$$

• $\phi(P) = \bigwedge_{r \in P} \phi(r)$

Theorem. $P \models A$ holds if and only if $\phi(P) \land \neg A$ is unsatisfiable

Remark: in Logic Programming, a "query" A is often written as $\leftarrow A$.

Logic Programs: Semantics

- ullet The *Herbrand Base* B_P of program P is the set of all atoms occurring in P
- A *Herbrand interpretation* of P is any subset $I \subseteq B_P$ Intuitively, the atoms in I are true and all others are false.
- A *Herbrand model* of P is any Herbrand interpretation I which satisfies every rule $A_0 \leftarrow A_1, \ldots, A_m$ in P, i.e., $A_0 \in I$ whenever $\{A_1, \ldots, A_m\} \subseteq I$
- The semantics of P is given by the *least Herbrand model* of P, denoted LM(P), i.e., the unique Herbrand model M of P such that each different Herbrand model I of P satisfies $I \not\subseteq M$.

Example /2

```
shut_down: - overheat

shut_down: - leak

leak: - valve_closed, pressure_loss

valve_closed: - signal_1

pressure_loss: - signal_2

overheat: - signal_3

signal_1: -

signal_2: -
```

- $M_1 = \{ < \text{all atoms} > \} = B_P$
- M_2 = { signal_1, signal_2, valve_closed, pressure_loss, leak shut_down, leak, overheat}
- $M_3 = \{ \text{ signal_1, signal_2, valve_closed, pressure_loss, shut_down, leak} \}$

Operational Characterization

ullet We can compute lm(P) by fixpoint iteration of the ${\it immediate\ consequence}$ operator

$$T_P: 2^{B_P} \to 2^{B_P}$$

defined by

$$T_P(I)=\{A_0\in B_P\mid P \text{ contains a rule }A_0: -A_1,\dots,A_m$$
 such that $\{A_1,\dots,A_m\}\subseteq I \text{ holds }\}.$

- ullet Intuition: all facts provable by rules in P from I in one step.
- ullet Notice: The operator T_P is monotone, i.e., $I\subseteq J$ implies $T_P(I)\subseteq T_P(J)$

Fixpoint Results

Well-known results in Logic Programming:

ullet Theorem. T_P has a least fixpoint T_P^∞ , which is the limit of the sequence $\langle T_P^i \rangle_{i \geq 0}$ defined by

$$T_P^0 = \emptyset,$$

 $T_P^{i+1} = T_P(T_P^i), i \ge 0.$

- Theorem. $T_P^{\infty} = \{A \in B_P \mid P \models A\}$
- Theorem. $T_P^{\infty} = LM(P)$

Example (continued)

```
shut_down :- overheat

shut_down :- leak

leak :- valve_closed, pressure_loss

valve_closed :- signal_1

pressure_loss :- signal_2

overheat :- signal_3

signal_1 :- signal_2 :-.
```

$$\begin{split} T_P^0 &= \emptyset, \\ T_P^1 &= \{ \textit{signal_1}, \textit{signal_2} \}, \\ T_P^2 &= T_P^1 \cup \{ \textit{valve_closed}, \textit{pressure_loss} \}, \\ T_P^3 &= T_P^2 \cup \{ \textit{leak} \}, \\ T_P^4 &= T_P^\infty = T_P^3 \cup \{ \textit{shutdown} \}. \end{split}$$

Thus, the least fixpoint is reached in four steps

Logic Programs: Inference if negative Information

- Conclude negative information under *Negation as Failure*:
- **Definition.** $T \models \neg A$ if $T \not\models A$

Example: $P \models \neg overheat$, because $P \not\models overheat$

- Evaluation inference: For each atom A,
 - $P \models A \Leftrightarrow A \in LM(P)$ $P \models \neg A \Leftrightarrow A \notin LM(P)$
- This constructively implements the Closed World Assumption

Complexity of Propositional Logic Programs

- Existence of lm(P) is trivial (it always exists)
- ullet Reasoning: Given a program P and an atom A, decide whether $A \in lm(P)$

Theorem. Deciding whether $A \in lm(P)$ is **P**-complete.

Proof.

- ullet Membership: Computing T_P^∞ is feasible in polynomial time, and then we only need to check whether $A\in T_P^\infty$.
- ullet Hardness: Encoding of a deterministic Turing Machine (DTM). Given a DTM T, an input string I and a number of steps N (where N is a polynomial in |I|), construct in logspace a program P=P(T,I,N) and an atom A such that $P\models A$ iff T accepts input I within N steps

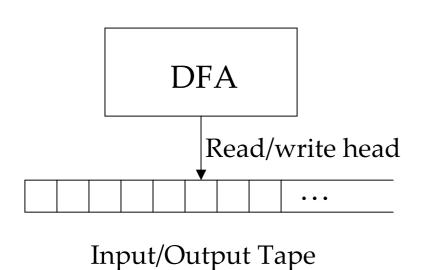
P-hardness:

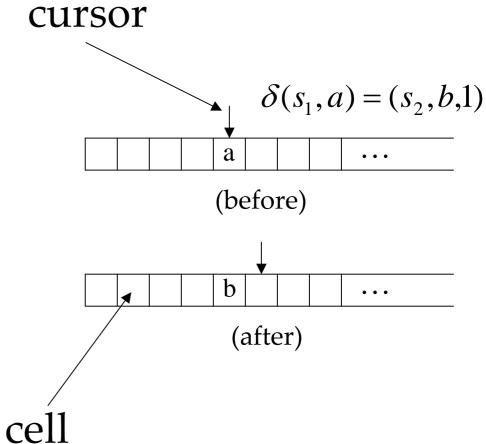
Deterministic Turing Machine (DTM) T = (S, Σ, δ, s_0)

```
where: \sqcup \in \Sigma, s_0, accept \in S, \delta: S \times \Sigma \to (S \times \Sigma \times \{-1,0,1\})
```

- T divided into *cells, cursor* move along the tape
- An input string I is written on the tape: the first |I| cells $c_0,...,c_{|I|-1}$ of the tape, all other cells contain \sqcup
- T takes successive *steps* of computation according to δ .

$$\delta(s,\sigma) = (s', \sigma', d) (d = -1 \text{ or } 0 \text{ or } 1)$$





T: DTM

Transition function t= $\langle s,\sigma,s',\sigma',d\rangle$ expresses the following if-then-rule:

If at some time instant τ the DTM is in state s, the cursor points to cell number π , and this cell contains symbol σ

Then at instant τ +1 the DTM is in state s', cell number π contains symbol σ' , and the cursor points to cell number π +d

• Possible to describe the computation of a DTM *T* on input string *I* from its initial configuration at time instance 0 to the configuration at instant *N* by a (horn) propositional logic program *L*(*T*,*I*,*N*)

• The goal: encode the PTIME Turing computation of T on input I with a horn logic program L and an atom G, s.t. $L \models G$ iff T accepts I in at most N steps

Propositional atoms

(there are many, but only polynomially many...)

- $symbol_{\alpha}[\tau,\pi]$ for $0 \le \tau \le N$, $0 \le \pi \le N$ and $\alpha \in \Sigma$. Intuitive meaning: at instant τ of the computation, cell number π contains symbol α
- *cursor* $[\tau,\pi]$ for $0 \le \tau \le N$, $0 \le \pi \le N$. Intuitive meaning: at instant τ of the cursor points to cell number π
- $state_s[\tau]$ for $0 \le \tau \le N$ and $s \in S$. Intuitive meaning: at instant τ the DTM T is in state s
- *accept* Intuitive meaning: T has accepted.

Initialization facts:

```
symbol_{\sigma}[0,\pi] \leftarrow \quad \text{for } 0 \leq \pi \leq |I|, \text{ where } I_{\pi} = \sigma symbol_{\square}[0,\pi] \leftarrow \quad \text{for } |I| \leq \pi \leq N cursor[0,0] \leftarrow \quad state_{s_0}[0] \leftarrow
```

• Transition rules: $t=\langle s,\sigma,s',\sigma',d\rangle \ 0 \leq \tau,\pi \leq N$ $symbol_{\sigma'}[\tau+1,\pi] \leftarrow state_s[\tau], symbol_{\sigma}[\tau,\pi], cursor[\tau,\pi]$ $cursor[\tau+1,\pi+d] \leftarrow state_s[\tau], symbol_{\sigma}[\tau,\pi], cursor[\tau,\pi]$ $state_s[0] \leftarrow state_s[\tau], symbol_{\sigma}[\tau,\pi], cursor[\tau,\pi]$

• Inertia rules: $0 \le \pi \ne \pi' \le N$

 $symbol_{\sigma}[\tau+1,\pi] \leftarrow symbol_{\sigma}[\tau,\pi], cursor[\tau,\pi']$

• Accept rules: $0 \le \tau \le N$

 $accept \leftarrow state_{accept}[\tau]$

Our encoding precisely simulates the behaviour machine T on input I up to N steps.

(This can be formally shown by induction on the time steps.)

Therefore:

 $L(T,I,N) \models accept$ if and only if the DTM T accepts the input string I within N steps.

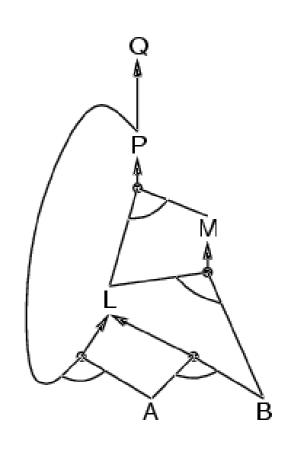
The construction is feasible in Logspace.

→ Horn clause inference is P-complete

Forward chaining

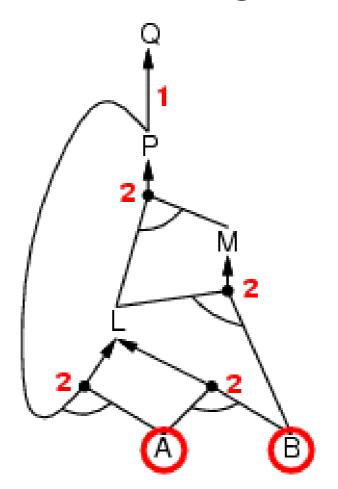
- Idea: fire any rule whose premises are satisfied in the *KB*
 - add its conclusion to the *KB*, until query is found

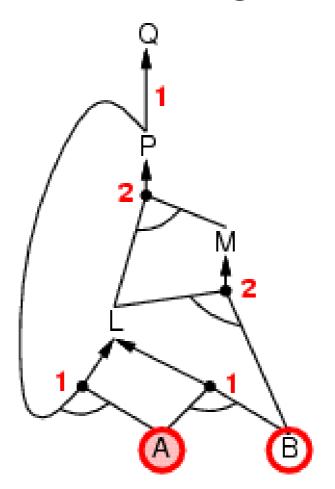
$$P \Rightarrow Q$$
 $L \wedge M \Rightarrow P$
 $B \wedge L \Rightarrow M$
 $A \wedge P \Rightarrow L$
 $A \wedge B \Rightarrow L$
 A

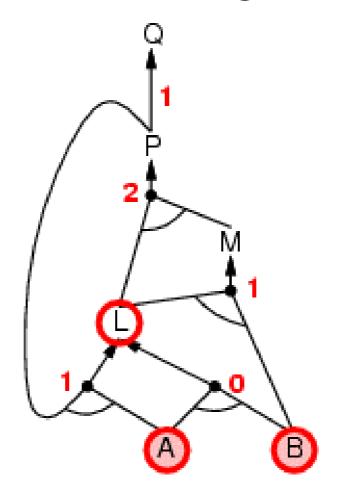


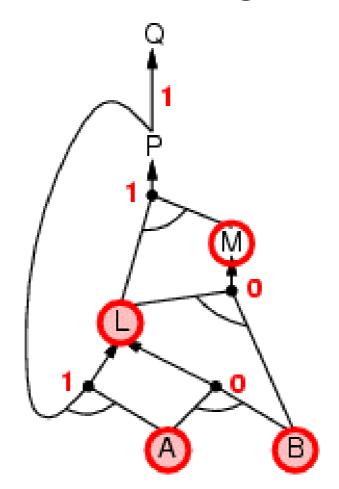
Forward chaining algorithm (Minoux)

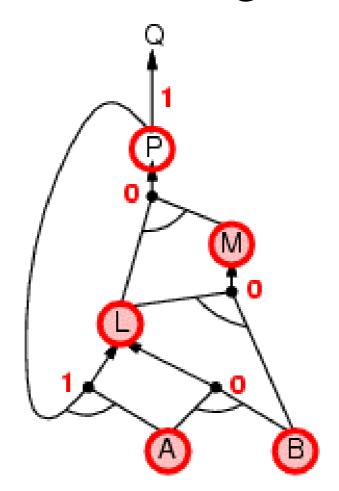
```
function PL-FC-Entails? (KB, q) returns true or false
  local variables: count, a table, indexed by clause, initially the number of premises
                      inferred, a table, indexed by symbol, each entry initially false
                      agenda, a list of symbols, initially the symbols known to be true
   while agenda is not empty do
        p \leftarrow \text{Pop}(agenda)
        unless inferred[p] do
            inferred[p] \leftarrow true
            for each Horn clause c in whose premise p appears do
                 decrement count[c]
                 if count[c] = 0 then do
                      if HEAD[c] = q then return true
                      Push(Head[c], agenda)
   return false
```

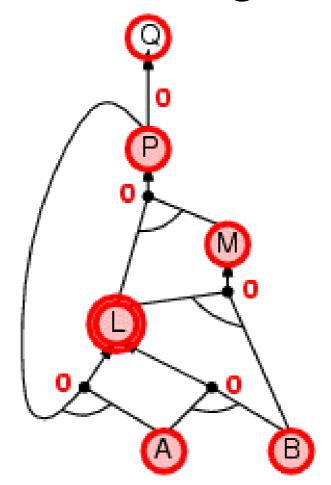




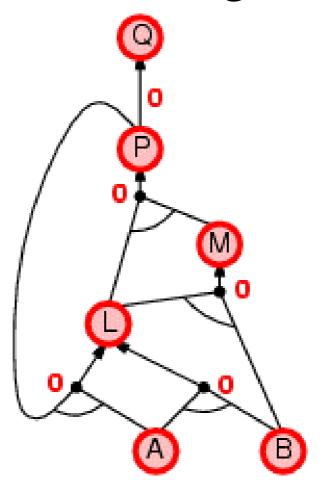












This algorithm can be implemented to run in Linear time on a Random Access Machine.

It suffices to use appropriate data structures (arrays)

Read the Minoux Paper

→ Propositional Horn inference is feasible in Linear Time