Propositional Logic Programming and

Knowledge Representation with Horn Clauses

Complexity of Logic Programming 1

Logic Programming

e Important Formalism for Knowledge Representation and Reasoning (KRR)

e Has its roots in Theorem Proving, based on the Resolution Calculus (Robinson)
e Express knowledge in terms of facts and rules

e Algorithm = Logic + Control (Kowalski)

e PROLOG emerged a general purpose programming language

e Modern languages: enhanced with features such as constraint solving,

non-monotonic negation for KRR

e Here: Consider core language, plus some extensions

Complexity of Logic Programming

Positive Propositional Logic Programs

shut_down : - overheat
shut_down : - leak
leak : - valve_closed, pressure_loss

valve_closed : - signal.1

pressure_loss : - signal_2

overheat : - signal_3
signal_1 : -

signal_2 : -

e This program captures (simplified) knowledge about a steam engine equipped
with three signal gauges.

e Informally, the rules tell that the system has to be shut down ifitis in a
dangerous state.

e Such states are connected to causes and signals by respective rules.

184 215 VU 2.0 Komplexitatsanalyse / Complexity Analysis

Complexity of Logic Programming 3

Logic Program Syntax

e | A Horn clause is a rule of the form

where each A; is a propositional atom.

e The parts on the left and on the right of “<—” are called the head and the body of

the rule, respectively.

e Arule 7 of the form Ap <, i.e., whose body is empty, is called a fact.

e | A logic program is a finite set of Horn clauses.

184 215 WU 2.0 Komplexitatsanalyse / Complexity Analysis

Complexity of Logic Programming

Logic Program Semantics

An atom A is true w.r.t. program P (denoted P = A), if A is a classical

consequence of P.

shut_down : - overheat
shut_down : - leak
leak : - valve_closed, pressure_loss
valve_closed : - signal_1
pressure_loss : - signal_2
overheat : - signal_3
signal_1 :

signal_2 :

e P |=signal_1, P = signal_2, P = valve_closed,

184 215 VU 2.0 Komplexitatsanalyse / Complexity Analysis

Complexity of Logic Programming 5

Relationship to the SAT Problem

e Each program F can viewed as a classical CNF ¢(P)

e Each rule r corresponds to a clause o(7):

‘40 — 44lq ey 14-ﬂ1 — _‘40 \/ _|4_1J_ e _|_"4-ﬂ1_
e H(P) = /\-rEP o(r)
Theorem. P = A holds if and only if o(P) A —A is unsatisfiable

Remark: in Logic Programming, a “query” A is often written as «+— A .

184 215 VU 2.0 Komplexitatsanalyse / Complexity Analysis

Complexity of Logic Programming

Logic Programs: Semantics

The Herbrand Base Bp of program P is the set of all atoms occurring in P

A Herbrand interpretation of P is any subset [C Bp
Intuitively, the atoms in [are true and all others are false.

A Herbrand model of P is any Herbrand interpretation I which satisfies every

rule Ag «— Aq

The semantics of P is given by the least Herbrand model of P, denoted
LM(P),i.e., the unique Herbrand model M of P such that each differ-
ent Herbrand model [of P satisfies I M.

184 215 VU 2.0 Komplexitatsanalyse / Complexity Analysis

Complexity of Logic Programming

Example /2

shut_down : - overheat
shut_down : - leak
leak : - valve_closed, pressure_loss
valve_closed : - signal_1
pressure_loss : - signal_2
overheat : - signal_3
signal.1 :

signal_2 :

My ={ <allatoms> } = Bp
M 2 = { sighal_1, signal_2, valve_closed, pressure_foss, leak shut_down, leak, overhear}

ﬂlrg = { signal_1, signal_2, valve_closed, pressure_loss, shut_down, feak}

184.215 VU 2.0 Komplexitatsanalyse / Complexity Analysis

Complexity of Logic Programming

Operational Characterization

We can compute l-m(P) by fixpoint iteration of the immediate consequence

operator
Tp :25r — 2Br

defined by

Tp(l) ={Ao € Bp | Pcontainsarule Ag:-Ay,..., A

such that { A1, ..., A,,} C I holds }.

Intuition: all facts provable by rules in P from [in one step.

Notice: The operator I'p is monotone, i.e., I C .J implies Tp(1) C Tp(.J)

184 215 WU 2.0 Komplexitatsanalyse / Complexity Analysis

Complexity of Logic Programming 9

Fixpoint Results

Well-known results in Logic Programming:

e Theorem. 1'p has a least fixpoint Tfﬁ which is the l[imit of the sequence
<T§;>ij_>[) defined by

TS = 0,
T5Y = Tp(Th),i> 0.

e Theorem. 15" = {Ac Bp | P = A}

e Theorem. 17" = LM (P)

184 215 VU 2.0 Komplexitdtsanalyse / Complexity Analysis

Complexity of Logic Programming

Example (continued)

shut_down : - overheat

shut_down : - leak

leak : - valve_closed, pressure_loss

valve_closed : - signal_1

pressure_loss : - signal_2

overheat : - signal_3

signal_1 : sighal_2: -.

TS = 0,

T}:{j — {signal_1, signal_2},

Tfj = T}:{j U {valve_closed, pressure_loss },
T3 = T2 U {leak},

TE =Tg = T2 U {shutdown}.

Thus, the least fixpoint is reached in four steps

184 215 VU 2.0 Komplexitdtsanalyse / Complexity Analysis

10

Complexity of Logic Programming

Logic Programs: Inference if negative Information

Conclude negative information under Negation as Failure:

Definition. 1" |= —Aif ' £ A

Example: P |= —overheat, because P [~ overheat

Evaluation inference: For each atom A

- PEA & AcLM(P)
- PE-As Ad¢ LM(P)

This constructively implements the Closed World Assumption

184 215 VU 2.0 Komplexitatsanalyse / Complexity Analysis

11

Complexity of Logic Programming 12

Complexity of Propositional Logic Programs

e Existence of [m(P) is trivial (it always exists)

e Reasoning: Given a program P and an atom A, decide whether A € (m(P)

Theorem. Deciding whether A € Im/(P) is P-complete.

Proof.

e Membership: Computing Tﬁ“ Is feasible in polynomial time, and then we only
need to check whether A € T'5°.
e Hardness: Encoding of a deterministic Turing Machine (DTM).

Given a DTM 1, an input string / and a number of steps N (where N is a

), construct in logspace a program P = P(1", I, N') and an

polynomial in |/
atom A such that P |= A iff T accepts input I within /N steps

184.215 VU 2.0 Komplexitdtsanalyse / Complexity Analysis

P-hardness:

Deterministic Turing Machine (DTM) T = (S5,Z, 9, s))
where: LU € X, sy accepte S, 8:Sx X — (5 x X x{-1,0,1})

e T divided into cells, cursor move along the tape

e An input string I is written on the tape: the first |I|
cells c,...,c1; of the tape, all other cells contain L

o T takes successive steps of computation according to
S.

d(s,0)=(s’,0’,d) (d=-1or0or1)

CUursor

DFA \ o(s;,a)=(s,,b1)

!
lRead/write head i
(before)
Input/Output Tape) b ,

/ (after)

cell

T: DTM

Transition function t=(s,c, s’,6’,d) expresses
the following if-then-rule:

If at some time instant T the DTM is in state
s, the cursor points to cell number n, and
this cell contains symbol

Then at instant T +1 the DTM is in state s’,
cell number n contains symbol ¢’, and the
cursor points to cell number n+d

* Possible to describe the computation of a DTM T
on input string I from its initial configuration at
time instance 0 to the configuration at instant N
by a (horn) propositional logic program L(T,I,N)

* The goal: encode the PTIME Turing computation

of T on input I with a horn logic program L and
an atom G, s.t. L F G itf T accepts I in at most N

steps

Propositional atoms
(there are many, but only polynomially many...)
o symbol [t,r]for0 <t <N,0<n<Nanda € X.

Intuitive meaning: at instant t of the computation,
cell number n contains symbol o

o cursor|[t,n]for0 <t <N, 0 < 7w <N. Intuitive
meaning: at instant t of the cursor points to cell
number

o state[t] for 0 <t < N and s € S. Intuitive meaning:
at instant t the DTM T is in state s

* accept Intuitive meaning: T has accepted.

e [nitial
symbol |

0,1

symbol |

0,m.

ization facts:

— tor0<n < IIl, wherel =o
«— for lIl <t <N

cursor|0,0] <

stateSO[O

| <

e Transition rules: t=(s,6,s’,6’,d) 0 <1t <N
symbol [t+1,mt] < state[t], symbol [t,n], cursor[t,n]
cursor [t+1,n+d] < state[t], symbol [t,n], cursor[t,m]
state [0] < state/[t], symbol Jt,r], cursor|t,m]

¢ [nertiarules: 0 <m#n" <N

symbol [t+1,mt] < symbol |t,n], cursor[t,n]

 Acceptrules:0 <t <N

accept <— state,qonl Tl

Our encoding precisely simulates the
behaviour machine T on input I up to N steps.

(This can be formally shown by induction on
the time steps.)

Therefore:

L(T,IN) F accept if and only if the DTM T
accepts the input string I within N steps.

The construction is feasible in Logspace.

=» Horn clause inference Is P-complete

Forward chaining

 |dea: fire any rule whose premises are satisfied in the KB
— add its conclusion to the KB, until query is found

P = (@

LANM = P D
BAL = M E}\
ANP = L M
ANB = L

A

B /

© Mitchell P. Marcus A

© Mitchell P. Marcus

Forward chaining algorithm (Minoux)

function PL-FC-ENTAILS? (KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p+ Popr(agenda)
unless inferred(p| do
inferred|p| « true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count|[c] = 0 then do
if HEAD|¢] = ¢ then return true
Pusa(HEAD(c|, agenda)
return false

Forward chaining example

© Mitchell P. Marcus

Forward chaining example

© Mitchell P. Marcus

Forward chaining example

© Mitchell P. Marcus

Forward chaining example

Q

1
F:l
1
s
EII

© Mitchell P. Marcus

Forward chaining example

© Mitchell P. Marcus

Forward chaining example

© Mitchell P. Marcus

Forward chaining example

© Mitchell P. Marcus

Forward chaining example

© Mitchell P. Marcus

This algorithm can be implemented to run In
Linear time on a Random Access Machine.

It suffices to use appropriate data structures (arrays)

Read the Minoux Paper

=» Propositional Horn inference is feasible in
Linear Time

© Mitchell P. Marcus

	P-hardness:�
	Forward chaining
	Forward chaining algorithm (Minoux)
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example
	Forward chaining example

