
Complexity and Expressive Power
of Datalog

1

Datalog Programs

• A Datalog Program P consists of a finite set of rules of form

A0 ← A1, . . . , Am (m ≥ 0),

where each Ai is a positive atom of the form r(t1, . . . , tk) where each

ti is a variable or a constant.

• Two important settings

1. Datalog programs are “stand alone”. Program may contain variables and

constants.

2. Datalog programs operate over factual databases. The database contains

ground facts, no constants occur within the program. Distinction between

EDB and IDB Predicates.

2

Example of stand-alone Datalog

• Datalog program:

parent(X, Y) :- father(X, Y)

parent(X, Y) :- mother(X, Y)

ancestor(X, Y) :- parent(X, Y)

ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y)

person(X) :-

father(john, mary) :-

father(joe, kurt) :-

mother(mary, joe) :-

mother(tina, kurt) :-

3

Datalog as a Query Language

• Datalog is used as a database query language

• In this context, a datalog program is evaluated over a database, which is a set facts.

• Programs are composed of a “derived” part P (defined predicates) and an “input part”

Din (database facts): P ∪Din

Example:

parent(X, Y) :- father(X, Y)

parent(X, Y) :- mother(X, Y)

ancestor(X, Y) :- parent(X, Y)

ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y)

person(X) :-

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

defined part P

father(john, mary) :- father(joe, kurt) : −

mother(mary, joe) :- mother(tina, kurt) : −

9

=

;

database part Din

4

Refined Notions of Datalog Complexity

• The data complexity is the complexity of checking whether Din ∪ P |= A

when datalog programs P are fixed, while input databases Din and ground

atoms A are an input.

• The program complexity (also called expression complexity) is the complexity

of checking whether Din ∪ P |= A when input databases Din are fixed, while

datalog programs P and ground atoms A are an input.

• The combined complexity is the complexity of checking whether

Din ∪ P |= A when input databases Din , datalog programs P , and ground

atoms A are an input.

5

Semantics of Datalog as a Query Language

The semantics of a datalog program P is defined by reduction to the propositional

case (by “Grounding”)

• Let P be a datalog program operating on a database D.

• Let UD be the universe of D (usually the active universe, i.e., the set of all

domain elements present in D).

• The grounding of a rule r, denoted ground(r,D), is the set of all rules

obtained from r by all possible uniform substitutions of elements of UD

for the variables in r.

6

Semantics of Datalog

• For any datalog program P and database D,

ground(P,D) =
⋃

r∈P

ground(r,D).

• If S is a set of atoms then IDBP (S) denotes those facys of S whose

predicate symbol is an IDB predicate symbol of P .

• The semantics of P is given by

MP : D → IDBP (T∞
ground(P,D)∪D).

7

Examples /2

Program P : ground(P):

parent(X, Y) :- father(X, Y)

parent(X, Y) :- mother(X, Y)

ancestor(X, Y) :- parent(X, Y)

ancestor(X, Y) :- parent(X, Z),

ancestor(Z, Y)

person(X) :-

father(john, mary) :- father(joe, kurt)←

mother(mary, joe) :- mother(tina, kurt)←

parent(john, john) :- father(john, john)

parent(john, mary) :- father(john, mary)

. . .

parent(john, john) :- mother(john, john)

parent(john, mary) :- mother(john, mary)

. . .

ancestor(john, john) :- parent(john, john)

. . .

father(john, mary) :- father(joe, kurt)

mother(mary, joe) :- mother(tina, kurt)

• Herbrand Universe: john,mary, joe,kurt, tina

• Herbrand Base: person(john) person(mary), . . . , parent(john,john), parent(john,mary), . . .

• LM(P) = { father (john,mary), father (joe,kurt), mother (mary,joe), mother (tina,kurt), parent(john,mary),

. . . , ancestor (john,mary), . . . , person(john), . . . person(tina),. . .}

8

Complexity of Datalog Programs

• For Datalog programs, both “A ∈ lm(P)” is decidable, similarly

“A ∈ lm(P ∪D)” in case P operates on a database D.

• Reason: Ground(P) is finite (as UP , BP are finite)

Effective reduction to Propositional Logic Programming is possible:

– Generate Ground(P)

– Decide whether A ∈ lm(Ground(P))

• Questions:

– What is the complexity of this algorithm? (Key: How expensive is computing

Ground(P)?)

– Is this the best algorithm to decide A ∈ lm(P)?

9

Complexity of Grounding Strategy

• Given P,D, the number of rules in ground(P,D) is bounded by

|P | ∗#consts(D)vmax

– vmax (≥ 1) is the maximum number of different variables in any rule r∈P

– #consts(P) = |UD| is the number of constants in D (ass.: |UD| > 0).

• ground(P,D) can be naively generated in time

O(|P | ∗#consts(D)
vmax

) = O(2log |P |+vmax∗log #consts(D)) =

O(2p(‖P∪D‖)),

where p(. . .) is some polynomial and ‖P ∪ ‖ is the size of P ∪D.

• Therefore, A ∈ lm(P ∪D) is decidable in exponential time.

• Observation: ground(P ∪D) can be exponential in the size of P .

10

• Question: Is A ∈ lm(P) feasible in polynomial space ?

11

EXPTIME-Completeness of Datalog Case

Theorem. Given a positive Datalog program P and a ground atom A, deciding

whether A ∈ lm(P) is EXPTIME-complete.

Proof Sketch.

• Membership: By reduction to propositional case (grounding)

• Hardness:

– Adapt the propositional program P (T, I,N) deciding acceptance of input I

for T within N steps, where N = 2m, m = nk (n = |I|) to a datalog

program Pdat(T, I,N)

– Note: We can’t simply generate P (T, I,N), since this program is

exponentially large (and thus the reduction would not be polynomial!)

12

EXPTIME-Hardness of Datalog Programs

Main ideas for lifting P (T, I,N) to Pdat(T, I,N):

• Use predicates symbolσ(~x, ~y), cursor(~x, ~y) and states(~x) instead of the

propositional atoms symbolσ[X,Y], cursor[X,Y] and states[X] respectively.

• The time points τ and tape positions π from 0 to N − 1 are encoded in binary,

i.e. by m-ary tuples tτ = 〈c1, ..., cm〉, ci ∈ {0, 1}, i = 1, . . . ,m, such that

0 = 〈0, ..., 0〉, 1 = 〈0, ..., 1〉, . . . , N − 1 = 〈1, ..., 1〉

• The functions τ+1 and π+d are realized by means of the successor Succm

w.r.t. a linear order≤m on Um, built in P .

13

Modification for Datalog-Complexity Hardness

Modify the program P (T, I,N) as follows (N = 2m, where m = nk):

• Provide facts succ1(0, 1), first1(0), and last1(1) in P .

• Initialization facts:

– Translate symbolσ[0, π] into rules

symbolσ(~x,~t)← firstm(~x),

where ~t represents the position π;

– translate similarly the facts cursor[0, 0] and states0 [0].

– Translate symbol [0, π], where |I| ≤ π ≤ N , to the rule

symbol (~x, ~y) :- firstm(~x), ≤m(~t, ~y)

where ~t represents the number |I|.

14

• transition and inertia rules: For realizing τ + 1 and π + d, use in the body

atoms succm(~x, ~x′).

Example:

symbolσ′ [τ + 1, π] :- states[τ], symbolσ[τ, π], cursor[τ, π]

is translated into

symbolσ′(~x
′, ~y) :- states(~x), symbolσ(~x, ~y), cursor(~x, ~y), succm(~x, ~x′).

• accept rules: translation is straightforward.

15

Defining succm and ≤m

• Add facts succ1(0, 1), first1(0), and last1(1).

• Inductively define succi+1:

succi+1(z, ~x, z, ~y) :- succi(~x, ~y)

succi+1(z, ~x, z′, ~y) :- succ1(z, z′), lasti(~x), firsti(~y)

firsti+1(z, ~x) :- first1(z), firsti(~x)

lasti+1(z, ~x) :- last1(z), lasti(~x)

(where ~x = x1, . . . , xi, ~y = y1, . . . , yi, and ~z = z1, . . . , zi.)

• The order≤m is then easily defined by rules

≤m(~x, ~x) :-

≤m(~x, ~y) :- succm(~x, ~z), ≤m (~z, ~y)

(~x = x1, . . . , xm, ~y = y1, . . . , ym, and ~z = z1, . . . , zm.)

16

Concluding EXPTIME Hardness of Datalog

Let Pdat(T, I,N) denote the datalog program with empty edb described for T , I ,

and N = 2m, m = nk (where n = |I|)

• Pdat(T, I,N) is constructible from T and I in polynomial time (in fact, careful

analysis shows feasibility in logarithmic space).

• Pdat(T, I,N) has accept in its least model⇔ T accepts input I within

N steps.

• Thus, the decision problem for any language in EXPTIME is reducible to

deciding P |= A for datalog program P and fact A.

• Consequently, deciding P |= A for a given datalog program P and fact A is

EXPTIME-hard.

17

Program and Combined Complexity

• Clearly, combined complexity matches the problem P |= A we considered so

far⇒ Datalog is EXPTIME-complete w.r.t. combined complexity.

• As for program complexity, EXPTIME is an upper bound

• From the EXPTIME-hardness proof of P |= A, we can conclude that Datalog is

EXPTIME-hard w.r.t. program complexity (take empty Din).

• This can be sharpened to instances where program P contains no constants

(take Din to be succ1(0, 1), first1(0), and last1(1).)

18

Data Complexity

• For fixed P , the grounding ground(Din ∪ P) has size polynomial in the size of

Din ∪ P (|P | ∗#consts(P)vmax) = O(‖P‖k) for some constant k).

• Moreover, ground(Din ∪ P) can be easily generated in polynomial time

• Therefore, LM(Din ∪ P) is computable in polynomial time, and Datalog has

polynomial-time data complexity.

• Furthermore, P |= A is P-hard w.r.t. data complexity. This can be shown by

proving that a fixed datalog program is able to act as a meta-interpreter for

propositional logic programming.

19

A Datalog Meta-Interpreter for Propositional LP

Note: It is sufficient to interpret propositional logic programs whose clauses have at

most 3 atoms in the rule bodies. In fact, we have shown that atom-inference from

such programs is P-hard.

Encode a propositional LP as follows by a unary relation T0 and a 4-ary relation R.

Encoding of facts: The fact “p←” is encoded by the tuple T (p).

Encoding of rules: A rule “p← q1, q2, q3” is encoded by the tuple

R(p, q1, q2, q3). In case a rule has less than 3 atoms in its body, a body-atom can

be repeated to get a tuple of length 4.

This encoding of a propositional logic program P , which is obviously feasible in

logspace, is denoted by D(P).

20

The meta-interpreter M:

T (X0) :- R(X0,X1,X2,X3), T (X1), T (X2), T (X3)

T (X) :- T0(X)

We have P |= A iff M ∪D(P) |= T (A).

Therefore the data complexity od datalog is PTIME-complete.

21

Semipositive Datalog (Datalog ⊥)

So far, only positive atoms were allowed in rule bodies.

We are going to define a slight extension.

Semipositive datalog programs : EDB-atoms in rule bodies may occur both in

positive and negated form. IDB-atoms cannot be negated.

Semantics: Obvious. Let P be a semipositive program and D a database. Add the

complement relation r for each relation r to the database, yielding D+. Replace

each atom ¬r(x) in a rule body by r(x), yielding P+. Then:

P (D) := P+(D+).

We denote semipositive datalog by datalog⊥.

22

Expressive Power of Semipositive Datalog

A successor ordering of a structure consists of a successor relation Succ on its

universe and special relations Min and Max with the obvious meanings.

THEOREM: On structures provided with a successor ordering, datalog⊥ = PTIME.

PROOF SKETCH:

We outline this for ordered graphs G = (V, Succ,Min,Max,E).

We have to show that each PTIME property over such databases can be encoded by

a semipositive datalog program.

Let us assume some property π is computable in time nk, where n = |V |. There

must exist a Turing machine T that does this job on a suitable binary encoding of G.

Our intention is to simulate (the behaviour of) T by a datalog⊥ program.

23

Ideas:

1.) We use vectors ~x = (x1, . . . , xk) to encode time instants and workhead

position (cell numbers). Here the arguments range over all domain elements from V ,

and hence we can encode exactly |V |k = nk elements (or numbers) with each

such vector.

2.) We define a vectorized successor relation succk(~x, ~y) on vectors of length k in

a similar way as we did it before for binary vectors. (Iteratively, by defining succi for

i = 0 . . . k, and based on the Min, Max, and Succ predicates).

24

3.) We put the graph G on the (datalog-simulated) input tape of the

datalog-simulated Turing machine T that runs in time nk by using the following

binary encoding ~e of E. E is encxoded as a bit vector ~e of size n2 such that

~e[i ∗ n + j] is 1 iff (i, j) ∈ E and 0 otherwise.

This vector ~e is “put on the input tape” by the following 2 rules:

symbol1(0
k, 0k−2,X, Y) :- E(X,Y)

symbol0(0
k, 0k−2,X, Y) :- ¬E(X,Y)

4.) We simulate T on this input in the usual way. Note that the resulting program is

semipositive.

QED

25

Bibliography
[1] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of Logic Programming.

ACM Computing Surveys, 33(3):374–425, 2001. Available at

http://www.kr.tuwien.ac.at/staff/eiter/et-archive/.

[2] T. Eiter and G. Gottlob. Expressiveness of Stable Model Semantics for Disjunctive Logic Programs with

Functions. Journal of Logic Programming, 33(2):167–178, 1997.

[3] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on Database Systems,

22(3):364–418, September 1997.

[4] G. Gottlob, N. Leone, and H. Veith. Succinctness as a Source of Expression Complexity. Annals of Pure and

Applied Logic, 97(1–3):231–260, 1999.

[5] P. Kolaitis and C. H. Papadimitriou. Why Not Negation By Fixpoint ? Journal of Computer and System

Sciences, 43:125–144, 1991.

[6] V. W. Marek and J. B. Remmel. On the expressibility of stable logic programming. Journal of the Theory and

Practice of Logic Programming, 3:551–567, Nov. 2003.

[7] J. Minker and D. Seipel. Disjunctive logic programming: A survey and assessment. In A. Kakas and F. Sadri,

editors, Computational Logic: From Logic Programming into the Future, number 2407 in LNCS/LNAI, pages

472–511. Springer Verlag, 2002. Festschrift in honour of Bob Kowalski.

[8] J. Schlipf. The Expressive Powers of Logic Programming Semantics. Journal of Computer and System

Sciences, 51(1):64–86, 1995. Abstract in Proc. PODS 90, pp. 196–204.

[9] J. Schlipf. Complexity and Undecidability Results in Logic Programming. Annals of Mathematics and Artificial

Intelligence, 15(3/4):257–288, 1995.

