Complexity and Expressive Power of Datalog

Datalog Programs

ullet A Datalog Program P consists of a finite set of rules of form

$$A_0 \leftarrow A_1, \dots, A_m \qquad (m \ge 0),$$

where each A_i is a positive atom of the form $r(t_1, \ldots, t_k)$ where each t_i is a variable or a constant.

- Two important settings
 - Datalog programs are "stand alone". Program may contain variables and constants.
 - 2. Datalog programs operate over factual databases. The database contains *ground facts*, no constants occur within the program. Distinction between EDB and IDB Predicates.

Example of stand-alone Datalog

Datalog program:

```
parent(X,Y) := father(X,Y)
parent(X,Y) := mother(X,Y)
ancestor(X,Y) := parent(X,Y)
ancestor(X,Y) := parent(X,Z), ancestor(Z,Y)
person(X) :=
father(john, mary) :=
father(joe, kurt) :=
mother(mary, joe) :=
mother(tina, kurt) :=
```

Datalog as a Query Language

- Datalog is used as a database query language
- In this context, a datalog program is evaluated over a database, which is a set facts.
- ullet Programs are composed of a "derived" part P (defined predicates) and an "input part" D_{in} (database facts): $P \cup D_{in}$

Example:

```
 \begin{array}{c} \textit{parent}(X,Y) := \textit{father}(X,Y) \\ \textit{parent}(X,Y) := \textit{mother}(X,Y) \\ \textit{ancestor}(X,Y) := \textit{parent}(X,Y) \\ \textit{ancestor}(X,Y) := \textit{parent}(X,Z), \textit{ancestor}(Z,Y) \\ \textit{person}(X) := \\ \textit{father}(\textit{john},\textit{mary}) := \textit{father}(\textit{joe},\textit{kurt}) := \\ \textit{mother}(\textit{mary},\textit{joe}) := \textit{mother}(\textit{tina},\textit{kurt}) := \\ \end{array} \right\} \text{database part } D_{in}
```

Refined Notions of Datalog Complexity

- The *data complexity* is the complexity of checking whether $D_{in} \cup P \models A$ when datalog programs P are *fixed*, while input databases D_{in} and ground atoms A are an *input*.
- The *program complexity* (also called *expression complexity*) is the complexity of checking whether $D_{in} \cup P \models A$ when input databases D_{in} are *fixed*, while datalog programs P and ground atoms A are an *input*.
- The *combined complexity* is the complexity of checking whether $D_{in} \cup P \models A$ when input databases D_{in} , datalog programs P, and ground atoms A are an *input*.

Semantics of Datalog as a Query Language

The semantics of a datalog program P is defined by reduction to the propositional case (by "Grounding")

- ullet Let P be a datalog program operating on a database D.
- Let U_D be the universe of D (usually the active universe, i.e., the set of all domain elements present in D).
- The *grounding* of a rule r, denoted ground(r,D), is the set of all rules obtained from r by all possible uniform substitutions of elements of U_D for the variables in r.

Semantics of Datalog

ullet For any datalog program P and database D,

$$\operatorname{ground}(P,D) = \bigcup_{r \in P} \operatorname{ground}(r,D).$$

- If S is a set of atoms then $IDB_P(S)$ denotes those facys of S whose predicate symbol is an IDB predicate symbol of P.
- ullet The semantics of P is given by

$$\mathcal{M}_P: D \to IDB_P(T^{\infty}_{ground(P,D) \cup D}).$$

Examples /2

Program P:

```
\begin{aligned} \textit{parent}(X,Y) &:= \textit{father}(X,Y) \\ \textit{parent}(X,Y) &:= \textit{mother}(X,Y) \\ \textit{ancestor}(X,Y) &:= \textit{parent}(X,Y) \\ \textit{ancestor}(X,Y) &:= \textit{parent}(X,Z), \\ &\quad \textit{ancestor}(Z,Y) \\ \textit{person}(X) &:= \\ \textit{father}(\textit{john},\textit{mary}) &:= \quad \textit{father}(\textit{joe},\textit{kurt}) \leftarrow \\ \textit{mother}(\textit{mary},\textit{joe}) &:= \quad \textit{mother}(\textit{tina},\textit{kurt}) \leftarrow \end{aligned}
```

ground(P):

```
parent(john, john) : - father(john, john)
parent(john, mary) : - father(john, mary)
...

parent(john, john) : - mother(john, john)
parent(john, mary) : - mother(john, mary)
...

ancestor(john, john) : - parent(john, john)
...

father(john, mary) : - father(joe, kurt)
mother(mary, joe) : - mother(tina, kurt)
```

- Herbrand Universe: john, mary, joe, kurt, tina
- Herbrand Base: person(john) person(mary), ..., parent(john,john), parent(john,mary), ...
- $LM(P) = \{ father(john, mary), father(joe, kurt), mother(mary, joe), mother(tina, kurt), parent(john, mary), ..., ancestor(john, mary), ..., person(john), ... person(tina), ... \}$

Complexity of Datalog Programs

- For Datalog programs, both " $A \in lm(P)$ " is decidable, similarly " $A \in lm(P \cup D)$ " in case P operates on a database D.
- Reason: Ground(P) is finite (as U_P , B_P are finite)

 Effective reduction to Propositional Logic Programming is possible:
 - Generate Ground(P)
 - Decide whether $A \in lm(\operatorname{Ground}(P))$

Questions:

- What is the complexity of this algorithm? (Key: How expensive is computing $\operatorname{Ground}(P)$?)
- Is this the best algorithm to decide $A \in lm(P)$?

Complexity of Grounding Strategy

• Given P,D, the number of rules in ground(P,D) is bounded by

$$|P| * \#consts(D)^{vmax}$$

- $vmax \ (\geq 1)$ is the maximum number of different variables in any rule $r \in P$
- $\#consts(P) = |U_D|$ is the number of constants in D (ass.: $|U_D| > 0$).
- ullet ground(P,D) can be naively generated in time

$$O(|P| * \#consts(D)^{vmax}) = O(2^{\log|P| + vmax * \log \#consts(D)}) = O(2^{p(\|P \cup D\|)}),$$

where $p(\dots)$ is some polynomial and $||P \cup ||$ is the size of $P \cup D$.

- $\bullet \;$ Therefore, $A \in lm(P \cup D)$ is decidable in *exponential time*.
- Observation: $ground(P \cup D)$ can be exponential in the size of P.

 \bullet $\,$ Question: Is $A \in lm(P)$ feasible in polynomial space ?

EXPTIME-Completeness of Datalog Case

Theorem. Given a positive Datalog program P and a ground atom A, deciding whether $A \in lm(P)$ is **EXPTIME**-complete.

Proof Sketch.

- Membership: By reduction to propositional case (grounding)
- Hardness:
 - Adapt the propositional program P(T,I,N) deciding acceptance of input I for T within N steps, where $N=2^m$, $m=n^k$ (n=|I|) to a datalog program $P_{dat}(T,I,N)$
 - Note: We can't simply generate P(T, I, N), since this program is exponentially large (and thus the reduction would not be polynomial!)

EXPTIME-Hardness of Datalog Programs

Main ideas for lifting P(T, I, N) to $P_{dat}(T, I, N)$:

- Use predicates $symbol_{\sigma}(\vec{x}, \vec{y})$, $cursor(\vec{x}, \vec{y})$ and $state_{s}(\vec{x})$ instead of the propositional atoms $symbol_{\sigma}[X, Y]$, cursor[X, Y] and $state_{s}[X]$ respectively.
- The time points τ and tape positions π from 0 to N-1 are encoded in binary, i.e. by m-ary tuples $t_{\tau}=\langle c_1,...,c_m\rangle$, $c_i\in\{0,1\},\,i=1,\ldots,m$, such that $0=\langle 0,...,0\rangle,\,1=\langle 0,...,1\rangle,\ldots,N-1=\langle 1,...,1\rangle$
- The functions $\tau+1$ and $\pi+d$ are realized by means of the successor $Succ^m$ w.r.t. a linear order \leq^m on U^m , built in P.

Modification for Datalog-Complexity Hardness

Modify the program P(T, I, N) as follows ($N = 2^m$, where $m = n^k$):

- Provide facts $succ^1(0,1)$, $first^1(0)$, and $last^1(1)$ in P.
- Initialization facts:
 - Translate $\mathit{symbol}_{\sigma}[0,\pi]$ into rules

$$symbol_{\sigma}(\vec{x}, \vec{t}) \leftarrow \textit{first}^{m}(\vec{x}),$$

where \vec{t} represents the position π ;

- translate similarly the facts $\mathit{cursor}[0,0]$ and $\mathit{state}_{s_0}[0]$.
- Translate $\mathit{symbol}_{\perp}[0,\pi],$ where $|I|\leq \pi \leq N,$ to the rule

$$symbol_{\Box}(\vec{x},\vec{y}) :- \mathit{first}^m(\vec{x}), \leq^m(\vec{t},\vec{y})$$

where \vec{t} represents the number |I|.

• transition and inertia rules: For realizing $\tau+1$ and $\pi+d$, use in the body atoms $succ^m(\vec{x},\vec{x}')$.

Example:

$$\mathit{symbol}_{\sigma'}[\tau+1,\pi] : \mathit{-state}_s[\tau], \mathit{symbol}_{\sigma}[\tau,\pi], \mathit{cursor}[\tau,\pi]$$

is translated into

$$\mathsf{symbol}_{\sigma'}(\vec{x}', \vec{y}) : - \mathsf{state}_s(\vec{x}), \mathsf{symbol}_{\sigma}(\vec{x}, \vec{y}), \mathsf{cursor}(\vec{x}, \vec{y}), \mathsf{succ}^m(\vec{x}, \vec{x}').$$

accept rules: translation is straightforward.

Defining $succ^m$ and \leq^m

- Add facts $succ^1(0,1)$, $first^1(0)$, and $last^1(1)$.
- Inductively define $succ^{i+1}$:

```
\begin{aligned} & succ^{i+1}(z,\vec{x},z,\vec{y}) := succ^i(\vec{x},\vec{y}) \\ & succ^{i+1}(z,\vec{x},z',\vec{y}) := succ^1(z,z'), last^i(\vec{x}), \mathit{first}^i(\vec{y}) \\ & \mathit{first}^{i+1}(z,\vec{x}) := \mathit{first}^1(z), \mathit{first}^i(\vec{x}) \\ & \mathit{last}^{i+1}(z,\vec{x}) := \mathit{last}^1(z), \mathit{last}^i(\vec{x}) \end{aligned} (where \vec{x} = x_1, \ldots, x_i, \vec{y} = y_1, \ldots, y_i, and \vec{z} = z_1, \ldots, z_i.)
```

 \bullet The order \leq^m is then easily defined by rules

$$\leq^m(\vec{x},\vec{x}):-$$

$$\leq^m(\vec{x},\vec{y}):-\operatorname{succ}^m(\vec{x},\vec{z}), \leq^m(\vec{z},\vec{y})$$

$$(\vec{x}=x_1,\ldots,x_m,\vec{y}=y_1,\ldots,y_m,\operatorname{and}\vec{z}=z_1,\ldots,z_m.)$$

Concluding EXPTIME Hardness of Datalog

Let $P_{dat}(T,I,N)$ denote the datalog program with empty edb described for T,I, and $N=2^m$, $m=n^k$ (where n=|I|)

- $P_{dat}(T, I, N)$ is constructible from T and I in polynomial time (in fact, careful analysis shows feasibility in logarithmic space).
- $P_{dat}(T,I,N)$ has accept in its least model $\Leftrightarrow T$ accepts input I within N steps.
- Thus, the decision problem for any language in **EXPTIME** is reducible to deciding $P \models A$ for datalog program P and fact A.
- ullet Consequently, deciding $P \models A$ for a given datalog program P and fact A is **EXPTIME**-hard.

Program and Combined Complexity

- Clearly, combined complexity matches the problem $P \models A$ we considered so far \Rightarrow Datalog is **EXPTIME**-complete w.r.t. combined complexity.
- As for program complexity, **EXPTIME** is an upper bound
- From the **EXPTIME**-hardness proof of $P \models A$, we can conclude that Datalog is **EXPTIME**-hard w.r.t. program complexity (take empty D_{in}).
- This can be sharpened to instances where program P contains no constants (take D_{in} to be $succ^1(0,1)$, $first^1(0)$, and $last^1(1)$.)

Data Complexity

- For fixed P, the grounding $ground(D_{in} \cup P)$ has size polynomial in the size of $D_{in} \cup P$ ($|P| * \#consts(P)^{vmax}$) = $O(||P||^k)$ for some constant k).
- ullet Moreover, $\mathit{ground}(D_{in} \cup P)$ can be easily generated in polynomial time
- ullet Therefore, $LM(D_{in}\cup P)$ is computable in polynomial time, and Datalog has polynomial-time data complexity.
- Furthermore, $P \models A$ is **P**-hard w.r.t. data complexity. This can be shown by proving that a fixed datalog program is able to act as a meta-interpreter for propositional logic programming.

A Datalog Meta-Interpreter for Propositional LP

Note: It is sufficient to interpret propositional logic programs whose clauses have at most 3 atoms in the rule bodies. In fact, we have shown that atom-inference from such programs is P-hard.

Encode a propositional LP as follows by a unary relation T_0 and a 4-ary relation R.

Encoding of facts: The fact " $p \leftarrow$ " is encoded by the tuple T(p).

Encoding of rules: A rule " $p \leftarrow q_1, q_2, q_3$ " is encoded by the tuple $R(p, q_1, q_2, q_3)$. In case a rule has less than 3 atoms in its body, a body-atom can be repeated to get a tuple of length 4.

This encoding of a propositional logic program P, which is obviously feasible in logspace, is denoted by D(P).

The meta-interpreter M:

$$T(X_0) :- R(X_0, X_1, X_2, X_3), T(X_1), T(X_2), T(X_3)$$

$$T(X) : -T_0(X)$$

We have $P \models A$ iff $M \cup D(P) \models T(A)$.

Therefore the data complexity od datalog is PTIME-complete.

Semipositive Datalog (Datalog[⊥]**)**

So far, only positive atoms were allowed in rule bodies.

We are going to define a slight extension.

Semipositive datalog programs: EDB-atoms in rule bodies may occur both in positive and negated form. IDB-atoms cannot be negated.

Semantics: Obvious. Let P be a semipositive program and D a database. Add the complement relation \overline{r} for each relation r to the database, yielding D^+ . Replace each atom $\neg r(\mathbf{x})$ in a rule body by $\overline{r}(\mathbf{x})$, yielding P^+ . Then:

$$P(D) := P^+(D^+).$$

We denote semipositive datalog by datalog $^{\perp}$.

Expressive Power of Semipositive Datalog

A successor ordering of a structure consists of a successor relation Succ on its universe and special relations Min and Max with the obvious meanings.

THEOREM: On structures provided with a successor ordering, datalog $^{\perp}$ = PTIME.

PROOF SKETCH:

We outline this for ordered graphs G = (V, Succ, Min, Max, E).

We have to show that each PTIME property over such databases can be encoded by a semipositive datalog program.

Let us assume some property π is computable in time n^k , where n=|V|. There must exist a Turing machine T that does this job on a suitable binary encoding of G. Our intention is to simulate (the behaviour of) T by a datalog $^\perp$ program.

Ideas:

- 1.) We use vectors $\vec{x}=(x_1,\dots,x_k)$ to encode time instants and workhead position (cell numbers). Here the arguments range over all domain elements from V, and hence we can encode exactly $|V|^k=n^k$ elements (or numbers) with each such vector.
- 2.) We define a vectorized successor relation $succ^k(\vec{x}, \vec{y})$ on vectors of length k in a similar way as we did it before for binary vectors. (Iteratively, by defining $succ^i$ for $i=0\ldots k$, and based on the Min, Max, and Succ predicates).

3.) We put the graph G on the (datalog-simulated) input tape of the datalog-simulated Turing machine T that runs in time n^k by using the following binary encoding \vec{e} of E. E is encoded as a bit vector \vec{e} of size n^2 such that $\vec{e}[i*n+j]$ is 1 iff $(i,j)\in E$ and 0 otherwise.

This vector \vec{e} is "put on the input tape" by the following 2 rules:

$$\textit{symbol}_1(0^k,0^{k-2},X,Y):-E(X,Y)$$

$$\textit{symbol}_0(0^k,0^{k-2},X,Y):-\neg E(X,Y)$$

4.) We simulate T on this input in the usual way. Note that the resulting program is semipositive.

Bibliography

- [1] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of Logic Programming. ACM Computing Surveys, 33(3):374–425, 2001. Available at http://www.kr.tuwien.ac.at/staff/eiter/et-archive/.
- [2] T. Eiter and G. Gottlob. Expressiveness of Stable Model Semantics for Disjunctive Logic Programs with Functions. *Journal of Logic Programming*, 33(2):167–178, 1997.
- [3] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. *ACM Transactions on Database Systems*, 22(3):364–418, September 1997.
- [4] G. Gottlob, N. Leone, and H. Veith. Succinctness as a Source of Expression Complexity. *Annals of Pure and Applied Logic*, 97(1–3):231–260, 1999.
- [5] P. Kolaitis and C. H. Papadimitriou. Why Not Negation By Fixpoint? *Journal of Computer and System Sciences*, 43:125–144, 1991.
- [6] V. W. Marek and J. B. Remmel. On the expressibility of stable logic programming. *Journal of the Theory and Practice of Logic Programming*, 3:551–567, Nov. 2003.
- [7] J. Minker and D. Seipel. Disjunctive logic programming: A survey and assessment. In A. Kakas and F. Sadri, editors, *Computational Logic: From Logic Programming into the Future*, number 2407 in LNCS/LNAI, pages 472–511. Springer Verlag, 2002. Festschrift in honour of Bob Kowalski.
- [8] J. Schlipf. The Expressive Powers of Logic Programming Semantics. *Journal of Computer and System Sciences*, 51(1):64–86, 1995. Abstract in Proc. PODS 90, pp. 196–204.
- [9] J. Schlipf. Complexity and Undecidability Results in Logic Programming. *Annals of Mathematics and Artificial Intelligence*, 15(3/4):257–288, 1995.