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Eye tracking devices have recently become increasingly popular as an interface between people and consumer-
grade electronic devices. Due to the fact that human eyes are fast, responsive, and carry information unique to an
individual, analyzing person’s gaze is particularly attractive for rapid biometric authentication. Unfortunately,
previous proposals for gaze-based authentication systems either suffer from high error rates, or require long
authentication times.
We build upon the fact that some eye movements can be reflexively and predictably triggered, and develop an
interactive visual stimulus for elicitation of reflexive eye movements that support the extraction of reliable
biometric features in a matter of seconds, without requiring any memorization or cognitive effort on the part
of the user. As an important benefit, our stimulus can be made unique for every authentication attempt and
thus incorporated in a challenge-response biometric authentication system. This allows us to prevent replay
attacks, which are possibly the most applicable attack vectors against biometric authentication.
Using a gaze tracking device, we build a prototype of our system and perform a series of systematic user
experiments with 30 participants from the general public. We thoroughly analyze various system parameters
and evaluate the performance and security guarantees under several different attack scenarios. The results
show that our system matches or surpasses existing gaze-based authentication methods in achieved equal
error rates (6.3%) while achieving significantly lower authentication times (5 seconds).

CCS Concepts: • Security and privacy → Authentication; Biometrics; Systems security; • Human-
centered computing→ Interaction devices;
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1 INTRODUCTION
Eye tracking devices capture precise position and movement of the human cornea on a millisecond
scale. This, in turn, allows determining the exact location of one’s gaze on a screen or on surrounding
objects. Since analyzing eye behavior can give insight into our internal cognitive processes and even
predict conditions such as autism [30], eye trackers have been used in neurophysiological research
for over a century, but until recently their use in everyday life was limited due to prohibitive
equipment costs.
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However, the speed and responsiveness of eye movements strongly motivate their use as an
attractive input channel for human-computer interaction1; as a result, recent years have brought a
sharp reduction in retail prices of eye tracking devices. While dedicated trackers can be purchased
for as little as $100 [1], eye tracking capabilities are also being added to consumer products such
as laptops [29], cars [39], tablets, and mobile phones [37]. Given the diverse advantages and
applications of eye tracking, its widespread expansion into our everyday lives is only likely to
continue.
As we demonstrate in the following sections, tracking a user’s gaze is particularly suitable

for fast and low-effort user authentication, especially in scenarios where keyboard input is not
available. Eye movements exhibit traits distinctive enough that classification algorithms (e.g., [13])
can reliably discern among a large group of individuals. However, despite the advantages, exploiting
eye movements for user authentication remains a challenging topic. As we summarize in Section 3,
previous work on gaze-based authentication achieves either high error rates (e.g., EER above 15%)
or long authentication times (e.g., above 20 seconds). One likely explanation for some of these
outcomes are overly complex visual stimuli that result in voluntarily triggered eye movements
which are highly dependent on a user’s current cognitive state.

In this paper, we show how the reflexive physiological behavior of human eyes can be used to
build fast and reliable biometric authentication systems. We utilize the fact that, even though most
eye movements are elicited voluntarily, specific reflexive movements can be actively triggered using
a simple visual stimulus. Measuring and analyzing millisecond-scale characteristics of reflexive
eye movements provides several important benefits. Users’ eyes naturally and spontaneously react
to the shown stimulus so they do not need to follow any instructions or memorize additional
information. As a result, elicitation of reflexive behavior requires lower cognitive load and is very
fast. This, in turn, enables keeping authentication times short while at the same time extracting
large amounts of useful biometric data and achieving low error rates.

Finally, we show a crucial advantage of exploiting reflexive eye movements for authentication: by
employing a challenge-response type of protocol, such systems can provide security even under a
stronger adversary model than the ones usually considered for biometrics. One of the obstacles for
widespread use of biometric authentication in our daily lives is the fact that most biometrics can be
captured and replayed relatively easily. Examples include spoofing image recognition systems with
photographs from social media and spoofing fingerprint recognition using copies of fingerprints
left behind on everyday items. If the visual stimulus can be made unique for each authentication
attempt, then the elicited responses will accordingly be different, but still, include user-specific
characteristics. By always choosing a new challenge (randomly generated stimulus) and verifying
if the response (measured eye movements) corresponds to it, our authentication system can assert
that the biometric sample is indeed fresh. Other biometric systems have to make special provisions
to achieve a level of spoofing and replay protection. For example, sophisticated fingerprint readers
measure additional attributes like temperature andmoisture in order to determine liveness. Our gaze-
based authentication system achieves these guarantees without requiring any other information
besides the recording of a user’s eye movements.

2 BACKGROUND ON EYE MOVEMENTS
We start by giving a short background of the human visual system and describe the necessary
terminology related to eye movements; this allows us to introduce main concepts that motivate
our research and guide the design of the system in the following sections.

1This article is an extension of a previous conference paper [45].

ACM Transactions on Privacy and Security, Vol. 21, No. 5, Article 1. Publication date: December 2018.



Analysis of Reflexive Eye Movements for Fast Replay-Resistant Biometric Authentication 1:3

cher jane

lua

●●
●●●●●
●

●

●

●
●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●

●●●●●●●
●●

●●●●●●●●●●●●●●●
●
●
●●

●●●●
●●

●●●●●
●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
● ● ● ●●●

●●●● ● ● ● ●●●●●●●●●●●●●● ●●●●●●●●●●
●●●

●●
●●●●●●●

●●●●●●●●●●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●
●●
●●

●●
●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●
●●●

●
●

●
●

●

●

●
●

●●
●

●
●
●
●●
●●●

●●
●●●
●●●●●●

●●●●
●●●●

●
●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●
●●
●
●
●
●
●●●

●●●●●●●●●●●●●●●
●●●●●●

●
●

●
●●●●●●●●●●●●●

●

●
●
●
●
●●

●●●
●●●●●●●●●●●●●●●●

●●
●
●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●● ●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●
●

●

●
●
●

●
●
●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●
●
●
●●
●●
●●●
●●
●●
●●●

●
●
●
●●●●●●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●
●●●●●

●●
●●●
●●●●●●●●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●

●

●

●

●
●●●●●●●●●●●

●
●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●
●●●
●●●●
●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●
●

● ●●
●

●
●

● ● ● ● ● ● ● ●●●● ●●●

●
●●●●●●●●●●●

●●
●
●●
●●●●
●●
●
●
●●●●
●●●●●●●●●
●●

●●
●●

●●
●●●●●●●●●●●●●
●●●●
●
●
●
●●●●●●●●●

●●●●●●●●
●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●

●●●
●●●●●●●●●●

●
●
●

●
●●●

●
●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●● ● ●

●

●

●
●

●
●

●
●●

●●●●
●●
●●●●●

●●●
●●●●●

●●●●●
●●●●●●●●●●●

●
●

●
●●●●●●●●●●

●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●●
●●●●●●●●●●●●●●

●●
●●
●●●●

●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●
●●●●●●●● ●●●●●●

●●
●●
●●

●●●
●●
●

●

●

●
●
● ●●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●

●●●●
●●●
●●●●●
●●●●●●●●●●●

●●●
●●●●●

●●●●●●●
●●
●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●

●●●●●
●●●●●●●●●●

●●●●●●
●●●
●●●●●

●●●●●●●●●●●

●

●
●

●

●
●●

●●●●
●●●

●●●●●●●●
●●

●
●
●●●
●
●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●
●●●●●●●●●●●●●●●●●

●
●
●

●
●

●
●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●
●

●
●●
●●●●

●●●●●●●●
●●●●●●●●●●●●●●

●●●●
●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●●
●●
●●
●●●
●●●●
●●
●●●
●●●
●●
●●●
●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●
●● ●●●●● ●●

●●●
●●●●●●●●

●●●●●●
●●

●●●
●●●

●●●●●●●●●
●●
●
●
●●
●●
●●
●●
●●●

●●●●●●●
●

●
●
●●●●●●●●●●

●●●
●●●●●●●●●●●●
●●●

●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●

●

●

●

●
●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●
●
●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●

●
●
●
●●
●●
●●
●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●
●
●

●
● ●●

●
●
●
●●
●●
●●
●●

●●
●●
●●
●●
●●●●●●●●●●

●●
●●
●
●●
●●
●●●
●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●
●●
●●●●

●
●
●
●
●●
●●
●
●
●
●
●●
●●

●●●●●●
●
●
●●●●●●●

●●●●
●
●●●
●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●

●
●
●
●●
●●
●●
●●●●●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●
●
●

●
●
●
●
●●●●●

●
●
●●
●●
●●
●●
●●●
●●●

●●
●●

●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●●●

●●
●●
●●●
●●●●●
●●●
●
●
●
●●
●●●●●●●●●●
●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●
●
●●●●●●●●
●●●

●●
●●
●●

●
●
●
●●
●●
●●
●●●

●
●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●● ● ●●●●●●●

●
●
●●●●●●●●●●

●●
●●●
●●●

●●
●●●

●●●●●●
●●
●●

● ● ●● ●

●
●
●
●
●
●
●●●●●●●●●

●●●●●●●●●●●●●●
●

●

●

●
●
●●
●

●

●

●

●

●
●

●●
●●

●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●●●●●●●●●

●
●
●
●
●

●●●

●●●●●●●
●●●●●●

●●
●

●
●●●●●

●●●●
●
●

●●

●
●

●

●

●

●

●

●
●●●●●●●●●●●●

●●●
●●●●●
●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●●
●●
●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●●
●●●●●●●●●

●
●●●●●●●●●●

●
●

● ●
●●●

● ● ● ●
●●●●
●●●
●●
●●
●●●●●●●

●●●●
●●
●
●●
●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●

●
●
●
●
●●
●●
●●●●●●●●

●

●

●
●
●
●
●●

●

●
●
●
●

●●●
●

●
●
●

●
●●●

●
●
●
●●

●
●●●

●●●●

●●
●●
●●●●●●●●●●●●●●
●●
●●

●
●

●
●●● ●●●●●●●●●●●●

●
●
●
●●
●●
●●●●●

toni

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●●●●●●
●
●
●●
●●●●●●●●●●●●●●●●●●●

●
●●●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●
●
●
●
●
●
●●●●●●●●

●●
●●
●●

●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ● ●
●

●

●

●

●
●
●

●
●
●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●●

●●
●●●●●●●●●●●●

●

●
●
●●
●●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●
●●●

●●
●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●
●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●
●

●

●

●

●
●

● ●
● ●

●

●

●

●

●
●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●
●●
●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●●

●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●

●●●
●●
●

●

●

●

●

●
●●

●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●

●●●●
●●●●●●

●●●●●●●●●●●●●●●●●
●
●●
●
●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●
●●●●●●●
●●●●●
●●●

●●
●●

●●
●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●
●●●
●●
●●●

●●
●●

●●
●●●

●
●
●●

●
●●

●●
●●

●

●

●
●
●
●
●●
●●●
●
●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●
●

●

●
●
●●●●
●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●●●●●●●●●●

●●
●
●●
●●
●●●
●●
●●●
●●●●
●●●●●●●●

●

●

●

●
●

●

●
●

●

●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●

●●●●●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●

●●
●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●

●
●

●
●

● ● ●
● ● ●

●
● ●

●
●
●●
●●
●●●
●●●●

fixation

saccade

single gaze
measurement

1

2

3

4
5

6

7

1

2

3

5

6

7

4

1

2
3

4
5

6

7

1

2

3

5

6

7

4

Fig. 1. Eye movements of four users as a response to the same visual stimulus recorded using SMI
RED 500 device [43]. Fixations are visible as clustered areas, while saccades consist of series of
dots that depict paths. Larger red dots show the positions at which the visual stimulus was shown.
Despite their distinct characteristics, all four gaze paths closelymatch the positions of the stimulus.

Even when one’s gaze is firmly fixated on a single stimulus, human eyes are never completely
still, as they hey are constantly making hundreds of micro-movements per second. These micro-
movements are interlaced with about 3-5 larger movements every second, that amount to more
than 100,000 eye movements during the course of one day [2]. During standard visual tasks, such
as object search or scene perception, our eyes alternate between fixations and saccades. Fixations
are used to maintain the visual focus on a single stimulus, while saccades reorient the eye to focus
the gaze on a next desired position. Saccades are rapid eye movements and they are considered to
be the fastest rotational movement of any external part of our body, reaching angular velocities
of up to 900 degrees per second, and usually lasting between 20 ms and 100 ms [22]. In Figure 1,
fixations can be seen as areas of large numbers of closely grouped points, while saccades consist of
series of more spread recordings that depict fairly straight paths.

Reflexive vs Voluntary Saccades.When a salient change happens in our field of vision, our eyes
naturally reorient on the target, since this is a necessary first step to provide information for further
higher-level cognitive processes [36]. These externally elicited saccades happen reflexively and are
considered to be an effortless neuronal response, requiring very low cognitive load from the user.
After the stimulus onset, a corresponding reflexive saccade is initiated rapidly, with usual latencies
of less than 250 ms [47]. In contrast, voluntary saccadic movements were shown to have larger
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mean latencies (above 300 ms) which are additionally influenced by different internal and external
factors [47].

The analysis of eye movements has been part of medical research for more than a century since
it offers valuable information of our cognitive and visual processing [36], [9], [3]. Keeping the
goal of reliable biometric authentication in mind, we are interested in extracting and combining
multiple characteristics of human eye movements for which there exists supporting research that
they offer stable individual differences between users. For example, Castelhano et al. [8] examine
stable individual differences in characteristics of both saccades and fixations and provides support
for their stable use in biometric authentication. Saccades were also used in [13] to enable stable
authentication and identification. Furthermore, several researchers have analyzed eye behavior
features of trained shooters [12], professional baseball players [4] and other specific groups of
individuals [18], and reported measurable differences between their eye movements characteristics.

Given that reflexive reactions are less dependent on momentary conscious states of an individual
than conscious actions, it is expected that biometrics based on reflexive characteristics offer more
stable authentication. Furthermore, taking into account the advantage in faster elicitation times,
the goal of our research is to design a stimulus that supports the use of reflexive saccades for bio-
metric authentication. For example, prior research has shown that saccade latencies depend on the
dominant eye [32] of the individual, which is a stable characteristic and provides strong motivation
for using saccade latencies for classification. Finally, it was shown that saccade latency varies if
anticipation (temporal expectancy) is present [46]. This provides an argument for randomizing the
stimulus that is shown to users.

3 RELATEDWORK
While different eye tracking methods have been used in medical research for over a century, their
use in security is fairly recent. A review paper by Zhang et. al. [49] provides an overview of
authentication methods and systems proposed before 2010, while Saeed [42] gives a more recent
comparison of methods and results of gaze-based authentication systems proposed up to the year
2013. According to Zhang et. al. [49], existing work in user identification and authentication can be
roughly divided into two categories: 1) using gaze tracking as a human-computer interface (control
channel) to support standard security primitives and 2) using characteristics of the gaze patterns
to extract individual biometric traits that enable distinguishing between different users.
In the first line of research, individuals use their eyes to prove their identity by naturally and

covertly inputting secret information such as passwords [35], [6] or specific patterns on the
screen [5], [11], [31]. Using eyes as a control channel has several advantages, such as prevention of
shoulder-surfing and smudge attacks. Unfortunately, these approaches usually share the negative
characteristics of passwords, such as requiring the users to learn a procedure or remember and
recall different pieces of information, as well as still being susceptible to eavesdropping and replay
attacks.
Our work belongs to the second, biometric approach, which uses the characteristics of individ-

ual’s gaze patterns to discriminate between different users. Such authentication systems usually
come with the general benefits, but also challenges typical to biometrics: they usually require no
memorization, prevent sharing of credentials and offer high usability, but at the same time, they
suffer from irrevocability, which renders replay attacks a serious threat if even a single user’s
biometric sample is acquired by an attacker.

Biometric approaches to gaze-based authentication can be further divided into two subcategories:
those that rely on high-level characteristics of user’s gaze patterns (where and what the user is
looking at), and those that analyze the low-level traits of how the user’s eyes are moving.
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Table 1. Comparison to existing biometric authentication systems based on eye-movements

Analysis of Stimulus Ref. Time [s] EER [%] Notes

High-level Features
Scan paths + arch densities Human faces [7] 17 25
Distribution of areas of interest Human faces [17] 10 36.1
Graph matching Human faces [40] 4 30
Fixation density maps Movie trailer [41] 60 14

Low-level Features
Cepstrum transform of raw signal Dot, fixed inter-stimulus [28] 8 N/A FAR 2%, FRR 22%
Oculomotor plant model Dot, horizontal sequence [33] 21 N/A FAR 5.4%, FRR 56.6%
Scan paths and fixation features Read section of text [20] 60 23
Fixation and saccade features Read section of text [21] 60 16.5
Liveness detection Dot, horizontal sequence [34] 100 18 Focus on liveness detection
Fixation and saccade features Read a poem [16] 60 2.09-10.16 Feat. selection using ICC
Non-linear DTW Enter PIN using mouse [26] 20 6.82 Fusion of mouse and eye movements
Fixation and saccade features Dot, interactive this paper 5 6.3-10.47 Replay attacks FAR: 0.06%

High-level Characteristics. The first approach is motivated by hypotheses that users exhibit
individual behavior during certain tasks, and thus extracts high-level characteristics of users’
responses while the users are instructed to freely look at videos, photos of faces, or other specific
types of stimuli. Prior work includes analysis of scan paths and arch densities [7], areas of interest
on human faces [17], graph matching [40] and fixation density maps [41].
As summarized in Table 1, existing work in this category mostly achieves Equal Error Rates

higher than 15%, which is likely due to complex features being more dependent on varying cognitive
and physiological states of the user. Furthermore, in order to acquire sufficient data to extract
complex features, these systems often require long authentication times (measured in tens of
seconds!), so further improvements are needed before they can be applied to real-world systems.

Low-level Characteristics.On the other hand,motivated by psychological and neurophysiological
research [8] that suggests stable differences between users [50], several authors researched systems
that use low-level characteristics of users’ eye movements as features for discrimination, such as
eye movement velocity profiles, sizes of fixation areas, saccade latencies, etc.

Kasprowski is one of the first authors to start systematically researching the low-level character-
istics of user’s gaze for authentication. In his initial paper [28] and corresponding Ph.D. thesis [23],
he proposes using features such as the distance between the left and right eye-gaze, Fourier and
wavelet transforms of the raw gaze signal and average velocity directions. The used stimulus
consists of 9 LED lights arranged in a 3x3 grid, where the position of the single active light changes
according to a fixed, equally timed sequence, regardless of the user’s gaze. An experimental study
showed half total error rates of close to 12%, but with relatively high false reject rates of 22%. In
relation to our proposal, such stimulus also leads to eliciting some reflexive saccades, but as Table 1
shows, it results in longer authentication times and higher error rates. This is likely due to periods
of time where the user has already gazed at the light but is still waiting for the position of the
active LED to change. The authors propose, organize and describe two yearly competitions in
eye movements verification and identification using their datasets [25], [27], which have further
increased the research interest in gaze-based authentication and its fusion with other biometric
modalities [26].

Komogortsev proposesmodeling the physiological properties of individuals’ oculomotor plant [33]
during multiple horizontal saccades and using the estimated model parameters as features for
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Gaze-tracking
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Fig. 2. Systemmodel. The workstation uses data acquired by the gaze tracker and user’s biometric
template to make the authentication decision. The adversary has read-write access to the gaze
channel. The visual channel is authenticated and therefore read-only.

classification. Related work by Holland et al. [20] provides an insight into performances of mul-
tiple features such as fixation counts and durations during text reading and combines these two
approaches to achieve an EER of 23%, while the newer research [21] provides an additional analysis
of 13 classification features based on fixations and saccades and achieves an EER of 16.5%.

A recent work by a similar group of authors proposes the use of Intra-Class-Correlation as part
of feature selection that specifically optimizes for temporal feature stability [16]. Evaluating several
datasets that include multiple biometric modalities, authors report reductions in comparison to
previously achieved EER rates, even achieving an EER of 2.01% for an eye tracking dataset in which
participants were instructed to read a poem.

Continuous Authentication. In contrast to point-of-entry authentication, in which the classifier
must make a single decision about user’s identity as quickly as possible, Eberz et al. [13] propose
using 21 low-level characteristics of eye movements to continuously re-authenticate users, regard-
less of their current task, and thus detect intruders whose eye movements differ from the legitimate
user over a period of time. For one parameter combination, the authors achieve Equal Error Rates
of 7.8% when 40 seconds are chosen as a period before making the first decision. Furthermore,
using one-class SVM classification, they are able to detect all but 1% of attackers when the classifier
is allowed to make decisions across the span of 30 s [14]. However, due to the requirement of task
independence in a continuous authentication scenario, potential replay attacks remain a serious
vulnerability. If the attacker is able to capture even a very short recording of legitimate user’s gaze,
he can continuously rewind and replay it back to the gaze tracking device, and this causes the
system to (correctly!) accept the received eye movements as coming from a legitimate user.

4 ASSUMPTIONS AND GOALS
We start by defining the system and adversary model used throughout this paper; we then state the
design goals for the visual stimulus and the authentication system.

System Model. We assume the general settings of a user authenticating to a workstation in an
office scenario throughout the course of a normal workday. A simple visualization of the system
model is shown in Figure 2. The user authenticates to a workstation using a gaze tracking device
by looking at a visual stimulus displayed on the screen. The workstation uses data acquired by the
gaze tracker and a user’s biometric template to make the authentication decision.
A legitimate user is one who is enrolled in the authentication system. The enrollment happens

in a secure scenario, where the legitimate user authenticates to the workstation using another
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authentication method. During enrollment, the user is shown several visual stimuli and the work-
station uses the corresponding recordings of the user’s gaze to create a biometric template used for
identity verification.

The interaction takes place through three different channels. The visual channel is an authenti-
cated channel from the workstation to the user that consists of a screen that displays information,
and the gaze tracking channel from the user to the gaze tracker allows the workstation to determine
characteristics about the user’s eyes, including where he is looking on the screen, as well as capture
the reflexive eye movements described in Section 2.

The workstation itself cannot be modified or forced to run unintended code.

Adversary Model. The adversary’s goal is to impersonate a legitimate user and successfully
authenticate to the workstation. The adversary can freely choose his victim from the set of enrolled
users. Since he can observe both the visual and gaze channels, the adversary has access to the
biometric data from previous authentication attempts by the victim.
We focus on two different types of attacks that the adversary can perform:

• Impersonation attack. The adversary tries to gain access to the workstation by positioning
himself in front of the gaze tracking device. This is the most common way of evaluating
biometric authentication systems, and is usually reported in terms of false reject (FRR) and
false accept rates (FAR) as well as equal error rates (EER).

• Replay attack. The adversary targets a specific user and replays his previously recorded
authentication attempt to the authentication system. This can be done either at the sensor
level (e.g. by using a mechanical eye replica) or by bypassing the gaze tracking sensor
completely and injecting the recorded samples between the workstation and the sensor.

Biometrics are non-revocable, and we are surrounded by sensors that can be used to steal
and replay biometric data. Therefore, we believe that modeling an attacker as having access to
legitimate user’s previous biometric measurements is a realistic and necessary assumption. Most
static biometrics, such as fingerprints or face recognition [5], cannot provide security under such
assumptions; the ability to prevent replay attacks is one of the major strengths of our scheme
since simply replaying an acquired sample is arguably the most accessible attack vector for most
biometrics.
We do not consider a targeted adversary who is able to model and generate arbitrary artificial

samples of a user’s eye movements in an interactive manner. As we further discuss in Section 10,
such attacks require significantly higher levels of complexity and effort from the adversary; a level
of commitment against which most biometric systems cannot provide security guarantees.

Design Goals.
• Low cognitive load: The system should pose low cognitive load on the users. Ideally, users
should not be required to remember credentials, carry tokens, or learn new procedures.
Moreover, the cooperation required from the user should be as effortless as possible.

• Fast: The duration of a single authentication attempt should be as short as possible.
• Resistance against replay: The system should make it difficult for an adversary to replay
acquired biometric samples and thereby successfully authenticate.

5 SYSTEM ARCHITECTURE
The proposed authentication system works as follows. The workstation shows an interactive
visual stimulus on the screen (we refer to it as gaze-challenge). Simultaneously, the gaze tracking
device captures eye movements of the user as he watches the screen (gaze-response), which the
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Fig. 3. A visualization of the stimulus for reflexive saccade elicitation. At any given time, only a
single red dot is shown; previous positions are shown in this figure to help the reader. Shortly
after a red dot appears on the screen (a), a user’s visual system starts a reflexive saccade to shift
the gaze (dotted path) towards its position. Several milliseconds later, as the user’s gaze enters the
invisible perimeter around the stimulus (dashed circles), the dot is considered successfully gazed
andmomentarily changes its position. Before a new saccade start, there is usually a fixation lasting
100-250 ms, during which the visual system processes new input information (saccade latency). In
(d), the presented dot is again successfully gazed, and once more changes its position.

workstation uses to adapt the stimulus in real time. Finally, the workstation makes a decision
about the user’s identity and verifies if the received gaze-response corresponds to the shown
gaze-challenge, asserting that the captured eye movements are indeed fresh.

5.1 Stimulus for Reflexive Saccade Elicitation
To achieve stated design goals, a visual stimulus should satisfy several requirements. It should
elicit responses that are sufficiently distinctive to allow discrimination between different users. The
response should not require high cognitive effort and should not depend on a user’s momentary
cognitive state. The stimulus should be unpredictable to prevent habituation: seeing an image for the
first time will likely result in a different response than seeing it for the second and the consecutive
times [46]. Finally, in order to allow fast authentication, the stimulus duration should be as short as
possible.

Design. Considering that reflexive behavior is more stable and less dependent on a user’s transient
internal cognitive states than voluntary behavior, our goal is to design a stimulus which allows
eliciting and measuring individual traits of user’s reflexive saccadic responses. Reflexive saccades
are triggered by salient objects that appear in one’s field of view; thus our stimulus consists of
presenting a single red dot on a dark screen that changes position multiple times. As shown in
Figure 3, a user’s eyes respond to the change by eliciting a reflexive saccade which reorients the
gaze towards the dot. Every time the position of the dot changes, the visual system responds by
initiating a new reflexive saccade. Due to saccade latency, this happens after a period of 100-200 ms
during which the visual system processes new information.
Ideally, our stimulus should elicit the maximal number of reflexive saccades in a given period

of time, and this highly depends on the frequency with which the position of the dot changes. If
this frequency is too high, user’s eyes will not be given sufficient time to perform a full saccade.
If it is too low, the user might get tired of looking at a static screen and start voluntary saccadic
movements. Furthermore, each user is slightly different, so there might not exist a unique frequency
at all. Using an interactive stimulus ensures an optimum between these trade-offs by interactively
changing the location of the dot as soon as the user successfully gazes the dot, i.e., when a user’s
gaze enters a perimeter of radius r around the dot’s center. This results in eliciting the maximal
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Fig. 4. Relative frequency of saccade latencies for gaze-responses used in this paper. Latencies
are computed as the duration between the stimulus change and the start of subsequent saccadic
movement. Vertical lines discriminate between reflexive and other types of saccades; latencies of
reflexive saccades are usually lower than 250ms, in contrast to latencies of voluntary saccades that
are over 250 ms. Values under 80 ms are likely the result of noise or blinks, or voluntary saccades
initiated well before the stimulus change [47].

number of full saccades in any given time interval, which ensures that the user’s visual system
receives an outside stimulus change as often as possible, consequently reducing the elicitation
of voluntary saccades which depend on his current cognitive state. To ensure that the stimulus
terminates even if the user is not looking at the screen, the dot is considered to be unsuccessfully
gazed and moves to the next position after a specific period of Dmax milliseconds has passed. This
process continues for all N stimulus positions that constitute a gaze-challenge.
Basing an authentication system on reflexive movements provides additional benefits: taking

into account that reflexive behavior is significantly harder to consciously control, an adversary
is less likely to be able to successfully imitate another user’s characteristics. Most importantly,
because of the natural and effortless tendency of the human visual system to keep “catching” the
red dot, the response to such visual stimulus is fully reflexive: users neither need to follow specific
instructions nor invest high cognitive effort —their eyes do the work themselves.

Effectiveness of the Stimulus. In order to evaluate how effectively our designed stimulus elicits
reflexive behavior, we compute saccade latencies for a total of 991 legitimate authentication at-
tempts from the experimental dataset used throughout this paper. Since each of the measurements
represents a gaze-response to a stimulus with 25 different positions for the dot, in total, this sums
up to analyzing close to 25,000 captured saccades.
Figure 4 shows the distribution and categorization of the measured saccade latencies, dividing

them into reflexive saccades, voluntary saccades and saccadic movement caused by blinks. Given
that latencies under 80 ms have only been recorded in specifically designed conditions, e.g., when
the stimulus position and onset are predictable [46], we consider them to likely be the result of
blinks or noise [47]. Remaining latencies predominantly fall below 250 ms, the threshold that
characterizes reflexive saccades [47]. This lets us conclude that the stimulus does indeed elicit
primarily reflexive behavior.

5.2 Authentication Protocol
We now use the proposed stimulus as a building block in a challenge-response protocol for biometric
user authentication that is secure against replay attacks. At the end of the protocol execution, the

ACM Transactions on Privacy and Security, Vol. 21, No. 5, Article 1. Publication date: December 2018.



1:10 I. Sluganovic et al.

User

U

Workstation

W

U

choose uniformly at random:

c = [ (x̂i, ŷi) : 1 ≤ i ≤ N ]

PresentStimulusAt(x̂i, ŷi)

respond to challenge:

gi = LookAt(x̂i, ŷi)

gi

repeat N :

~g = g1‖ . . . ‖gN

VerifyFreshness(~g, c)
VerifyIdentity(~g, U)

accept / reject

Authentication Protocol

Fig. 5. Biometric challenge-response authentication protocol. User claims his identity, after which
the workstation generates a fresh gaze-challenge c, an ordered list of positions in which the stim-
ulus is shown. User looks at (LookAt) a screen where the stimulus is shown at N positions {(x̂i , ŷi )}.
Meanwhile, the gaze tracking device records the user’s gaze paths дi for all stimulus positions that
constitute the gaze-response ®д. The workstation verifies the freshness of ®д, and finally verifies that
the biometric features extracted from ®д correspond to the claimed identity.

workstation knows if the user whose identity is claimed is at the moment present in front of the
gaze tracking device. To that goal, the workstation must ensure that two properties hold:

Freshness. Freshness of the received biometric data can be ensured by always showing a different
randomly generated visual stimulus (gaze-challenge) to which every response will differ in a
verifiable way.

Correct Identity. The user has the ability to generate biometric data that corresponds to the
claimed user’s template which was created during enrollment.

The protocol for local biometric authentication is shown in Figure 5. After the user claims his
identity, the workstation generates a fresh visual stimulus, which we refer to as gaze-challenge (cW )
in the rest of the paper. cW consists of a set ofn randomly chosen coordinates, which uniquely define
the interactive stimulus described in Section 5.1. As the gaze-challenge is presented to the user, his
eyes reflexively respond with a series of eye movements, which constitute the gaze-response (rU ).
Gaze-response is recorded by the gaze tracking device through the gaze channel.
In order to accept or reject the user’s authentication request, the workstation performs two

verification steps: VerifyFreshness and VerifyIdentity. These are described in detail in Sections 5.3
and 5.4, respectively.

In the final message, the workstation notifies the user if he has been granted or denied access to
the system.
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5.3 VerifyFreshness
As described in Section 5.1, each visual stimulus is uniquely defined by a list of N coordinates;
therefore, it is possible to always present a different random gaze-challenge to the user. Since no
visual stimulus shown to users is ever reused, in order to verify the freshness of the response,
it suffices to verify if the received gaze-response closely corresponds to the freshly presented
gaze-challenge. As visualized in Figure 3, if some gaze-response was recorded while specific gaze-
challenge was shown to the user, then the user’s eye movements should closely resemble the order
and positions in which the stimulus dot was shown. This is visible in Figure 1: despite differences
in gaze patterns of different users, all of them correspond to the locations of the stimulus dot.
The system determines if the gaze-response is indeed fresh by ensuring that the user timely

gazed at the majority of the stimulus positions. After a stimulus dot is shown in one of the N
positions, it is considered successfully gazed only if one of the subsequent measurements of the
user’s gaze position falls within a radius of R pixels from the center of the stimulus dot. Otherwise,
if no gaze measurement falls within its radius after Dmax milliseconds, a position is considered to
be unsuccessfully gazed and the dot moves to the next position:

дi B
[ (
x j ,yj

)
: ti ≤ tj < ti + Dmax

]
succ. gazed (x̂i , ŷi ) ⇐⇒ ∃(x,y) ∈ дi : ∥(x,y) − (x̂i , ŷi )∥2 ≤ R

In order to decide on the freshness of the received gaze-response, the system checks if the ratio of
successfully gazed stimulus positions is greater or equal to a chosen percentage threshold T .
As the threshold T increases, the possibility that an adversary successfully replays an old

recording of a legitimate user’s gaze decreases. On the other hand, this also results in more
legitimate attempts failing freshness verification, e.g., because of inaccurate gaze measurements.
We evaluate the security guarantees of different thresholds T in Section 8.3 and analyze the impact
of different values for the threshold D on the classification performance and authentication times
in Section 9.3.

5.4 VerifyIdentity
If the received gaze-response passes the freshness verification, the system finally validates that it
truly originated from the user whose identity was claimed at the beginning of the authentication.
The received gaze-response is first used as input to compute a set of specific feature values that
are idiosyncratic and support stable classification between users. Next, the computed features are
used as an input to a two-class classifier which is created during user enrollment. The classifier
determines whether the calculated features more likely belong to the user whose identity was
claimed, or to some internal or external attacker. As the last step, the authentication system makes
a final decision and notifies the user of acceptance or rejection.
Next section describes the details about the features that we use and how we train the user

classifiers.

6 FEATURES FOR GAZE CLASSIFICATION
This section describes the process of extracting individual characteristics from user’s gaze-response
and training a classifier that can uniquely discriminate between future responses of the same user
and any other user’s gaze patterns.

6.1 Feature Extraction
Feature extraction is the process of converting the raw measurements into a lower dimensional set
of meaningful data that retain most of the useful information to distinguish different output classes

ACM Transactions on Privacy and Security, Vol. 21, No. 5, Article 1. Publication date: December 2018.



1:12 I. Sluganovic et al.

0

100

200

300

0 500 1000 1500

Time [ms]

A
ng

ul
ar

 s
pe

ed
 [d

eg
/s

]

Saccade Fixation Noise / Blink Stimulus changes

Saccade
latency

Fixation
duration

Saccade
duration

Time to peak

velocity

Pe
ak

 s
ac

ca
d
e 

ve
lo

ci
ty

(a) Temporal Features

0

50

100

150

200

250

0 100 200 300
X Position

Y 
Po

si
tio

n

Saccade air
distance

Convex hull
circumference

Total saccade
distance

Convex hull
area

Fixation center

Max distance
to center

(b) Spatial Features

Fig. 6. Visualization of features on (a) temporal and (b) spatial plots of raw gaze tracking data. In
Subfigure (a), themoment when stimulus changes position is depicted with a vertical red line. The
period depicted with horizontal stripes is physiologically impossible for a human eye to perform
and is caused by a blink. We remove such artifacts with methods described in Section 6.

when used as input to the classification algorithm. When considered in the context of eye tracking,
the feature extraction process should take as input the time-stamped positions of one’s gaze during
the authentication attempt, and compute a significantly lower dimensional set of feature values
that allow discrimination between different individuals.

Saccade and Fixation Detection. Following the discussion in Section 5.1, the expected user’s
gaze will consist of multiple repetitions of a reflexive saccade, which redirects one’s gaze at the
new position of the red stimulus dot, followed by a fixation that lasts until one’s visual system
detects the change in stimuli location (saccade latency). Consequently, the first step in the feature
extraction process is to split the raw gaze measurement into intervals of saccades and fixations,
which we later use to compute specific characteristics of one’s eye movements.

We implement an adaptive algorithm [38] that estimates the level of noise in the data to determine
the thresholds used to classify the measurements into periods of fixations and saccades. The
detection is mainly based on angular velocities and accelerations, taking into account the known
physiological limitations of eye movements. As seen in Figure 6a, the algorithm also detects
eye movement recordings that could not have been generated by a human eye under known
physiological constraints, and are usually the result of blinking. Given that the mean duration of
a single blink is close to 200 ms [22], and that head movements and gazes outside of the screen
area usually last even longer, it is important to denoise the raw data before further analysis. These
artifacts are filtered based on research that shows the peak angular velocity of the human eye to lie
between 700 and 900 deg/sec [22], and the peak angular acceleration to not cross 100000 deg/sec2.

Having grouped the measurements as belonging either to a fixation or a saccade, we proceed to
calculate a set of feature values for each recorded gaze sample, ignoring those measurements that
are classified as noise by the procedure.

Using Median Values. Since the authentication system always shows a fresh visual stimulus
(defined by the N positions of the stimulus dot), the computed features should not be influenced
by the positions of the dots in the gaze-challenge, as this would lower the probability that the
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Table 2. Relative Mutual Information (RMIID) of potential features that were considered during
system design. Rows in bold numbers show the 16 features that were selected for subsequent clas-
sification. Selection was made based on RMI values, except where stated differently. #1, #2, #3, #20,
and #33 are included to allow comparison.

# Feature Description RMIID Comment

1 Mean Y coord. of the corneal reflex position (left eye) 0.3267 Excluded as a static feature
2 Mean the pupil diameter (left eye) 0.2871 Excluded as a static feature
3 Mean X coord. of the corneal reflex position (left eye) 0.2381 Excluded as a static feature
4 Median air distance vs total distance ratio 0.1846
5 Median fixation duration 0.1575
6 Median average fixation velocity 0.1540
7 Density of fixation convex hulls 0.1474
8 Mean fixation duration 0.1456 Excluded due to similarity with #5
9 Median saccade latency 0.1453
10 Total time of authentication attempt 0.1447 Excluded as similar to 11
11 Average time per stimulus 0.1447
12 Mean saccade duration 0.1403 Excluded due to similarity with #15
13 Mean velocity 0.1397
14 Average distance per stimulus 0.1382
15 Median saccade duration 0.1363
16 Median fixation convex hull area 0.1362
17 Median saccade average velocity 0.1360
18 Median fixation convex hull perimeter 0.1343
19 Median fixation max velocity 0.1337
20 Ratio of successful gazes 0.1321 Excluded as a static feature
21 Median saccade max velocity 0.1283
22 Median saccade max acceleration 0.1257
23 Mean saccade latency 0.1227 Excluded due to similarity with #7
24 Median fixation max distance 0.1226
25 Median saccade air distance 0.1215
26 Median fixation Y span 0.1208
27 Median fixation X span 0.1089
28 Median fixation X and Y span ratios 0.0983
29 Median saccade X span 0.0937
30 Median saccade X and Y span ratios 0.0864
31 Median saccade Y span 0.0790
32 Median saccade time to max velocity 0.0698
33 Random variable 0.0567 Included only for comparison

user reauthenticates with a fresh challenge. As Figure 6 shows, each gaze-response consists of
intermixed periods of saccades and fixations and each such period allows us to compute multiple
features. However, we are interested in computing a single set of identifiable feature values for
a given gaze-response as a whole, irrespective of the number of elicited saccades and fixations;
to that end, and to reduce the effect of noise, feature values for a single user’s gaze-response
(authentication attempt) are computed as the median of feature values computed on individual
saccades or fixations in that gaze measurement.

6.2 FeatureQuality
In order to support secure and reliable authentication, the features should ideally be chosen so
that they are as varied for different users and as similar as possible when computed for multiple
authentication attempts of the same user. Extracting stable and distinctive features from real-world
user behavior data, especially when the measurement is noisy, as is the case with eye trackers, is a
challenging task.

Since all potential features do not contribute the same amount of distinguishing power, we follow
a semi-automated approach to select the optimal set of features for the authentication system.
Initially, we explore a broader set of fixation and saccade traits, in addition to a range of other
metrics that measure overall characteristics of the gaze path.
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Relative Mutual Information. In order to choose the final subset of features that we use for
classification, we compute the Relative Mutual Information (RMI), a measure that quantifies the
reduction in the entropy of the final outcome (user’s identity in the context of biometric authenti-
cation) as a result of knowing the value of an individual feature [15]. More precisely, RMI can be
expressed as:

RMIID(F ) B
MI(ID, F )
H (ID)

=
H (ID) − H (ID|F )

H (ID)

Mutual Information between two variables A and B is denoted asMI(A,B), while H (A) represents
the entropy of variable A.
Based on RMI, we test the features on randomly chosen subsets of the dataset, measure their

classification performance, and exclude those that do not achieve satisfactory results. The chosen
features that have a clear spatial or temporal representation are shown in Figure 6, while their RMI
values can be found in Table 2.

Chosen Features.As the RMI values in Table 2 show, medians of average angular speeds during
fixations or saccades, as well as the duration of fixations are among the most specific features we
tested. This finding is congruent with the feature assessment conducted by Eberz et al. [13, 14],
where pairwise speeds exhibit the highest relative mutual information, only outperformed by
some of their static features, such as pupil diameter. Contrary to their results, we identify saccade
curviness (ratio of air distance and total distance of a saccade) and saccade latency to be the
features that yield the most distinguishing power. Furthermore, we identify several discriminative
features based on computing a convex hull of all measurements in a fixation: convex hull and
circumference, as well as fixation density, defined as the ratio of the convex hull area and the
number of gaze measurements in that fixation.

Using Dynamic Features. Given the focus on evaluating the feasibility of using reflexive behavior
for authentication, this paper only uses dynamic characteristics of eye movements for classification.
We thus consciously forego using several features that most gaze tracking devices provide, such as
an estimate of user’s pupil size and the distances between the user’s eyes. In prior work, pupil size
was shown to be one of the more discriminative features for gaze-based authentication systems [14],
however, the authors raise valid concerns that an adversary could manipulate his pupil size, e.g., by
controlling the lighting conditions. Despite potential classification improvements, in this paper we
employ only features that can be extracted from raw coordinates of the user’s gaze. We further
discuss relaxing this assumption in Section 10.

6.3 User Enrollment
During enrollment, several gaze-responses are used to train a dedicated 2-class classifier that the
system will use as user’s identity verifier. In any subsequent authentication attempt, the same set
of feature values are extracted from any gaze-response and the classifier makes a decision whether
the values correspond to the claimed user or not.

Besides legitimate user’s gaze-responses, the enrollment procedure requires a similarly sized set
of gaze-responses belonging to other users that are labeled as negative samples during classifier
training.

Choice of the Classifier. In this analysis, we mainly use a Support Vector Machine (SVM) [10]
with Radial Basis Function (RBF) kernel as the classifier, since SVMs are known to provide strong
classification results for non-linear data sets. In Section 9.4 we also evaluate and discuss several
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other classification algorithms for multiple test configurations, confirming that SVMs consistently
achieve the lowest error rates on our data.
SVMs with RBF kernels are fully defined by two hyper-parameters: 1) C , which controls the

trade-off between the penalty of incorrect classification and the margin of the decision hyperplane,
and 2) σ , which is a parameter that defines the scale of the radial basis function. The optimal pair
of hyper-parameter values is chosen from a predetermined set of potential values, based on the
evaluation that uses 5-fold cross-validation: for each pair of potential hyperparameters, 80% of the
enrollment data is used to train the resulting classifier, while the remaining 20% of the enrollment
data is used to evaluate the classification performance; this is repeated five times.
The pair of hyperparameters that results in strongest classification performance is finally used

to derive the final user classifier which is used in future authentication.

7 DATA ACQUISITION
In order to experimentally evaluate the performance of the proposed system and protocol, we
developed a prototype and ran a series of user experiments to gather data for analysis.

7.1 System Prototype

Setup. Our prototype setup is composed of a gaze tracking device (SMI RED 500 [43]), a 24-inch
LED screen and a desktop computer. The generation of the visual stimulus and the gaze sampling
was performed by a custom-built software library that controls the gaze tracking device. We
implemented procedures that take care of the internal calibration of the gaze tracker, the validation
of the calibration accuracy, and the visual presentation of the stimulus, as well as the acquisition of
the gaze samples captured by the gaze tracker.
Parameters. For each authentication attempt, the prototype generated a visual challenge consisting
of N = 25 random positions on which the stimulus will be shown. The distance between users’ eyes
and the gaze tracking device (positioned directly underneath the screen) was approximately 70 cm.
Red stimulus dot is shown on a plain dark background, with a diameter of 0.7 cm (0.95◦). In order
to detect that a dot was successfully gazed, we used a perimeter radius of r = 1.4 cm (1.25◦). If not
successfully gazed, the dot changed position after Dmax = 1000 ms.

7.2 User Experiments

Experiment Design. For the purpose of assessing feasibility and performance of the proposed
system, we conducted a series of user experiments that reflect the scenario described in Section 4.
We refer to a series of consecutive authentication attempts with the same participant as one session.
Each session lasted about 10 minutes and included a briefing and 15 authentication attempts. Before
participant’s first session we generated a calibration profile that was reused during all subsequent
sessions with that participant. To analyze the performance of our system, both from the perspective
of a user and an attacker, we divided the participants into two groups: legitimate users who have
completed the enrollment procedure, and external attackers, whose gaze characteristics were not
known to the system.

In order to show that our system can successfully authenticate users over the course of a normal
workday (without re-calibration), we require each enrolled user to take part in a minimum of three
(up to four) sessions. The first two sessions are five minutes apart and mimic a legitimate user
leaving his desk to take a break or use the restroom. All subsequent sessions are at least 6 hours
apart. Participants acting as external attackers are only invited to one session where they are asked
to impersonate a legitimate user, i.e., the system uses the calibration profile and biometric template
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of the chosen legitimate user. Every external attacker tries to authenticate as 5 different legitimate
users, at least 3 times per user. In their last session, legitimate users were asked to act as internal
attackers and each performed a minimum of 15 attempts of impersonating other users, analogously
to external attackers.

Test Population. Experimental data was acquired from a total of 30 participants aged 21 to 58
who were recruited from the general public through public advertisements, email lists, and social
media. The only requirement was a minimum age of 18. The test population consists of 7 women
and 23 men. Out of the 30 recruited participants, 22 participants were enrolled as legitimate users
and 8 participants represented external attackers whose gaze characteristics were not known to
the system. The acquired data set consists of a total of 1602 gaze-responses: 1021 authentication
attempts by legitimate users and 581 simulated attack attempts by either internal or external
attackers.

Participants were told that their eye movements will be recorded for the purpose of evaluating
the feasibility of distinguishing individuals based on their behavioral gaze-based biometrics. They
then signed a written consent form in accordance with the experiment ethics review approved by
the University’s research ethics committee, reference number SSD/CUREC1A/14-226. Names have
been replaced with pseudonyms.

Participants who do not have normal vision wore contact lenses or were asked to remove their
glasses. This was done to remove the possibility that classification relies on potential specific
characteristics of recorded gaze when glasses are worn. For the same reason, lighting conditions
were not changed during all experiment sessions.

8 SYSTEM EVALUATION
We now experimentally evaluate the proposed system with respect to the design goals stated in
Section 4.

8.1 Varying the Challenge Complexity N

One of the defining parameters of the proposed system is N , the number of stimulus positions
in a single gaze-challenge. We first analyze the effect that varying N has on authentication time
and overall user classification performance. Incrementing N directly increases the complexity of
gaze-challenge, thus requiring more time to respond to the visual stimulus. At the same time, larger
N should allow the system to extract more stable features and thus achieve stronger classification
results. On the other hand, as N decreases, both the authentication time and the classification
performance are likely to decline.

Setup. Since all user experiments were run with gaze-challenges that had N = 25 stimulus dot
positions, we can evaluate the classifier performance in a scenario where gaze-challenges consist
of K < N positions by simulating that the stimulus presentation and gaze recording stopped after
the K-th position was gazed. Such an adapted dataset is constructed by only considering gaze
measurements that were recorded before the (K + 1)-th stimulus position is shown.

The classification performance for each K and for each user is estimated by computing an Equal
Error Rate (EER) while performing a five-fold cross-validation of the individual classifiers as follows.
In each of five repetitions, four out of five folds of the legitimate user’s authentication attempts
are provided as enrollment data for user enrollment that was performed as described in Section 6.
The remaining fold was used to evaluate classifier performance against other users’ authentication
attempts as negative samples. The resulting EER for any K is computed as an average across all
five folds of all individual users’ classifiers for that K .
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Fig. 7. Measured authentication time and EER as a function of gaze-challenge complexity N . As N
increases from 8 to 24, the EER reduces from above 12% to under 6%, while at the same time, the
median time to authenticate grows linearly from 2 seconds to about 9 seconds. The vertical line
depicts a scenario where 15 positions are used in a challenge: the median authentication time is
around 5 seconds, while the EER is close to 7%.
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Fig. 8. Empirical cumulative distribution function for the duration of all measured authentication
attempts when N = 15. Close to 50% of the attempts took less than 5 seconds, while more than 80%
of the attempts lasted less than 7.5 seconds.

Results.We show the effect of varying N on authentication time and classification performance
in Figure 7. The median time for a single authentication attempt grows linearly from 2 seconds for
8 stimulus positions, to about 9 seconds for 24 stimulus positions. At the same time, the overall
EER of the classification falls from around 12% when only 8 stimulus positions are used, to a level
of 6% when 24 stimulus positions are used in a challenge.
Since N = 15 shows a balanced trade-off between classification performance and median

authentication time, we use this value to report results in the remainder of the analysis. In order to
provide a more comprehensive estimate of the time required for the majority of users to authenticate
than just median, in Figure 8 we show a cumulative density function of the authentication times
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Fig. 9. The ROC curves that show authentication performance under impersonation attacks. Red
and green curves represent only internal and external attackers, while blue curve shows the overall
combined performance. The EER for internal attackers equals 6.2%, while for external attackers it
is expectedly slightly higher and amounts to 7.3%. The overall EER for all attackers is 6.3%.

for all users when N = 15. The figure shows that half of the users authenticate in 5 seconds or less,
while the authentication for more than 80% of the users takes less than 7.5 seconds. As we discuss
in Section 10, these times are favorable to previous related work in gaze-based authentication.

8.2 Impersonation Attacks
Recall that, in an impersonation attack, the attacker targets a specific user with the goal of respond-
ing to the gaze-challenge posed by the system, and successfully impersonating the legitimate user
in order to gain access. The attacker is permitted to use the gaze-based authentication system in
any way he wishes, such as purposely moving or altering the angle of his head to try to increase
the chance of gaining access.
As described in Section 7.2, we purposely design the user experiments to simulate this type of

attack as closely as possible: all participants were asked to perform multiple “attack attempts”,
in which they falsely claimed some other user’s identity and tried to authenticate with the gaze
calibration profile of the legitimate user loaded by the system.

Setup. For each user, we perform a five-fold cross-validation to estimate the performance of the
system under such attacks. We enroll the user as described in Section 6, using four out of five
folds of legitimate user’s samples, and then evaluate the performance of the whole authentication
system on the remaining one fifth of the legitimate user’s gaze-responses that were not used for
enrollment. During the evaluation, legitimate user’s samples are labeled as positive, while all attack
attempts that other users made while pretending to be the legitimate user are labeled as negative.
We consider an authentication attempt accepted by the system only if it passes both the identity
verification and the freshness verification. For freshness verification, we use a threshold T = 50%.

Besides overall performance, we also separately evaluate two disjunct subsets of the attack
attempts: those originating from external attackers, who are unknown to the system, and those
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Fig. 10. Performance of the freshness verification procedure depending on the chosen threshold
T . As we change the required percentage of successfully gazed stimuli to classify a gaze sample as
“fresh“ from 0% to 50%, the ratio of successfully detected replay attempts rises from 0 to close to 1.
At the same time, the ratio of successfully classified fresh attempts starts declining as the required
threshold increases over 60%, showing almost perfect results for the thresholds between 40% and
60%.

originating from internal attackers, whose previous authentication attempts might have been used
as negative samples during enrollment.

Results. We show the system performance against impersonation attacks as an ROC curve in
Figure 9. Since individual user classifiers output a probability that a given sample belongs to the
respective legitimate user, we can achieve different classification performance by varying the
threshold above which a sample is considered legitimate. As this threshold increases, so does the
likelihood of falsely rejecting a legitimate user (FRR) increase, but at the same time, the likelihood
of falsely accepting an attacker (FAR) decreases. Different combinations of FAR and FRR values
for three attack scenarios (internal, external, and all attackers) are shown in Figure 9. For all three
scenarios, it is possible to achieve low FAR values (under 5%) if FRR is increased closer to 10% and
vice-versa.

The Equal Error Rate (EER) is defined as the rate at which FRR and FAR equalize. Given that
EER is the single measure most commonly used to compare classification performance, we also use
it throughout the rest of the paper. The reported overall system EER is computed using a single,
shared, decision threshold for all classification decisions across all users’ classifiers.

As expected, in terms of EER, the system achieves slightly stronger performance against internal
attackers (6.2% EER) than external attackers (7.3% EER). Overall, the system achieves an EER of
6.3% for impersonation attacks; as we discuss in Section 3, this result is preferable to any previously
reported performance of gaze-based authentication systems.

8.3 Replay Attacks
Recall from Section 5.3 that in order to prevent reuse of biometric data, the system verifies that
the received gaze-response corresponds to the presented gaze-challenge, i.e., that the user suc-
cessfully gazed at no less than a chosen percentage T of the stimulus positions presented during
authentication.
The result of verifying the freshness of a received response does not depend on the claimed

identity during authentication, but only on the positions of the dot in the visual stimulus. Therefore,
in order to provide a more comprehensive estimate of the distinctiveness of a challenge-response
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Fig. 11. The effect of the sampling frequency on the overall EER. Sampling frequencies between
50 and 250 Hz were simulated by decimation: applying a low-pass filter before subsampling the
original 500 Hz measurements. As the sampling rate reduces from 500 Hz to 50 Hz, the EER in-
creases by about 11%. However, for frequencies close to 120 Hz, which are supported by a range of
affordable eye tracking devices, the error rates are still well below 10%.

pair, we report the results for a scenario in which identity verification always returns a positive
answer.

Setup. In order to evaluate the probability of success of a replay attack, for each gaze-challenge ci ,
we simulate a “replay” of all other gaze-responses r j to the VerifyFreshness function of the system.
We calculate the success rate of replaying r j to ci as the percentage of stimulus positions from ci
that would be considered successfully gazed if a user’s response was r j .
Since our dataset consists of 1021 legitimate authentication attempts, each recorded with a

unique gaze-challenge, we are able to simulate more than 106 potential replay attempts in order
to estimate the true reject rate. Furthermore, in order to estimate the true accept rates, we use
the same procedure to simulate a total of 1021 legitimate authentication attempts, in which the
gaze-response was indeed generated as the user was presented with the matching gaze-challenge.

Results. Figure 10 shows achieved performance of the challenge-response verification for different
values ofT , which we vary from 0% to 100%. AsT increases, so does true reject rate (TRR), the ratio
of replay attempts that are correctly rejected. On the other hand, this also causes a decrease of the
true accept rate (TAR), the ratio of legitimate, fresh attempts that are correctly accepted.
The desired threshold is the one that detects all replay attempts while accepting all legitimate

authentication attempts as fresh. Figure 10 shows a wide range of potential threshold values that
lie between 40% and 60% and almost perfectly separate the fresh and the replayed gaze-responses.
Such a broad range of thresholds that achieve strong classification is a desirable property for any
classification system as it gives strong confidence in reported results.

Since we use T = 50% to evaluate impersonation attacks, we report specific numeric details for
this threshold. The results of simulating more than 106 challenge-response pairs as replay attempts
show that we achieve close to perfect true reject rates (TRR) of 99.94%. At the same time, very
few legitimate attempts are incorrectly rejected: the evaluation shows a true accept rate (TAR) of
98.63%, a result of falsely rejecting only 14 out of 1021 legitimate attempts.

Overall, these experimental results show that our system robustly prevents replay attempts for a
wide range of thresholds with very high success rates. Moreover, given that the system can detect
repeated authentication attempts, and e.g. lock user’s account after a certain number of failed
attempts, we finally conclude that our system can effectively prevent replay attacks.
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Fig. 12. The impact of sampling frequency on the Relative Mutual Information, RMIID(F), of used
features. Features are ordered according to their RMI at 500 Hz. Due to the velocity of saccadic
eye movements, the differences in RMI are most visible in saccade-based features as the sampling
frequency is reduced to 125 Hz or 62 Hz. On the other hand, the impact on fixation-based features
is significantly smaller.

9 SYSTEM ANALYSIS
After evaluating the proposed system’s security guarantees, we now use the dataset to analyze how
would the system performance change if some of the crucial design choices had been altered. Such
analysis helps strengthen future research on the same topic by providing a better understanding of
its behavior, confirming the correctness of choices that were made, or showing potential directions
for future improvement.

9.1 Sampling Frequency
While this manuscript focused on an office scenario, in which users authenticate over a course
of a normal work day, an important factor in the overall performance of a biometric system is
the availability of high-quality data. Even though the sampling frequencies of widely affordable
eye tracking devices keep increasing with the proliferation of cheaper high-speed cameras, most
consumer-grade eye trackers still predominately capture gaze data between 60 and 240 times
per second. As discussed in Section 7, for our experimental data acquisition we use a high-end
eye-tracking device that has the ability to capture eye movements at frequencies of up to 500 Hz.
In order to evaluate the feasibility of using reflexive eye movements and the proposed set of

features for biometric authentication with a wider range of eye tracking devices, we now simulate
a scenario in which data was acquired at lower frequencies.

Setup.We simulate data acquisition at lower frequencies by first applying a low-pass IIR filter (with
a suitable limit frequency) before subsampling the data between 2 and 10 times, i.e., by discarding
all but every M-th gaze measurement. This results in 9 new datasets, with sampling frequencies
ranging from 250 Hz (M=2) to 50 Hz (M=10), and 9 new sets of features computed using the exact
same procedure as with original data. Finally, all 10 sets of features are used to repeatedly train and
test a classifier for each user, following the procedure outlined in Section 8.2.

Results. The results of the analysis of how the sampling rate influences the overall system error
rates are shown in Figure 11. As the sampling rate reduces from 500 Hz to 50 Hz, the EER increases
by about 11%. However, the measured difference between the error rates at 500 Hz and 125 Hz,
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Fig. 13. The impact of the size of the negative class on the overall EER, computed by varying the
number of different users’ samples that the classifier is exposed to during enrollment. For each
negative class size, we repeat the measurement 10 times to show the variability in performance.
Increasing the negative class size decreases the variance in system performance, while at the same
time slightly reducing the overall error rates. However, once the size of the negative class reaches
about 10, the overall performance stabilizes at 5-7% EER.

which are supported by a range of affordable eye tracking devices, is around 2%, remaining well
below 10%.

Consequently, we compute and show in Figure 12 the RMIID values for each feature as they are
subsampled with 250 Hz, 125 Hz, and 62 Hz. The figure shows that the RMIID of several features,
mostly those related to the velocity of eye movements during fixations or saccades, actually does
increase as the sampling rate goes from 500 Hz to 250 Hz, while the informativeness of the majority
of the other features remains relatively unchanged. As a result, the classification performance
remains very similar despite the halving of the sampling frequency.
Overall, these results show that, while using a high-speed eye tracking device does indeed

improve classification performance and the quality of the extracted features, even when low- and
mid-range eye tracking devices are used, the overall authentication success rates are expected to
remain high.

9.2 Size of the Negative Class During Enrollment
One of the crucial factors that impact the performance of classifiers is the variability of data
seen during training. This is especially true for binary classification performed during biometric
authentication, in which a specific classifier is trained for each enrolled user, with the purpose of
deciding whether a new biometric sample does indeed belong to the claimed identity or not. During
training, if the classifier is suppliedwith negative samples of limited variability (i.e. other legitimately
enrolled users’ gaze samples), it is likely to overfit, failing to generalize when required to classify
biometric samples of new, never seen individuals. In such scenario, the classifier learns to reject
specific characteristics of the seen negative samples, rather than recognizing the characteristics of
positive samples and rejecting the rest.

Authentication vs Identification. When discussing classification performance in relation to the
number of different classes, it is important to distinguish biometric authentication (1-1 classification)
from biometric identification, as the latter requires 1-N classification to determine the identity of the
biometric sample. In the identification scenario, introducing each additional class (i.e., increasing
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the number of users) results in making the problem distinctly harder, the probability of successfully
identifying the correct class out of (N+1) is smaller than out of N classes.

However, given that in the authentication scenario the classifier always makes a binary decision,
increasing the number of different users seen during training or testing introduces significant
variability only up to some level, after which the performance usually stabilizes, assuming that
the samples seen during training and the samples on which the system is tested are representative
of the true distribution. As a result, while it is not straightforward to generalize the identification
performance of a classifier beyond the number of tested classes, this is less true for authentication
performance, assuming that the classifier is exposed to a sufficient amount of variability during
training and that the testing samples correspond to the actual real distribution.
In order to estimate the required variability of the negative class required to achieve stable

biometric authentication performance, we now evaluate the error rates of our system, depending
on the number of different users that are available during enrollment of each classifier.

Setup. We simulate the scenario in which only a random subset of legitimate users’ gaze tracking
measurements are available during enrollment as the negative class. For each size of the negative
class, we randomly choose 10 different subsets of other legitimate users, and we repeat the training
process three times for each user, computing and reporting the equal error rates using the procedure
outlined in Section 8.2.

Results. The results of the evaluation are shown in Figure 13. As the number of usersU increases
from the initial scenario ofU = 5 towardsU = 15, a decrease in the overall equal error rates, shown
as the blue line, is visible, resulting in about 1% stronger performance. However, whenU > 15, the
measurements show no significant difference between the average classification error rates as the
number of users increases.
Given that each classifier makes a binary decision "legitimate user or attacker", the amount

of additional variability does not increase significantly after the number of users seen during
enrollment reaches 15, resulting in comparable classification performance. Additionally, as the size
of the negative class seen during training increases, so does the variability of the measured equal
error rates decrease, stabilizing at 5-7% EER forU over 19.

9.3 Dwell-time Threshold D

One of the main characteristics of the proposed authentication system based on reflexive eye
movements is the interactivity of the stimulus in response to user’s gaze. As discussed in Section 5,
interactively moving the position of the stimulus dot allows the system to extract the maximal
number of saccades in a given time, while at the same time reducing voluntary saccades that happen
while the user is waiting for the stimulus to change. However, due to head and body movements as
well as imperfections in the gaze tracking devices, the location of users’ gaze is not always captured
perfectly, which results in users sometimes not being able to successfully gaze at the stimulus
position for a period of time.
The prototype that we use for experimental data acquisition was built such that the visual

stimulus remains at the same position until it is either successfully gazed, or for the duration of
the maximum dwell-time threshold (D = 1000ms). This ensures that the authentication process
continues even if the user is unable to gaze at a particular stimulus location, or, e.g., does not pay
attention to the screen - in which case the authentication will expectedly fail.
Given that the majority of reflexive eye movements are considered to have latencies below

250 ms [47], and taking into account the distribution of saccade latencies from our experiments
(shown in Figure 4), it is likely that the presented system could use a lower dwell-time threshold
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Fig. 14. The impact of different dwell-time thresholds (D) on (a) the mean equal error rates and (b)
the reduction in median authentication time. In (a), the blue line approximates the performance
of completely discarding those parts of user’s eye movements which do not correspond in a suc-
cessful gaze at a certain stimulus location, while the purple line corresponds to the case in which
only the parts of the gaze after the threshold are discarded. Considering the physical limitations
of eye movements, low dwell-time thresholds expectedly result in high error rates. However, as
the threshold reaches 500ms, error rates stabilize while at the same time reducingmedian authen-
tication times by about 1500 ms.

(D) without significant loss in authentication performance. Since reducing D is expected to result
in a decrease of the authentication times for the users, we now analyze the impact of different
values of dwell-time threshold on the system performance.

Setup. Considering that our data was recorded with D = 1000 ms , we can evaluate any D <
1000ms by simply discarding those parts of gaze tracking measurements that happen more than
D milliseconds after the stimulus last changed position. For each analyzed value D, we create a
separate dataset, train a classifier according to the procedure described in Section 6.3 and evaluate
it according to the description in Section 8.2.
Additionally, by “Discard Unsuccessful Gazes” we consider the option of completely discarding

all gaze samples that were measured for the whole duration while the stimulus dot was shown at a
certain location if the user was not ultimately successful at gazing it in the period of D ms. We run
this variant of the analysis expecting that measurements from unsuccessful gazing might be more
noisy than the measurements which result in successful gazes at the stimulus dot, and that they
could consequently impair classification performance, rather than improve it.

Results. The average error rates and the reductions in median authentication times for values of
D ranging from 300 ms to 1000 ms are shown in Figure 14. In the upper graph, the purple color
indicates the scenario in which unsuccessful gazes are completely discarded when computing the
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Fig. 15. Comparison of equal error rates for 9 different configurations of several classification
methods: Radial basis SVMs, Random Forests, k-Nearest Neighbours, Generalized Linear Model,
C5.0, and Linear Discriminant Analysis. The used sampling frequencies and dwell-time thresholds
are depicted by the shape and color, respectively. Radial Basis Support Vector Machine achieves
the lowest error rate in each specific configuration.

features for classification, while the blue color shows the results of discarding only the samples
after the threshold D.

As expected, asD decreases from 1000 ms towards 300 ms, the overall equal error rates increase as
well, since some of the useful distinctive information will be discarded. Contrary to our expectation,
fully discarding all measurements that did not result in a successful gaze actually increases the
error rates, indicating that such gaze data still carries valuable information.

While the error rates for thresholds below 450 ms quickly grow above 15%, it is important to note
that the error rates for thresholds above 500 ms are almost identical. This confirms the hypothesis
that in most cases, users reflexively gaze a specific stimulus position in less than 500 ms, and that
the subsequent behavior carries significantly less useful information.

As an important consequence of this analysis, we see that reducing the dwell-time threshold to
500 ms results in the reduction of median authentication times by as much as 1500 ms, which in
turn increases the usability of the proposed system, while not impacting its overall classification
performance.

9.4 Choice of the Classifier
We continue the analysis of system parameters by evaluating different classification methods
and models that we could use for identity verification. Besides the radial-basis SVM (radialSVM),
which showed the best overall performance on all comparison tests, we also test a set of five other
commonly used classifiers that are implemented in the Caret library: Random Forest (rf), k-Nearest
Neighbours (kNN), Generalized Linear Model (glm), C5.0 (C5.0), and Linear Discriminant Analysis
(lda).
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Fig. 16. Comparison of equal error rates for different freshness verification thresholdsT . The min-
imal EER is achieved when T is close to 50%. T equal to 0 provides the error rates computed only
based on eye movement data classification. While the error rates do increase by about 4%, they
still remain at 10.47%.

Setup. We compare the performance of different classifiers by running a battery of tests, in which
we vary the sampling rate (125 Hz, 250 Hz, 500 Hz), as well as the maximum dwell-time threshold
D (500 ms, 750 ms, 1000 ms). Besides specifying the exact classification method to the Caret library,
all other parameters are kept the same across different classification methods, consistent with
the other computed EER rates: we run a 5-fold, 3-times repeated cross-validation, and repeatedly
compute and average the results for each user three times.

Results. The results of each of the 9 evaluations that were run for each of the 6 classifiers are
shown in Figure 15, with Equal Error Rate being the measure of classification performance. The
color of each of the point indicates the cut-off threshold D, while the shape of each point indicates
the sampling rate. The radial-basis SVM, which we use in all other analysis, clearly achieves the
lower error rates for all combinations, with the Random Forrest classifier trailing a few percentage
points behind. It is interesting to note that the results shown in previous subsections, which were all
computed using the SVM classifier, indicated that the higher sampling rate and dwell-time threshold
D should result in lower EER-s. However, the results in Figure 15 show that this is not always
the case with other classifiers, especially in the case of low sampling rate, where the situation is
reversed, with lower dwell-time thresholds resulting in lower overall equal error rates.

9.5 Impact of Freshness Verification Threshold
As described in Section 5.3, if the received gaze measurements do not match at least T percent of
the randomly chosen stimuli positions, the respective sample is rejected as a potential replay attack.
Such rejections, however, do not happen only as a result of replaying a sample that is not fresh.
Firstly, they can be a result of changes in the eye tracking geometry as legitimate users carry out
their daily work, counting as a false reject that negatively impacts the overall EER of the system.
Secondly, since the system always uses the calibration profile of the victim whose identity is being
impersonated, such rejection of a fresh measurement can also happen during an impersonation
attempt. Such true rejections happen if the calibration profile does not fit the attacker sufficiently
to precisely gaze at the necessary percentage and decrease the overall EER of the system.

Even though the attacker is unable to control the thresholdT or disable the freshness verification
component of the system, analyzing the impact of freshness verification on the overall error rates
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provides an intuition on the stability of the combined system and the guarantees that could be
achieved in eye tracking systems that do not require user calibration (e.g. eye-tracking glasses).

Setup. We vary the required T from 0% to 100% and compute the overall EER values for the whole
dataset. Setting the threshold to 0% effectively computes the overall EER of the system in the case
where freshness verification is not taken into account during authentication. On the other hand,
setting the threshold to 100% is equivalent to requiring that users precisely gaze at the stimuli for
all positions on the screen, resulting in high error rates due to the majority of legitimate attempts
also being rejected.

Results. The results are shown in Figure 16. The overall EER is lowest whenT is between 45% and
65%, which is in accordance with results of replay attacks evaluation (Section 5.3)2.

AsT increases, this causes more legitimate authentication attempts to be rejected on the grounds
of potentially being a replay attack, and causes a sharp increase in the overall EER against imper-
sonation attacks.
On the other hand, as T decreases, the effect of freshness verification module diminishes, ulti-

mately providing the estimate of the system performance in the case where freshness verification
would be completely ignored (T = 0). While the error rates increase by about 4% as T reduces from
50% to 0%, they ultimately stop increasing at 10.47%, showing that the performance of the system
against impersonation attacks would not significantly decrease if all or most attack attempts passed
freshness verification.

10 DISCUSSION

Advanced Attacks. A more sophisticated attacker could build a model of a legitimate user’s eye
movements to successfully respond to a given challenge. However, we argue that performing such
attacks is not straightforward and requires a higher level of complexity than simply replaying a
biometric sample.
Firstly, the adversary is likely to be solving a harder problem than the authentication system;

while the system needs to build a discriminative model that allows making a binary decision
about user’s identity, the adversary needs to actually generate eye movements which correspond
to the legitimate user. An indication of the difficulty of artificially creating eye-movements can
be found in work by Komogortsev et al. [34], which evaluated the complexity of a significantly
simpler problem: artificially generating 1-dimensional eye movements. The paper showed that
those movements could be distinguished from natural recordings with high accuracy; creating
realistic 2D eye-movements that correspond to a specific user is likely to be significantly harder.

Secondly, by using a challenge-response type of protocol, we ensure that the potential generative
model of legitimate user’s eye movements must be able to output results interactively and in real-
time since the stimulus is not known in advance. This requires an additional level of sophistication
that is not needed for replay attacks since the adversary needs to not only control the gaze tracking
channel, but to also observe and analyze the visual channel.

Applications, Limitations, and Future Work.We now discuss several challenges that remain
before the proposed concepts can be applied in a wider range of practical applications: namely the
practicality of achieved error rates, the temporal stability of the eye movement biometrics, and the
use of high-end devices that require calibration.

2We note that replay attacks are evaluated using only legitimate authentication attempts since we assume that an adversary
would not try replaying an impersonation attempt.
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Firstly, the equal error rates between 6% and 10% are not yet sufficient to be independently
deployed in real-world systems. However, it is important to note that a real-world authentication
system could combine the evaluated dynamic features with some of the static features often
available as part of the standard eye-tracking procedures, such as pupil sizes, distances between
user’s eyes, or even iris images. Taking this research direction further, a potential future application
of ideas proposed in this manuscript is in increasing the security of various face recognition systems.
Many such systems already implement measures to prevent sophisticated spoofing attacks [44],
e.g., by requiring users to smile, move their head, or to gaze at the direction of the camera [48].
Consequently, combining the stability and low error rates of face recognition with the dynamic
characteristics and the freshness verification of reflexive eye movements could retain the usability
of face recognition while ensuring that an adversary cannot spoof such a system using the currently
available methods against face recognition.

An important requirement for potential long-term biometric use of this biometric is to evaluate
and improve the temporal stability of the proposed eye movement features over extended periods
of time. After having shown in this work that the proposed visual stimuli does indeed quickly
extract features that allow discrimination between users while at the same time preventing replay
attacks, we plan to next focus on designing an extensive larger set of potential features, capturing
larger datasets with different eye tracking devices, and evaluating their long-term stability over
multiple sessions [24], following a test-retest approach based on Intra-Class-Correlation as the
feature selection criteria [16].
Finally, as a proof-of-concept evaluation of using reflexive eye movements for authentication,

we measured gaze samples with a static, high-end eye tracker that relies on individual calibration
profiles of each user. While calibration of video-based eye tracking devices can be an unpredictable
and time-consuming process, this is still an active research area [19] and we expect this step to
significantly improve in the future. Additionally, an important potential application area for eye
tracking is in extending the capabilities of Virtual and Augmented Reality headsets by integrating
technology similar to existing eye tracking glasses. Given that most such glasses do not require
calibration, and that AR/VR headsets conveniently provide a display onwhich the proposed reflexive
stimulus could be shown to the user, we look forward to applying the proposed system to such
headsets in our future work.

11 CONCLUSION
Building upon the core idea of using reflexive human behavior for authentication, in this paper we
designed an interactive visual stimulus for rapidly eliciting standardized reflexive eye movements,
and showed how such stimulus can be used to construct a fast challenge-response biometric system.
Based on a series of user experiments, we showed that our stimulus indeed elicits predominately
reflexive saccades, which are automatic responses that only pose low cognitive load on the user.
As a result of using reflexive behavior that is fast and stable, we show that our authentication
system achieves fast authentication times (median of 5 seconds) and low error rates (6.3% EER for
impersonation attacks).

Most importantly, however, our proposed authentication method shows resilience against replay
attacks, a property difficult to achieve with most biometrics. Our evaluation shows that the system
is able to detect the replay of recorded eye traces with a very high probability of 99.94%, thus
preventing one of the most applicable attacks on biometric systems.
Considering the recent proliferation of reliable and affordable eye tracking devices, and the

early applications of eye tracking in future VR and AR headsets, we believe that achieving fast and
reliable gaze-based authentication is of broad interest and we consider our work to be an important
step in this direction.
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