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Abstract—In the last decade, supervised deep learning ap-
proaches have been extensively employed in visual odometry
(VO) applications, which is not feasible in environments where
labelled data is not abundant. On the other hand, unsupervised
deep learning approaches for localization and mapping in
unknown environments from unlabelled data have received
comparatively less attention in VO research. In this study,
we propose a generative unsupervised learning framework that
predicts 6-DoF pose camera motion and monocular depth map
of the scene from unlabelled RGB image sequences, using deep
convolutional Generative Adversarial Networks (GANs). We
create a supervisory signal by warping view sequences and
assigning the re-projection minimization to the objective loss
function that is adopted in multi-view pose estimation and
single-view depth generation network. Detailed quantitative
and qualitative evaluations of the proposed framework on
the KITTI [1] and Cityscapes [2] datasets show that the
proposed method outperforms both existing traditional and
unsupervised deep VO methods providing better results for
both pose estimation and depth recovery.

I. INTRODUCTION

Visual odometry (VO) and depth recovery are essential
modules of simultaneous localization and mapping (SLAM)
applications. In the last few decades, VO systems have
attracted a substantial amount of attention, enabling robust
localization and accurate depth map reconstruction. Monoc-
ular VO is confronted with numerous challenges such as
large scale drift, the need for hand-crafted mathematical
features and strict parameter tuning [3], [4]. Supervised
deep learning based VO and depth recovery techniques have
showed good performance in challenging environments and
succesfuly alleviated issues such as scale drift, need for
feature extraction and parameter finetuning [5]–[8]. VO as
a regression problem in supervised deep learning exploits
the capability of convolutional neural network (CNN) and
recurrent neural network (RNN) to estimate camera motion,
to calculate optical flow, and to extract efficient feature
representations from raw RGB input [5]–[7], [9]. In recent
years, unsupervised deep learning approaches have achieved
remarkable results in various domains eliminating the need
for labelled data [10], [11].

Years of research in visual SLAM have been inspired
by human navigation that easily locates obstacles even in
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Fig. 1: Architecture overview. The unsupervised deep learn-
ing approach consists of depth generation, multi-view pose
estimation, view reconstruction, and target discrimination
modules. Unlabelled image sequences from different tem-
poral points are given to the networks to establish a super-
vision signal. The networks estimate relative translation and
rotation between consecutive frames from different perspec-
tives parametrized as 6-DoF motion, and depth image as a
disparity map for a given view.

unknown environments. A neuroscientific insight is that
human brain saves a structural perception of the world, which
makes it capable of real and imaginary scene reconstruction
through vast previous experiences [12], [13]. In this study,
we propose a novel real-time localization and generative
depth estimation approach that mimics the remarkable ego-
motion estimation and re-constructive scene representation
capabilities of human beings by training an unsupervised
deep neural network. The proposed network consists of a
pose regressor and depth generator network. The former re-
gresses 6 degree-of-freedom (DoF) pose values using CNN-
RNN modules, and the latter generates depth maps using
deep convolutional generative adversarial network (GAN)
[14]. The model takes a sequence of monocular images to
estimate 6-DoF camera motion and depth map that is sam-
pled from the same input data distribution, which is trained
in an end-to-end and unsupervised fashion directly from raw
input pixels. A view reconstruction approach is utilized as
part of the objective function for the training in a similar
way to prior works [15]–[18]. The entire pose estimation
and depth map reconstruction pipeline is a consistent and
systematic learning framework which continually improves
its performance by collecting unlabelled monocular video
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data from numerous environments. This way, we want to
mimic and transfer a continuous learning functionality from
humans into VO domain.

In summary, the main contributions of our method are as
follows:

• To the best of our knowledge, this is the first monocular
VO method in literature, which uses adversarial and
recurrent unsupervised learning approaches for joint
pose and depth map estimation.

• We propose a novel adversarial technique for GANs
to generate depth images without any need for depth
groundtruth information.

• No strict parameter tuning is necessary for pose and
depth estimation, contrary to traditional VO approaches.

Evaluations made on the KITTI [1] and Cityscapes [2]
datasets prove the success of our pose estimation and depth
map reconstruction approach. As the outline of this paper,
the previous work in VO is discussed in section II. Section
III gives an overview of the proposed approach named
GANVO. Section IV describes the proposed unsupervised
deep learning architecture and its mathematical background
in detail. Section V shows our quantitative and qualitative
results with comparisons to the existing VO methods. Finally,
section VI concludes the study with some interesting future
directions.

II. RELATED WORK

Camera motion and depth map estimations are well stud-
ied problems in machine vision domain. Many traditional
techniques have been proposed in the last decade with state-
of-the-art results. However, existing traditional techniques
require accurate image correspondence between consecutive
frames, which is frequently violated in challenging envi-
ronments with low texture, complex scene structure, and
occlusions [19]–[22]. Deep learning approaches are adopted
in several components of the traditional techniques to solve
problems such as feature extraction and matching, pose esti-
mation, and optical flow calculation. An external supervised
training has played a key role in deep learning approaches
to solve these aforementioned issues.

Deep VO techniques involve 6-DoF camera pose estima-
tion, depth map reconstruction, object segmentation, optical
flow extraction, and sensor fusion approaches [5], [9], [23]–
[29]. Deep 6-DoF pose regression from raw RGB images
was first proposed using CNNs, which was also extended
to raw RGB-D images for challenging environments [30].
Using RNNs that captures the temporal dynamics boosted the
accuracy of 6-DoF pose estimation in deep VO approaches,
resulting in a competitive performance against model-based
VO methods [5]. The unsupervised deep learning studies
on simultaneous estimation of the camera motion, image
depth, surface normal and optical flow to learn structure from
motion indicate that the joint training of VO components
provides an implicit supervisory signal to the network [16],
[17], [31]. One critical issue of these unsupervised studies is
the fact that they use auto encoder-decoder based traditional
depth estimators with a tendency to generate overly smooth

images [32]. To solve this, we apply GANs that provide
shaper and more accurate depth maps. The second issue of
the aforementioned unsupervised techniques is the fact that
they only employ CNNs that only analyse just-in-moment
information to estimate camera pose [5], [7]. We address
this issue by employing a CNN-RNN architecture to capture
temporal relations across frames.

III. ARCHITECTURE OVERVIEW

As shown in Fig. 1, the raw RGB sequences consisting of
a target view and source views are stacked together to form
an input batch to the multi-view pose estimation module.
The module regresses the relative 6-DoF pose values of the
source views with respect to the target view. In parallel,
the depth generation module generates a depth map of the
target view. The view reconstruction module synthesizes the
target image using the generated depth map, estimated 6-
DoF camera pose and nearby colour values from source
images. The view reconstruction constraint that provides a
supervision signal forces the neural network to synthesize
a target image from multiple source images acquired from
different camera poses. The view discriminator module tries
to distinguish the synthesized target image from the original
target image.

In the proposed adversarial scheme for a GAN, the ob-
jective of the generator is to trick the discriminator, i.e., to
generate depth map for the target view reconstruction such
that the discriminator cannot distinguish the reconstruction
from the original. As opposed to the typical GANs, the out-
put image of the generator is mapped to the color space of the
image and the discriminator distinguishes this mapping from
the original rather than a direct comparison of the generator
output. The proposed scheme enables us to generate depth
maps in an unsupervised manner.

IV. UNSUPERVISED DEPTH AND POSE ESTIMATION WITH
GENERATIVE ADVERSARIAL NETWORK

The network architecture of the proposed method is shown
in Fig. 2. The details of the architecture are explained in the
following sections.

A. Depth Generator

The first part of the architecture is a depth network that
generates a single-view depth map of the target frame. The
depth network is based on a GAN design that tries to
learn the probability distribution of the input images p(It),
consisting of a generator network, G, a discriminator network
D, and an encoder network E. The encoder E maps the input
target image It to a feature vector z, i.e. E(It) = z. G maps
the feature vector z to the depth image space and D maps
an input RGB image to an image likelihood.

B. Pose Regressor

The second network shown in the bottom of Fig. 2 tries to
estimate relative pose p � SE(3) introduced by motion and
temporal dynamics across frames. The convolution part of
the pose estimation network extracts features from the input



Fig. 2: The proposed architecture for pose estimation and depth map generation. The spatial dimensions of layers and output
channels show the tensor shapes that flow through the network. Generator network G maps a feature vector z generated
by the encoder network E to the depth image space. The pose estimation network consists of a convolutional network that
extracts VO related features, and a recurrent network that captures temporal relations among the input frame sequences. The
pose results are collected after the recurrent network, which has 6∗ (N−1) output channels for 6-DoF motion parameters,
, where N is the length of the sequence. The view reconstruction algorithm is followed by a discriminator network D that
maps the reconstructed RGB image to a likelihood of the target image. D decides whether it is shown the reconstruction or
the original image.

frame sequences and propagates them to the RNN part. The
LSTM modules output 6∗ (N−1) channels for 6-DoF pose
values consisting translation and rotation parameters, where
N is the length of the sequence. Although one LSTM is able
to capture the sequential relations, a second LSTM improves
the learning the capacity of the network, resulting in a more
accurate pose regression.

C. View Reconstruction

A sequence of 3 consecutive frames is given to the
pose network as input. An input sequence is denoted by
< It−1, It , It+1 > where t > 0 is the time index, It is the target
view, and the other frames are source views Is =< It−1, It+1 >
that are used to render the target image according to the
objective function:

L g =∑
s
∑
p
|It(p)− Îs(p)| (1)

where p is the pixel coordinate index, and Îs is the projected
image of the source view Is onto the target coordinate frame
using a depth image based rendering module. The rendering
is based on the estimated depth image D̂t , the 4×4 camera
transformation matrix T̂t→s and the source view Is [33].
We denote the homogeneous coordinates of a pixel in the
target view as pt , and the camera intrinsics matrix as K.
Coordinates of pt are projected onto the source view ps with:

ps ∼ KT̂t→sD̂t(pt)K−1pt . (2)

Since the value of ps is not discrete, an interpolation is
required to find the expected intensity value at that position.
To do that, we use bilinear interpolation using the 4 discrete

neighbours of ps [34]. The mean intensity value for projected
pixel is estimated as follows:

Îs(pt) = Is(ps) = ∑
i�{top,bottom}, j�{le f t,right}

wi jIs(pi js ) (3)

where wi j is the proximity value between projected and
neighbouring pixels, which sums up to 1.

D. View Discriminator

A realistic image is synthesized by the view recon-
struction algorithm using the depth image generated by G
and estimated pose values. D discriminates between the
reconstructed image and the real image sampled from the
target data distribution pdata, playing an adversarial role.
These networks are trained by optimizing the objective loss
function:
L d =min

G
max
D

V (G,D) =EI∼pdata(I)[log(D(I))]+

Ez∼p(z)[log(1−D(G(z)))],
(4)

where I is the sample from the pdata distribution and z is a
feature encoding on the latent space.

E. The Adversarial Training

In contrast to the original GAN [14], we remove fully
connected hidden layers for deeper architectures and use
batchnorm in G and D networks. Pooling layers are re-
placed by strided convolutions and LeakyReLU activation
is used for all layers in D. In G network, pooling layers
are replaced by fractional-strided convolutions and ReLU
activation is used for all layers except for the output layer that
uses tanh non-linearity. The GAN with these modifications
generates non-blurry images and resolves the convergence



problem during the training [35]. The final objective for the
optimization of weights in the architecture is:

L f inal = L g+βL d (5)

where β is the balance factor. The optimal β is experimen-
tally found to be the ratio between the expected values L g
and L d at the end of the training.

V. EXPERIMENTS AND RESULTS

We implemented the architecture with the publicly avail-
able Tensorflow framework [36]. Batch normalization is em-
ployed for all of the layers except for the output layers. The
weights of the network are optimized with Adam optimiza-
tion to increase the convergence rate, with the parameters
β1 = 0.9, β2 = 0.999, learning rate of 0.1 and mini-batch
size of 8. For training purposes, the input tensors of the
model are assigned to sequential images of size 128×416,
whereas they are not limited to any specific image size at
test time. Three consecutive images are stacked together to
form the input batch. We use the KITTI dataset [37] for
benchmarking and the Cityscapes dataset [2] for evaluating
cross-dataset generalization ability in the experiments. The
model is trained on a NVIDIA TITAN V model GPU. We
compare the proposed method with standard training/test
splits on the KITTI dataset for the odometry and monocular
depth map estimation tasks.

A. Pose estimation benchmark

We have evaluated the pose estimation performance of
our GANVO on the standard KITTI visual odometry split.
The dataset contains 11 driving sequences with groundtruth
odometry obtained through the IMU/GPS sensors, where the
sequences 00− 08 are used for training and 09− 10 for
testing without any use of the pose and depth groundtruth
during the training session. The network regresses the pose
predictions as 6-DoF relative motion (Euclidean coordinates
for translation and rotation) between sequences. We compare
the pose estimation accuracy with the existing unsupervised
deep learning approaches with the same sequence length of
5, and monocular ORB SLAM. The results are evaluated
using Absolute Trajectory Error (ATE) [38] for 5 consecutive
input frames with an optimized scaling factor to resolve
scale ambiguity, which is reported to be the best sequence
length for the compared methods [17], [39]. As shown in
Table I and Fig. 3, the proposed method outperforms all the
competing unsupervised and traditional baselines, without
any need of global optimization steps such as loop closure
detection, bundle adjustment and re-localization, revealing
that GANVO captures long-term high level odometry details
in addition to short-term low level odometry features.

B. Single-view depth evaluation

We evaluate the performance of the proposed depth
estimation approach on a benchmark split of the KITTI
dataset [40] to compare with the existing learning-based
and traditional depth estimation approaches. In a total of
44,000 frames, we use 40,000 frames for training and 4,000

Fig. 3: Sample trajectories comparing the proposed unsuper-
vised learning method GANVO with ORB SLAM, and the
ground truth in meter scale. GANVO shows a better odom-
etry estimation in terms of both rotational and translational
motions.

frames for validation. The sequence length of the input
data is set to be 3 frames during the training session to
have the same evaluation setup with the compared methods,
where the central frame is the target view for the depth
estimation. The groundtruth captured by Light Detection and
Ranging (LiDAR) sensor is projected into the image plane
for the evaluation in terms of error and accuracy metrics.
The predicted depth map, Dp, is multiplied by a scaling
factor, ŝ, that matches the median with the groundtruth
depth map, Dg, to solve the scale ambiguity issue, i.e. ŝ =
median(Dg)/ median(Dp). Moreover, we test the adaptability
of the proposed approach training on the Cityscapes dataset
and finetuning on the KITTI dataset.

Figure 4 shows example depth map results predicted by



Fig. 4: Comparison of unsupervised monocular depth estimation between SfM-Learner, GeoNet and the proposed GanVO.
The groundtruth captured by Light Detection and Ranging (LiDAR) is interpolated for visualization purpose. GanVO captures
details in challenging scenes containing low textured areas, shaded regions, and uneven road lines, preserving sharp, accurate
and detailed depth map predictions both in close and distant regions.

Fig. 5: Typical failure cases of our model. Sometimes, all of the compared methods struggle in vast open rural scenes and
huge objects occluding the camera view.

Method Seq.09 Seq.10
ORB-SLAM 0.014±0.008 0.012±0.011

SfM-Learner [17] 0.016±0.009 0.013±0.009
GeoNet [39] 0.012 ± 0.007 0.012 ± 0.009
Our GANVO 0.009 ± 0.005 0.010 ± 0.013

TABLE I: Absolute Trajectory Error (ATE) on KITTI odom-
etry dataset. We also report the results of the other methods
for comparison that are taken from [17], [39]. Our method
outperforms all of the other methods.

the proposed method, SfM-Learner [17] and GeoNet [39].
It is clearly seen that GANVO outputs sharper and more
accurate depth maps compared to the other methods that
fundamentally use an encoder-decoder network with various
implementations. An explanation for this result is that adver-
sarial training using the convolutional domain-related feature
set of the discriminator allows to obtain less blurry results
[32]. Furthermore, it is also seen in Fig. 4 that the depth
maps predicted by the proposed GANVO captures the small
objects in the scene whereas the other methods tend to ignore

them. A loss function in image space leads to averaging
all likely locations of details, whereas an adversarial loss
function in feature space with a natural image prior makes
the proposed GANVO more sensitive to the likely positions
of the details in the scene [32]. The proposed GANVO also
accurately predicts the depth values of the objects in low-
textured areas caused by the shading inconsistencies in a
scene. In Fig. 5, we demonstrate typical failure cases in
the compared unsupervised methods, which are caused by
challenges such as poor road signs in rural areas and huge
objects covering the most of the visual input. Even in these
cases, GANVO performs slightly better than the existing
methods.

As shown in Table II quantitatively, our unsupervised
approach significantly outperforms both the existing un-
supervised methods [17], [39], [42] and even supervised
methods [40], [41]. Furthermore, in the benchmark where
the approaches are compared in terms of their adaptability
to different environments, the approaches are trained on the
Cityscapes dataset and finetuned on the KITTI dataset. In
this benchmark, the proposed method results in clearly better



Method Supervision Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253
Eigen [40] Coarse Depth K 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen [40] Fine Depth K 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu [41] Depth K 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Monodepth [31] Pose K 0.148 1.344 5.927 0.247 0.803 0.922 0.964
SfM-Learner [17] No K 0.183 1.595 6.709 0.270 0.734 0.902 0.959

GeoNet [39] No K 0.155 1.296 5.857 0.233 0.793 0.931 0.973
GANVO No K 0.150 1.141 5.448 0.216 0.808 0.939 0.975

Garg et al. [42] cap 50m Pose K 0.169 1.080 5.104 0.273 0.740 0.904 0.962
SfM-Learner [17] cap 50m No K 0.201 1.391 5.181 0.264 0.696 0.900 0.966

GeoNet [39] cap 50m No K 0.147 0.936 4.348 0.218 0.810 0.941 0.977
GANVO cap 50m No K 0.137 0.892 3.671 0.201 0.867 0.970 0.983
Monodepth [31] Pose CS + K 0.124 1.076 5.311 0.219 0.847 0.942 0.973
SfM-Learner [17] No CS + K 0.198 1.836 6.565 0.275 0.718 0.901 0.960

GeoNet [39] No CS + K 0.153 1.328 5.737 0.232 0.802 0.934 0.972
GANVO No CS + K 0.138 1.155 4.412 0.232 0.820 0.939 0.976

TABLE II: Monocular depth estimation results on the KITTI dataset [1] by a benchmark split [40]. The use of the KITTI
dataset in the training is shown with the letter K, and the Cityscapes dataset [2] with CS. We report the error and accuracy
values for the other methods for comparison taken from [17], [31], [39]. The best results are shown in bold. Garg et al. [42]
report 50m cap and we list them in a separate row for comparison.

Fig. 6: Normalized loss values of GANVO compared to the
unsupervised methods SfM-Learner [17] and GeoNet [39]
for multiple training experiments with various set of hyperpa-
rameters. GANVO is less sensitive to set of hyperparameters
with lower mean and variance of the normalized loss values.

error and accuracy compared to the existing unsupervised
methods. Moreover, GANVO obtains much closer results
to Monodepth [31] which is supervised by left-right image
consistency, i.e. pose.

Figure 6 displays a robustness analysis of the proposed
GANVO and the existing unsupervised approaches in terms
of a parameter sensitivity analysis. We demonstrate that
the proposed architecture is robust to hyper-parameter tun-
ings such as different initialization of the network weights,
different split of the dataset, and change of optimization
parameters.

VI. CONCLUSIONS

In this study, we proposed an unsupervised generative deep
learning method for pose and depth map estimation for a
monocular video sequences, demonstrating the effectiveness
of adversarial learning in these tasks. The proposed method
outperforms all the competing unsupervised and traditional
baselines in terms of pose estimation, and captures more
detailed, sharper and more accurate depth maps of the scenes.
In a future work, we would like to explicitly address scene
dynamics and investigate a learning representation for a full
3D volumetric modelling with semantic segmentation.
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