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Abstract

Most existing Correlation Filter (CF) based trackers do not use any feedback from
tracking output and can be considered as open-loop systems. They are prone to drifting
when the object endures occlusion and large appearance changes. In this paper, we pro-
pose a generic self-correction mechanism for CF based trackers by introducing a closed-
loop feedback technique. Our mechanism first detects the abnormality in tracking output
using the Gaussian shape prior of a response map, and then estimates the tracking error
by minimizing the discrepancy of tracking output and the expected response. An opti-
mal offset is finally given to regulate the tracking process and prevent tracking drifting
through a feedback loop. Extensive experiments have been conducted on four large-
scale benchmarks, including OTB-2013, OTB-2015, TC-128, and UAV123@10fps. Ex-
perimental results show that our self-correction mechanism can be used to improve the
overall performance of most CF based trackers by a large margin. Besides, our proposed
Enhanced Dual Correlation Filters (EDCF) tracker outperforms the state-of-the-art meth-
ods and runs at a high speed nearly 80 fps.

1 Introduction

Visual object tracking is a very popular topic in computer vision for its numerous appli-
cations, such as intelligent vehicles, human-machine interaction, and surveillance [20, 21].
Although object tracking has been investigated for several decades, it remains a challenging
problem due to the limited number of labeled training samples and appearance variations of
objects.

In recent years, Correlation Filter (CF) based trackers have attracted significant attention
for its high efficiency and robustness [4, 5, 8, 9, 10, 18]. The success of CF based trackers
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are mainly attributed to two facts. First, this kind of tracker can generate a large number of
training samples by shifting the image patch. Therefore, the lack of training data faced by
most trackers can be well addressed. Second, fast training and detection can be achieved
by circular correlation via Fast Fourier Transform (FFT). Bolme et al. [3] introduced cor-
relation filters to visual tracking for the first time by minimizing the output sum of squared
error. Subsequently, a series of CF based trackers have been proposed to further enhance the
tracking performance [1, 7, 11, 14, 15]. For instance, [4, 8, 12, 14] address scale and rotation
variations, [1, 5, 6, 17] incorporate more information to the appearance model, while [7, 13]
reduce boundary effects.

Although remarkable progress has been achieved by CF based tracker, there is an im-
portant issue that has been overlooked for a long time by the community. That is, most CF
based trackers implicitly consider tracking as an open-loop process as they neither check
the tracking output nor generate any feedback to regulate the tracking process. They are
therefore, unable to detect the abnormity in tracking output and correct the localization error
during tracking. Consequently, they are prone to drifting, especially when the object under
tracking encounters large appearance changes and severe occlusion. To address this problem,
some methods [18, 25] train an additional detector to re-initialize the tracking process when
a tracking failure is found. However, training an additional detector significantly increases
the computational burden, and the detection results are not always reliable as only a limited
samples are available for the training of this detector.

Different from these existing algorithms, we design a closed-loop feedback tracking sys-
tem for CF based trackers. Specifically, a self-correction mechanism is proposed to directly
estimate the localization error by minimizing the discrepancy between the tracking output
and the expected output, and an optimal offset is generated to compensate for the localiza-
tion error and to regulate the tracking process through a feedback loop. Our mechanism
is generic, and it can help CF based trackers to effectively reduce error accumulation and
tracking drifting, with negligible computational cost increase.

The contributions of this paper can be summarized as follow:

e We interpret object tracking as a closed-loop tracking problem, and add a feedback
loop to the tracking process by introducing an efficient method to estimate the local-
ization error.

e We propose an effective and generic self-correction mechanism for CF based trackers
to reduce tracking drifting. The proposed mechanism can be easily incorporated into
any CF based tracker to improve its robustness and long-term tracking ability.

e Extensive experiments have been conducted on four large-scale benchmarks, includ-
ing OTB-2013 [22], OTB-2015 [23], TC-128 [16], and UAV123@10fps benchmark
[19]. Experimental results have demonstrated the efficiency and effectiveness of our
proposed trackers as compared to the state-of-the-art.

2 The Proposed Approach

In this section, we first analyze the open-loop problem existed in CF based trackers and
present the motivation of our work. We then illustrate our self-correction mechanism in
details. Finally, we propose a new tracker by applying our self-correction mechanism to the
Dual Correlation Filters (DCF) tracker.
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Figure 1: An illustration of our motivation. The top row shows the process of a traditional
open-loop CF tracker, and the bottom row shows the process of a CF tracker with self-
correction.

2.1 CF Tracker Dissection: From a Viewpoint of Open-loop System

Here, we first revisit the detection process of CF based trackers, and then explain how the
tracking drift occurs in CF based trackers from a viewpoint of open-loop system.

For CF based trackers, the process to detect and localize an object in a new frame includes
three steps: (1) crop a sub-image x; (i.e., define a search area) in the current frame. Since
CF based trackers implicitly assume that the object is unlikely to have a large displacement
in two consecutive frames, the search area is defined as a sub-image centered at the last
estimated position; (2) calculate the correlation response map between this sub-image x; and
the trained model /, using FFT. This operation is equivalent to the process that the sub-image
Xx; is firstly extended in a periodic manner, and then the filter %, slides from the upper-left pixel
to the lower-right pixel of the sub-image x; (as shown in Fig. 1(I-B)). The correlation score
(i.e., detection score) at each position is calculated as the inner product between the filter
h; and the shifted sub-image at that position; (3) use the position with maximal correlation
response to localize the object.

Generally, the output response map approximately follows a Gaussian distribution as
CF based trackers are trained with Gaussian shaped regression labels. However, if a large
localization error exists in the last predicted position or the object has fast motion in the
current frame (Fig. 1(I-A)), the shifted patch at the ground-truth position in an extended
image contains a large area with periodic repetitions (Fig. 1(I-B)), making the detection score
generated at this position far below the expected value. In this case, the correlation response
map (Fig. 1(I-D)) dose not follow Gaussian distribution any more, it has an abnormal shape
even with multiple peaks. For an open-loop CF tracker, the position with maximal correlation
response (i.e., Step 3) is still used to determine the object location. As a consequence, the
tracker is easy to be drifted to the background. Besides, it is also very difficult for such an
open-loop tracker to recover from drifting by itself. Therefore, a tracking failure is inevitable.
We argue that most tracking failures start from this step.

In contrast, if the tracker can timely detect the abnormality in a response map, and re-
peat the detection process after reducing or correcting the localization error (Fig. 1(II-A)),
the output response map will behave as expected (Fig. 1(II-D)), i.e., Gaussian shaped and
energy-concentrated. Consequently, the object can be correctly tracked as there is no ambi-
guity or noise interference in the response map.

Motivated by these observations, we argue that most tracking failures can be prevented if



4 HU ET AL. : CORRELATION FILTER TRACKING: BEYOND AN OPEN-LOOP SYSTEM

Expected
Response Map

Forward Path

Actual
Response | Tracking

Determine

G ey —»1 Fast Detection

Optimal Offset

Controller |«

Feedback Path

Figure 2: The pipeline of our self-correction mechanism.

the abnormality in tracking output can be timely detected and the error in a tracking system
can be corrected. It is widely known that closed-loop feedback has been successfully used in
many automatic control systems to correct errors and maintain system stability. Therefore,
we aim to modify the open-loop structure of CF based trackers using a closed-loop feedback
technique.

2.2 The Proposed Self-correction Mechanism

In this section, we design a self-correction mechanism to monitor the tracking output and
automatically correct the localization error during detection, as shown in Fig. 2. Our mecha-
nism is based on a closed-loop feedback technique. By minimizing the discrepancy between
the tracking output and the expected response, our mechanism generates an optimal offset
to regulate the system input (i.e., correct the localization error in last predicted position)
through a feedback path. This can help the tracker to re-define the search area and correct
the tracking output to meet our expectation.

Here, our mechanism is based on the assumption that the response map produced by
the sub-image centered at the ground-truth position has the minimum discrepancy to the
expected response. Therefore, the objective function of our mechanism can be written as:

argmin D(R(X,,, /;),N) (H

Xp

where X, is a sub-image located at position p, &, is the filter trained from the past frames,
R(X,, k) denotes the filter response between the sub-image X, and the filter /;, N is an
expected response map with a single peak, and D is a specific function to measure the dis-
crepancy between the actual response map R and the expected response map N. Note that,
we have many choices for the measurement function D. In our work, in order to keep the
simplicity of the proposed self-correction mechanism, we propose a heuristic approach to
measure the discrepancy:

D((Xp N ) , N) = wp (Pexpected - P(Xp , ht)) +ws (Sexpected - S(Xp , ht)) 2

where P(X,, ;) and Pexpeciea are the peak value of the filter response map R and expected
response map N, respectively. S(X,,,/;) and Seypecreq are the Peak-to-Sidelobe Ratio (PSR)
of the filter response map R and expected response map N, respectively. wp and wg are the
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weights for the two terms. In our work, PSR is defined as:

~ max(R(X)) — ue(R(X))
SX) = 0'<1>(R(X;

3)

where sidelobe @ represents the pixels in the sub-image X excluding the central region'
around the peak, e and 0 denote the mean and deviation of the sidelobe, respectively. A
higher value of S(X) means that more energy is included in the area around the peak. Since
both P(X,, ;) and S(X,, h;) are positive, the optimization problem in Eq. 1 is equivalent to
solving the following maximization problem:

argn)l(axg(Xp,h,):WP'P(X,,,h,)JrWyS(X,,,h,) 4)
[)

Here, both P(X,, ;) and S(X,, h;) are normalized to the range of [0,1] before weighted
summation in Eqs. (2) and (4). Since directly optimizing the problem defined in Eq. 4
is time-consuming, we further simplify this problem by adopting an efficient alternative to
obtain an approximate solution in this paper. Considering that the time interval between two
neighboring frames is very small and the speed of a moving object is limited, the object is
likely to appear in the area near the last estimated position. Therefore, instead of exhaustively
searching the whole image for the optimal results, we only evaluate the G score for a set of
predefined sub-images, and then select the best one to maximum the G score. Specifically,
our controller first set the last estimated position (xg,yo) as the center of a set of concentric
circles, and then select a set of locations to generate candidate patches. To maintain high
computational efficiency, a step-wise searching approach is used in this paper, that is:

(—1)i41

Xij=Xo+i-AT -cos(j-AO + -AB) o)

- in( —1)'+1
Vi) = Yot i+ AT -sin(j- A9+ =D 1

-A0) (6)
where AT and A respectively denote the distance step and angle step, i ranges from [1,m]
f—%, R is the radius of the circle, it is dynamically determined by the target size and
the peak value of the response map, j ranges from [1,s] and n = i—’;.

Finally, m x n candidate sub-images around the previous estimated location are extract-
ed. Our controller then calculates the correlation score (i.e., response map) between the
appearance model and each extracted sub-image. The sub-image with the maximum G is
considered as the optimal search region, and the offset between the center of this sub-image
and the last predicted position is feed to the system input to correct the localization error.

and m =

In practice, existing CF based trackers can work well in simple scenarios (e.g., with s-
lowly moving objects or homogeneous background). Therefore, it is unnecessary to optimize
this problem in each frame for the sake of computational efficiency. For this reason, our pro-
posed self-correction mechanism will be activated only when the output response map is far
from the expected one.

I The central region is set as 15% of the response map area in this paper.
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2.3 The Proposed Tracker

To further improve the tracking performance, we propose an Enhanced DCF (EDCF) tracker
by augmenting the base tracker with scale estimation, multiple feature integration and our
self-correction mechanism. Since DCF tracker can achieve an impressive performance with
high efficiency, it is selected as our base tracker. Following [8], our EDCF tracker also
learns an independent scale filter for accurate scale estimation, and uses principle component
analysis to achieve dimensionality reduction. In addition, we use a combination of HOG
and Color-Names (CN) as the feature representation of our EDCF tracker, the same as [14].
Finally, we integrate our self-correction mechanism into the EDCF tracker to further improve
its robustness and long-term tracking performance.

3 Experimental Analysis

In this section, we first present the dataset, evaluation metrics, and parameters used in our
experiments, and then conduct rigorous experiments to demonstrate the effectiveness of our
proposed mechanism. Finally, we compare our proposed EDCF tracker with the state-of-
the-art.

3.1 Experimental Setup

We implemented the proposed algorithm in MATLAB and conducted all experiments on a
PC with an 3.2GHz Intel Core I5 CPU and a 8GB RAM. To achieve rigorous comparison,
the parameters of our tracker are fixed for all experiments.

Dataset: We conducted extensive experiments on four large-scale datasets, including OTB-
2013 (with 51 sequences), OTB-2015 (with 100 sequences), UAV @ 10fps (with 123 low
frame rate sequences), and Temple Color-128 (with 128 color sequences).

Evaluation Metrics: Following the OTB dataset [23], we use the precision rate and success
rate as our main evaluation metrics. The precision rate is calculated as the fraction of tracking
frames with Center Location Errors (CLE) less than 20 pixels. Here, CLE is defined as the
Euclidean distance between the estimated and the ground-truth positions. The success rate
is defined as the Area Under the Curve (AUC) of the success plot. Here, a success plot is

obtained by calculating the overlap ratio between the estimated and ground-truth bounding
Area(R;NRg)
Area(R,URi)
the estimated bounding box and R, is the corresponding ground-truth bounding box. U and

N denote the intersection and union of two regions, respectively.

boxes under different thresholds. The overlap ratio is defined as § = , where R; is

Key parameter

S

Response threshold PSR threshold m

Trackers
SAMF_SC 0.16 6 6 3
KCF_SC 0.2 10 4 3
DCF_SC 0.2 10 5 9
CNT_SC 0.25 12 3 5
CSK_SC 0.25 12 3 8
EDCF 0.2 10 6 8

Table 1: Parameter settings of 6 trackers enhanced with our self-correction mechanism.
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Parameters: For all baseline trackers, we use the default parameters provided by the au-
thors. For fair comparison, the CF variants enhanced with our self-correction mechanism
use the same parameters as their original trackers, except for the new parameters introduced
by our mechanism. The parameter setting of our proposed trackers is shown in Table 1.
Key parameters of our mechanism include the distance step AT, angle step AO (which are
determined by the number of steps m and n, m = f—%, n= i—’é), response threshold and PSR
threshold (which determines the activation of our self-correction mechanism).

3.2 Evaluation of the Self-correction Mechanism

To test the effectiveness and efficiency of the proposed self-correction mechanism, we first
selected five well-known correlation based trackers as our base trackers, including SAMF
[14], DCF [10], KCF [10], CNT [5], and CSK [9]. We then implemented five variants by ap-
plying our self-correction mechanism to these base trackers, namely, SAMF_SC, DCF_SC,
KCF_SC, CNT_SC, and CSK_SC.

3.2.1 Overall Performance

Here, we compare these base trackers to the variants enhanced with our self-correction mech-
anism on the OTB-2013, OTB-2015, and TC-128 datasets. The overall performance are
shown in Fig. 3. It can be seen that, by integrating our self-correction mechanism, the preci-
sion rate of these trackers has been improved by around 7% in average, and their success rate
has been increased by 4.4% in average on the OTB-2013 dataset. Take the DCF_SC tracker
for example, its precision rate is 8§1.6%, which has been improved by 8.8%. Moreover, it
can still run at a high speed of 217.7 fps. Although the number of sequences is increased
to 100 and more challenging sequences are incorporated in the OTB-2015 dataset, these
trackers enhanced by our self-correction mechanism still achieve a remarkable improvement
as compared to their corresponding base trackers. Our SAMF_SC tracker obtains the best
performance on the OTB-2015 benchmark, with a precision score of 81.2%. It outperform-
s the state-of-the-art trackers on this benchmark, including SRDCF (78.8%) and MUSTer
(77.4%), more results can be found in the supplementary. Besides, the speed of the SAM-
F_SC tracker is still comparable to the base SAMF, with only a slight decline (15.5 fps vs
18.5 fps). That is mainly because, the base SAMF tracker can achieve a relatively high ac-
curacy and the self-correction module does not need to be activated frequently. Similarly,
the tracking performance of all these trackers can also be improved by a large margin on
the TC-128 dataset, despite the sequences in this dataset are color sequences. Note that,
the improvement in success rate is smaller than the improvement in precision rates. That is
because, scale variations are not considered by these trackers except for SAMF.

3.2.2 Performance under Different Attributes

Since OTB-2015 dataset contains sufficient challenging sequences, we conducted experi-
ments on this dataset, the results are shown in Table 2. The 100 sequences in the OTB-2015
dataset were annotated with 11 different attributes, including illumination variation (IV), s-
cale variation (SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast motion
(FM), in-plane rotation (IPR), out-of-plane rotation (OPR), out-of-view (OV), background
clutter (BC), and low resolution (LR). We use the results obtained on different annotated
sequences to analyze the performance of our mechanism on sequences with each attribute.
It can be seen from Table 2 that, compared to their base trackers, the performance of almost
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Figure 3: Experiment results achieved by 5 base trackers and their variants enhanced with
our self-correction mechanism on the OTB-2013, OTB-2015, and TC-128 datasets.

all enhanced trackers have been improved on sequences with different attributes, except for
CSK and CNT on sequences with few attributes. This is mainly because the features used
in these two trackers are insufficient to construct a discriminative appearance model, and the
response maps produced by these trackers are not reliable to activate our self-correction mod-
ule. Besides, the overall precision rate of these five trackers has been significantly improved
in precision rates (6.2% in average), especially when the object is under fast motion (11.1%
in average) and motion blur (9.6% in average), this is mainly because the object localization
error under fast motion can be corrected timely by our self-correction mechanism. In addi-
tion, since the proposed mechanism can help the trackers to define an accurate search area
and prevent tracking drifting, the performance on images with occlusion and out-of-view are
also improved remarkably.

3.2.3 Performance under Low Frame Rate Sequences

In addition, we also conducted experiments on the UAV @ 10fps dataset. These videos in
this dataset are generated from the UAV 123 dataset by downsampling each video to 10 fps.
The movement of an object in adjacent frames in UAV @ 10fps is larger than that in the
UAV 123 dataset, that is, objects in the UAV @ 10fps dataset have fast motion across frames.
It is clear from Fig. 4 that, these enhanced trackers achieve an average improvement of
10.6% in precision rate. Note that, CSK_SC with grayscale features even outperforms the
sophisticated SAMF tracker in terms of precision rate. Besides, with the support of our self-
correction mechanism, the SAMF_SC tracker achieves a comparable performance to the
SRDCEF tracker (57.5%) in precision rate and outperforms the MUSTer (52.6%) tracker by a
large margin. Moreover, the precision rates achieved by KCF_SC and CSK_SC trackers are
even better than those produced by their base trackers (52.3% and 48.8%, respectively) on the
UAV 123 dataset (i.e., without down-sampling). More experimental results on UAV123 can
be found in [19]. This clearly show that, with the support of our self-correction mechanism,
these CF based trackers can work well on sequences with low frame rate. This means that
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Attribute SAMF_SC SAMF KCF_SC KCF DCE_SC DCF CNT_SC CNT CSK_SC CSK

LR(9) 82.7% 1(6.00%) 76.7%  75.4% 1(8.30%) 67.1%  74.7% 1(5.30%) 69.4%  64.5% 1(8.30%) 56.2%  61.0% 1(16.4%) 44.6%
IPR(51) 79.0% 1(5.90%) 73.1%  76.9% 1(7.60%) 69.3%  77.1% 1(8.50%) 68.6%  64.8% 1(0.20%) 65.0%  56.4% 1(4.80%) 51.6%
OPR(59)  79.1% 1(5.30%) 738%  75.3% 1(5.90%) 69.4%  76.3% 1(7.50%) 68.8%  64.9% 1(1.60%) 63.3%  54.6% 1(3.50%) 51.1%
Sv(61) 79.2% 1(7.50%) 71.7%  73.9% 1(9.80%) 64.1%  73.5% 1(10.2%) 63.3%  55.8% 1(0.60%) 552%  52.8% 1(6.40%) 46.4%

OCC(44) 78.9% 1(6.60%) 72.3% 71.3% 1(6.20%) 65.1% 72.0% 1(8.30%) 63.7% 61.9% 1(1.80%) 60.1% 50.3% 1(4.50%) 45.8%
DEF(39) 74.7% 1(8.10%) 66.6% 72.2% 1(7.30%) 64.9% 73.1% 1(7.80%) 65.3% 59.4% 1(1.10%) 58.3% 49.2% 1(0.30%) 48.9%
BC(31) 76.7% 1(6.60%) 70.1% 77.7% 1(6.50%) 71.2% 77.4% 1(8.80%) 68.6% 58.3% 1(4.50%) 62.8% 53.0% 1(4.50%) 57.5%
1V(35) 75.0% 1(4.90%) 70.1% 75.6% 1(5.90%) 69.7% 76.9% 1(8.80%) 68.1% 54.4% |(2.30%) 56.7% 46.5% 1(2.30%) 48.8%
MB(29) 71.4% 1(5.50%) 65.9% 72.0% 1(12.0%) 60.0% 70.7% 1(13.1%) 57.6% 55.3% 1(6.50%) 48.8% 46.6% 1(10.9%) 35.7%
FM(37) 79.8% 1(9.60%) 70.2% 76.2% 1(13.2%) 63.0% 76.3% 1(15.2%) 61.1% 60.3% 1(8.60%) 51.7% 50.3% 1(8.80%) 41.5%
OV(14) 71.3% 1(6.00%) 65.3% 62.0% 1(12.2%) 49.8% 59.9% 1(11.2%) 48.7% 46.6% 1(3.00%) 43.6% 33.1% 1(5.50%) 27.6%
Total(100)  81.2% 1(5.90%) 75.3% 76.9% 1(7.70%) 69.2% 77.2% 1(8.20%) 69.0% 64.3% 1(4.90%) 59.4% 56.1% 1(4.20%) 51.9%
Table 2: The precision rate of 5 base trackers and their variants enhanced with our self-
correction mechanism under different attributes on the OTB-2015 dataset. The number in
each brackets indicates the performance improvement (red) or decline (blue). The first col-
umn lists the abbreviations of 11 attributes, the number in each brackets gives the number of
videos with this attribute in the OTB-2015 dataset.

some sophisticated trackers with high computational cost are now possible to be applied in
real-time scenarios by down-sampling the input sequence and integrating our self-correction
mechanism.
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Figure 4: Experiment results of 5 base trackers and their variants enhanced with our self-
correction mechanism on the UAV @ 10fps dataset.

3.3 Comparison to the State-of-the-Art

Finally, we compare our EDCF tracker to 42 state-of-the-art trackers on the OTB-2013
dataset, including 29 traditional trackers presented in [22], MEEM [24] and 12 CF based
trackers, such as MUSTer [11], DeepSRDCEF [6], LCT [18], SRDCF [7], SAMF_AT [2],
RPT [15], Staple [1], SAMF [14], CCT [25], DSST [4], CNT [5], and DCF[10]. The aver-
age precision rates and success rates are reported in Fig. 5. It is clear that almost all of the
top 12 trackers are CF based trackers except for MEEM. The MUSTer tracker obtains the
second best performance, with an average precision score of 86.5% and a success score of
64.1%. It consists of a collaborative short-term store and a long-term store. Our proposed
EDCEF tracker achieves the best performance among these trackers, with an average precision
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score of 87.2% and an average success score of 65.2%. Both of its average precision rate
and success rate are improved by 14.4% as compared to the base DCF tracker. Besides, our
proposed tracker can run at a speed of 77 fps, it is faster than the DeepSRDCF and MUSTer
trackers by several times and is more suitable for real-time applications.

J Precision plots of OPE on OTB-2013 1 Success plots of OPE on OTB-2013
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Figure 5: Experiment results of our EDCF tracker and 42 state-of-the-art trackers on the
OTB-2013 dataset. For clarity, only the top 12 trackers are shown in the figures.

4 Conclusion

In this paper, we design a self-correction mechanism for CF based trackers by introducing a
closed-loop feedback technique. Our mechanism can detect the abnormality in response map
and automatically generates a feedback offset to compensate for the localization error. The
optimal offset is estimated by searching the most possible location from a set of candidate
patches. Extensive experimental results show that trackers equipped with our mechanism
can achieve high tracking accuracy and robustness, while maintaining high efficiency. For
future work, we aim to incorporate our proposed mechanism with more recent deep trackers,
and investigate more effective discrepancy measures.
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