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Categorical compositional models of natural language exploit grammatical structure to 
calculate the meaning of phrases and sentences from the meanings of individual words. 
More recently, similar compositional techniques have been applied to conceptual space 
models of cognition.
Compact closed categories, particularly the category of finite dimensional vector spaces, 
have been the most common setting for categorical compositional models. When address-
ing a new problem domain, such as conceptual space models of meaning, a key problem is 
finding a compact closed category that captures the features of interest.
We propose categories of generalized relations as a source of new, practical models for 
cognition and NLP. We demonstrate using detailed examples that phenomena such as 
fuzziness, metrics, convexity, semantic ambiguity can all be described by relational models. 
Crucially, by exploiting a technical framework described in previous work of the authors, 
we also show how the above-mentioned phenomena can be combined into a single model, 
providing a flexible family of new categories for categorical compositional modelling.

© 2018 Published by Elsevier B.V.

1. Introduction

Distributional models of language describe the meaning of a word using co-occurrence statistics derived from corpus 
data. A central question with these models is how to combine meanings of individual words, in order to understand phrases 
and sentences. Categorical compositional models of natural language [1] address this problem, providing a principled ap-
proach to combining the meanings of words to form the meanings of sentences, by exploiting their grammatical structure. 
At the time, they went on to outperform conventional techniques for some standard NLP tasks [2,3]. Since then the focus of 
the research program has mostly turned its attention to:

• Identifying the appropriate compositional structure underpinning functional words such as relative pronouns and logical 
connectives,

• designing more interesting models of meaning, and
• employing these structures and models beyond the initial linguistic scope.

The latter two are what this paper is concerned with.
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As explained in the expository paper [4], the main inspiration for these models was the category-theoretic description 
of quantum processes, initially, in particular, quantum-teleportation like protocols [5]. Subsequently, several other structures 
from categorical quantum mechanics have also found applications in natural language. For example, the representation of 
classical data [6] has been used to implement relative pronouns [7] and intonation [8], and the representation of open 
quantum systems [9] has been used to model ambiguity [10].

Distributional models of language can be thought of as “process theories” [11]. A process theory consists of a graphical 
language for reasoning about composite systems of abstract processes, and a categorical semantics modelling the applica-
tion domain. A particularly important class of categorical models are the compact closed categories, which come equipped 
with an elegant graphical calculus. Besides quantum theory, process theoretic models built upon compact closed categories 
have been successfully exploited in many application areas including signal flow graphs [12], control theory [13], Markov 
processes [14], electrical circuits [15] and even basic linear algebra [16]. However, it should be stressed that for the com-
positional modelling of language, while convenient, compact closure is not vital and other categories could be taken as a 
starting point. In grammatical terms this means passing from Lambek’s pregroups to his earlier proposals for grammatical 
structure [17].

Recently [18], the categorical compositional approach to meaning has been applied to the conceptual space models of 
human cognition introduced in [19,20]. With it comes another interesting connection with research in quantum theory, 
namely the use of general convex spaces, which have prominent in quantum theory research since Ludwig’s work [21], and 
which have recently regained attention under the name of Generalised Probabilistic Theories [22].

More generally, when addressing a new application domain, it is necessary to identify a compact closed category with 
mathematical structure compatible with the application phenomena of interest. Amongst the compact closed categories 
the hypergraph categories [23] are a particularly well behaved class of practical interest. In [24] we presented a flexible 
parameterized mathematical framework for constructing hypergraph categories. We view this framework as a practical tool 
for building new models in a principled manner, by varying the parameter choices according to the needs of the application 
domain. These models are based upon generalizing the well understood notion of a binary relation, providing a concrete 
and intuitive setting for model development.

The present work is a significant extension of the ideas presented in the workshop paper [25]. We will demonstrate, 
via extensive examples, that categories of generalized relations present an attractive setting for constructing new models of 
language and cognition. We emphasize the intuitive interpretation of the models under construction, and their connections 
to concrete ideas in computation, NLP and further afield. These examples are structured as follows:

• In section 3 we introduce relations with generalized truth values, and exploit them to model features such as dis-
tances, forces, connectivity and fuzziness. Relations with generalized truth values are well known in the mathematical 
community, but seem to have received little attention from the perspective of compositional semantics, with the re-
cent exception of [26]. In particular, we will use generalized relations to give a semantic interpretation of family trees, 
expressing degrees of kinship such as “parent” or “sibling” in a compositional way.

• In section 4 we generalize relations in another direction, considering relations that respect algebraic structure. These 
relations can capture features such as convexity, which is important in conceptual spaces models [19,20]. In this case, 
we recover a model first used in [18], originally constructed in an ad-hoc manner using techniques from monad theory 
and the theory of regular categories. Importantly, we then show that we can combine generalized truth values with 
relations respecting algebraic structure, providing conceptual space models with access to distance measures.

• In section 5 we view spans as generalized “proof aware” relations in which the apex of the span contains witnesses 
to relatedness between the domain and codomain. Spans can be extended to support generalized truth values, and to 
respect algebraic structure. Exploiting a combination of these features, we construct a new model of semantic ambiguity 
in conceptual space models of natural language, in which different proof witnesses allow us to vary how strongly 
different words are related, depending on how they are interpreted. We will moreover recast our family trees example 
in a proof-aware fashion.

• The previous examples were essentially built upon the category of sets. Our techniques can be applied with different 
choices of ambient topos. In section 6, we will briefly mention how the natural choice of truth values in toposes 
different from the category of sets is related with the subobject classifier of the topos, seen as an internal locale.

All of our models are preorder enriched, providing a natural candidate for modelling semantic entailment or hy-
ponymy [27,28]. Preorder enrichment also means we can consider internal monads within our various categories of relations. 
We emphasize the importance of these internal monads throughout our discussions. They provide access to important struc-
tured objects such as preorders, generalized metric spaces and ultrametric spaces, and similar well behaved relationships 
when we combine various modelling features.

2. Compositional models of meaning

The grammatical structure of natural language can be modelled using Lambek’s pregroup grammars [29]. Multiple other 
choices, as context-free grammars, are available to accomplish this task, but the categorical properties of pregroups such as 
compact closure, see Definition 2, make them very appealing from our perspective. This choice is quite a common one in 
the categorical approach to natural language.
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Fig. 1. Graphical calculus for compact closed categories.

Definition 1. A pregroup is a tuple (X, ·, 1, (−)l, (−)r, ≤) where (X, ·, 1, ≤) is a partially ordered monoid, or pomonoid, and 
(−)r, (−)l are unary functions of type X → X such that for all x ∈ X the following conditions hold,

1 ≤ x · xl xl · x ≤ 1 1 ≤ xr · x x · xr ≤ 1

We say that x reduces to x′ if x ≤ x′ .

A grammar is typically described using the free pregroup over some set of basic types. For example, we may consider the 
free pregroup of the set {n, s} where n and s are basic types for nouns and sentences respectively. More complex terms are 
then built up using the algebraic operations, for example the type of a transitive verb is nr snl . We can calculate the type of a 
phrase by composing the types of the individual terms using the monoid multiplication. For example, the phrase “mice eat 
cheese” has type n(nr snl)n, where “mice” and “cheese” have type n (noun), and “eat” has type (nr snl) (verb). A composite 
term is a well typed sentence if its type reduces to the sentence type. For example:

n(nr snl)n = (nnr)s(nln) ≤ s(nln) ≤ s

and so “mice eat cheese” is a well typed sentence. In this way, pregroups give us access to the compositional features of 
language.

On the other hand, distributional models [30] of the meaning of words in natural language are built using vector space 
models automatically derived from co-occurrence statistics in a large corpus of text. The key observation of the categorical 
compositional approach to natural language is that both pregroups and the category of finite dimensional real vector spaces 
carry the same categorical structure, that of an autonomous category.

Definition 2. A monoidal category V has left/right duals if every object has an internal left/right adjoint when V is regarded 
as a one object bicategory. An autonomous category is a monoidal category in which every object has both left and right 
duals. A compact closed category is a symmetric monoidal category in which every object has right duals.

This observation can be exploited to derive the meanings of sentences from the meanings of words. We fix a strong 
monoidal functor from a pregroup describing grammatical structure to the category of finite dimensional vector spaces. 
This functor maps type reductions to linear maps, allowing us to automatically derive the meaning of a sentence from its 
constituent parts. Clearly, this approach can be seen as an instance of functorial semantics. By varying the domain and 
preserved structure we can consider different categorial grammars [17]. By varying the codomain we can consider different 
models, as has been important in recent work broadening the scope to mathematical models of cognition [18,31]. When 
varying the category of meanings, it is desirable to remain within the domain of compact closed categories, in order to 
exploit connections with previous linguistic developments, and to retain access to the powerful graphical calculus that we 
are now going to recall. A straightforward application oriented introduction to monoidal categories and compact closed 
categories can be found in [32].

In the graphical calculus for compact closed categories, an object A is denoted by a wire, as shown in Fig. 1a, while a 
morphism f : A → B is represented by a box as depicted in Fig. 1b. If g : B → C , the composite g ◦ f : A → C is formed 
by vertical composition, as in Fig. 1c. By convention, the monoidal unit I is drawn as the empty diagram. Morphisms of 
type u : I → A and v : A → I are referred to as states and effects of A, and are drawn using the special notation of Figs. 1d 
and 1e. If h : A → B and k : C → D , their tensor product h ⊗ k : A ⊗ C → B ⊗ D is formed by horizontal juxtaposition as in 
Fig. 1f. The existence of a right dual A∗ for every object A means that for every object there exist morphisms εA : A ⊗ A∗ → I
and ηA : I → A∗ ⊗ A, referred to as a cap and cup and displayed graphically as in Figs. 1g and 1h. They satisfy the equations 
(ε ⊗1A) ◦ (1A ⊗η) = 1A and 1A∗ = (1A∗ ⊗ε) ◦ (η⊗1A∗ ). These conditions are suggestively referred to as the snake equations
given their graphical formulation in Fig. 1i.
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The functor from grammar to semantics gives us our “wiring”, that allows us to calculate meanings graphically as follows: 
our meaning category supplies the qualitative meanings of words, like clowns, tell, and jokes. Our grammar category tells us 
how to stitch these together. This corresponds to “telling us where to put cups and caps.” The essence of the method should 
be thought of as the diagram

where we think of the words as states in our semantics and of the wires as the image through our functor of the pregroup 
reduction witnessing that they form a well-typed sentence.

The question then becomes: How can we find or construct compact closed categories with desirable mathematical properties?
This is what we explore in this paper: our constructions produce a subclass of compact closed categories, referred to as 
hypergraph categories [33,23], and so this is where we shall focus our attention.

Definition 3. A hypergraph category is a symmetric monoidal category in which every object is equipped with a choice of 
special commutative Frobenius algebra, coherently with the monoidal structure.

Details of the notion of a Frobenius algebra, and linguistic applications including modelling relative pronouns can be 
found in [7,34]. Morphisms of type I → I are referred to as numbers.

Example 1. The category Rel of sets and binary relations between them can be given the structure of a hypergraph category. 
The monoidal structure is given by forming Cartesian products of sets. A state of a set X is a subset of X and the numbers 
are the Boolean truth values. The Frobenius algebra is given by the copying relation x ∼ (x, x) : X → X × X , the deletion 
relation x ∼ ∗ : X → I , and their converses.

All the compact closed categories discussed in this paper will be hypergraph categories, generalizing Example 1 along 
different axes of variation.

3. Generalized truth values

A binary relation R : A → B between sets can be identified with a characteristic function of type A × B → {
, ⊥} mapping 
the related pairs of elements to 
. It is fruitful to consider generalizing the codomain of such characteristic functions to a 
set Q , thought of as a collection of truth values. We can then consider functions of the form A × B → Q as generalized 
relations, with truth values in Q . In order for the corresponding binary relations to have satisfactory notions of identities 
and composition, the set Q must carry the structure of a quantale.

Definition 4 (Quantale). A quantale is a join complete partial order Q with a monoid structure (⊗, k) satisfying the following 
distributivity axioms, for all a, b ∈ Q and A, B ⊆ Q :

a ⊗
[∨

B
]

=
∨

{a ⊗ b | b ∈ B}
[∨

A
]
⊗ b =

∨
{a ⊗ b | a ∈ A}

A quantale is said to be commutative if its monoid structure is commutative.

All the quantales encountered in this paper will be commutative. We introduce some examples of importance in later 
developments.

Example 2. The Boolean quantale is given by the two element complete Boolean algebra B = {
, ⊥}, with the join and 
multiplication given by the join and meet in the Boolean algebra.

Example 3. The Lawvere quantale L is given by the chain [0, ∞] of extended positive reals with the reverse ordering, hence 
minima in [0, ∞] provide the joins of the quantale, and the monoid structure is given by addition.

Example 4. The quantale F has again the extended positive reals with reverse order as its partial order, but now with max
as the monoid multiplication.

Example 5. The interval quantale I is given by the ordered interval [0, 1] with minima as the monoid structure.
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For a quantale Q , the Q -relations form a category Rel(Q ) with composition and identities2

(S ◦ R)(a, c) =
∨

b

R(a,b) ⊗ S(b, c) 1A(a,b) =
∨

{k|a = b}

If Q is a commutative quantale, Rel(Q ) carries a symmetric monoidal structure, with the tensor product of objects given 
by the Cartesian product of sets, and the action on relations given for R : A → C and S : B → D by

(R ⊗ S)(a,b, c,d) = R(a, c) ⊗ S(b,d)

The singleton set is the monoidal unit. A key observation from the perspective of this paper is:

Theorem 1. Rel(Q ) is compact closed with respect to this monoidal structure.

Now that we have described how Q -relations compose, we can consider computational interpretations for our example 
choices of quantale.

Example 6. The relations over the Lawvere quantale L can be thought of as describing costs. The value R(a, b) describes the 
cost of converting a into b. A cost of 0 means they are maximally related and can be freely inter-converted. A cost of ∞
indicates completely unrelated values, that cannot be converted between each other for finite cost. The value (S ◦ R)(a, c)
describes the cheapest way of converting a into some b, and then converting that b into c, and adds the associated costs. If 
we perform two conversions in parallel (R ⊗ R ′)(a, a′, b, b′) describes the sum of the two individual conversion costs.

In this setting, we can think of a state I → A as giving a table of costs for acquiring the resources in A, and similarly an 
effect A → I is a table of costs for disposing of resources in A.

Example 7. The quantale F has the same underlying set as the Lawvere quantale, but its different algebraic structure leads 
to a very different interpretation. We think of R(a, b) as the peak force required to move a to b. The value given by the 
composite (S ◦ R)(a, c) then describes optimum peak force we will require to move a to c. For example if we can convert a
to b with one unit of force, and then move b to c for two units of force, then the peak force required is two units. An 
alternative procedure converting a to b′ for zero units of cost, and then converting b′ to c for 2.5 units of cost has a peak cost 
of 2.5 units, so we would prefer the first procedure to minimize our peak effort. Similarly, the truth value (R ⊗ R ′)(a, a′, b, b′)
gives the peak force required to complete both conversions, assuming these costs are independently incurred. As with 
Example 6, we can think of states and effects as tables of acquisition and elimination forces.

Example 8. We can interpret ordinary relations over the Boolean quantale as modelling connectivity. R(a, b) tells us that a
is connected to b, composition tells us that we can chain connections together, and the tensor product tells us that we 
can connect pairs of elements together using a pair of connections between their components. Generalizing to the interval 
quantale, we now think of R(a, b) as a “connection strength” between a and b. The composite (S ◦ R)(a, c) gives the best 
connection quality that we can achieve in two steps via B . Similarly, the parallel composite (R ⊗ R ′)(a, a′, b, b′) gives a 
conservative judgment of the connection quality we can achieve simultaneously between both a and b and a′ and b′ as the 
lower of the two individual connection strengths. States describe the “transmission strength” with which signals enter the 
system from the environment, and effects describe the “reception quality” on output signals.

Alternatively, we could view relations over I as fuzzy relations, with states and effects sets with fuzzy membership, and 
fuzzy predicates. Graded membership is widely used in cognitive science, for example in [35–39]. Concepts such as ‘tall’ 
have no crisp boundary and are better modelled using grades of membership. Although human concept use does not obey 
fuzzy logic [40], fuzzy relations may prove useful.

Rel(Q ) is partial order-enriched if we order relations pointwise with respect to the underlying quantale order. It there-
fore makes sense to consider internal monads in Rel(Q ) as interesting “structured objects”. An internal monad on an object 
in a partially ordered category is an endomorphism R satisfying:

(R ◦ R) ⊆ R, 1A ⊆ R (1)

Example 9. If we specialize condition (1) to Rel(L), it is equivalent to:

R(a,b) + R(b, c) ≥ R(a, c), 0 = R(a,a)

2 The slightly unusual formulation of identities is to avoid definition by cases. This means they can be interpreted in the internal language of an arbitrary 
topos.
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Fig. 2. The mathematical family tree.

We therefore consider these internal monads as describing generalized metric spaces. This observation is important in the 
field of monoidal topology [41].

As before, we can also interpret our internal monad as giving a well behaved collection of conversion costs between 
resources. Converting a resource to itself is free, and converting a resource via an intermediate state is at least as expensive 
as taking the direct route. Similarly, if we consider Rel(F) the conditions of (1) become:

max(R(a,b), R(b, c)) ≥ R(a, c), 0 = R(a,a)

and we can therefore see such internal monads as generalized ultrametric spaces. Again, the interpretation in terms of maxi-
mum force requirements extends to a sensible interpretation of these axioms.

Example 10. Internal monads in the category of ordinary relations are preorders on their underlying set. The generalization 
to the interval quantale then gives a fuzzy generalization of the notion of preorder. We can also apply our intuition in terms 
of connection strengths. Reflexivity tells us that every element can be perfectly connected to itself. Transitivity tell us that 
the optimal connection strength available is always at least as good as connecting via an intermediate node.

We now provide an extended example of the application of relations over generalized truth values.

Example 11 (Family trees). We will assume our universe of discourse to be the “mathematical family tree” in Fig. 2, built 
using information about supervisor relationships freely available from the mathematics genealogy project [42]. A vertical line 
represents a Supervisor–PhD student relationship, with the supervisor in diagrammatically higher position. For example, T.G. 
Room is the supervisor of A. Horadon, Ross Street was supervised by both Room and Kelly, and Kelly supervised five different 
students. We will define two individuals to be “academic siblings” if they share one or more supervisors. For example M. 
Shum and S. Johnson are academic siblings.

What makes this family tree interesting is that there are relationships that rarely occur in ordinary genealogy trees. For 
instance, Bird is both an academic sibling and a student of Street. In a real family graph this would imply an unconventional 
relationship in which Street is both a parent and sibling of Bird. Such possibilities make the academic family tree an 
interesting relationship with non-trivial structure.

We will freely borrow terms from genealogy, saying for instance that Shum is the cousin of Shannon, or that Kelly is an 
ancestor of Weber. We set the following goals:

• We want to use a relational model to give meaning to sentences such as “Bird is a student of Kelly”.
• If we define other genealogical relationships such as “grandparent”, “cousin” or “ancestor”in the natural way, we ex-

pect these definitions to coincide with the ones obtained compositionally in our model. Ideally, “Kelly is a academic 
grandparent of Shum” and “Kelly is a supervisor of a supervisor of Shum” should have the same meaning.

• We would like to express more complicated degrees of kinship, such as “Blackwell is the second-degree academic cousin 
of Horadon”, again in a purely compositional way.

• We want this process of defining complicated relations from simpler ones to be scalable, such that it can be used on 
family trees of arbitrary size.

We model the compositional structure of these relationships using a very simple pregroup grammar, with only one basic 
type N denoting nouns. In particular, our sentence type will simply be the pregroup unit, meanings sentences will be 
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Fig. 3. Simple verbs for family trees.

interpreted as numbers3 in our monoidal category. This is a rather heterodox choice: usually, the sentence type is assumed 
to have non-trivial structure because we are interested in comparing the meaning of a rich space of potential sentences. In 
our setting however, it is not particularly interesting to compare the sentences “Ralph is the brother of Mary” and “John is 
the son of Mark”. Instead, what we would really like is to measure how true the individual sentences are, ideally quantifying 
the degree of kinship between the people involved. We can achieve this by creatively varying our choice of truth values.

As sentence meanings are interpreted as numbers, they correspond to a single truth value. If we choose B as quantale 
for truth values, in the spirit of Montague there are only two possible choices, a sentence is either true or false. Things will 
get more exciting once we move to less conventional truth values, but we begin with some simple examples.

Taking B as our quantale, we define the following relation pointwise in the obvious way:

C(x, y) = x is the academic child of y

C(x, y) is 
 if x is a child of y, and ⊥ otherwise. Letting F ◦ denote the converse of a relation F , as displayed diagram-
matically by bending wires (Fig. 3a), we can build many interesting academic relationships out of the child relation C , for 
example:

S = (
C◦ ◦ C

) \ 1N the sibling relationship

P = C◦ the parent relationship

G = P ◦ P the grandparent relationship

K = P ◦ S ◦ C the cousin relationship

where 1N is the identity relation on our nouns, given by

1N(x, y) =
{


 if x = y

⊥ otherwise

We can interpret our various family tree relations as simple verbs, as illustrated in Fig. 3b. We draw the sentence space as a 
dashed wire, as it is actually the monoidal unit and would not normally be explicitly drawn. A simple graphical calculation 
establishes that “Kelly is a parent of Street”, as follows:

Similar calculations show that “Shum is the cousin of Shannon”, whereas “Shum is the cousin of Street” is false. More 
surprisingly, Pastro is his own cousin!

So far, so good. We now move to more expressive truth values that will allow us to quantify “how related” two individ-
uals in the hierarchy are.

Definition 5. The step quantale N is given by the extended natural numbers N ∪ {∞} with the reverse ordering. Joins are 
minima and we take addition as the monoid multiplication. This can be seen as a discrete version of the Lawvere quantale L.

As expected, we now use Rel(N) as our semantics. In this case, we re-define C as follows:

C(x, y) =
{

1 iff x is directly below y

∞ otherwise

We then define the parent, grandparent and cousin relations as we did before. The sibling relation S is defined as P ◦ C . It is 
easy to see how our truth values represent the degree of kinship between our individuals: a parent–child relation between 

3 Recall numbers are morphisms of type I → I .
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x and y can assume value one or ∞, depending if it is satisfied or not according to our tree. The sibling relationship S can 
have value two or ∞: we are considering being a sibling as a more distant relationship than parenthood. Although slightly 
surprising at first sight, this observation makes sense from an heraldry perspective, where the parent–child relationship is 
considered to be stronger than that of siblings. If two individuals are cousins, the degree of kinship will be 4, and so on. 
The strongest degree of all, zero, can only be attained by the identity relation, corresponding to “being oneself”. Note how 
in this framework an individual can be considered “their own sibling” but, in doing so, this relation will be satisfied only 
with value two, while considering an individual as “oneself” attains value zero.

The impact of using the truth values in the quantale N is most pronounced when we consider relations such as “ancestor” 
and “relative”. In order to do so, we extend the notion of transitive closure to relations over a quantale. Firstly, we define 
for a relation F : X → X :

F 1 = F and F n+1 = F ◦ F n

The transitive closure can then be defined as the relation:

F (x, y) =
∨

{F n(x, y) | n ≥ 1}
The ancestor relation A is the transitive closure of the child relation C . The value A(x, y) is lowest number of child relation 
“steps” from x to y, returning ∞ when x is not an ancestor of y.

The relative relation R is slightly more complex, we define it using the transitive closure as follows:

R = P ∪ C ∪ 1N

R(x, y) is the shortest number of steps between x and y assuming that we can travel in either direction, and that we can 
always reach ourselves in zero steps.

4. Incorporating convexity

Up to this point, the domain and codomain of our relations have been sets. If we fix an algebraic structure (�, E) with 
set of operations � and equations between terms E , we can define a notion of binary relation between these algebras.

Definition 6. An algebraic Q -relation of type A → B is an ordinary Q -relation R between the underlying sets, such that 
for each operation σ ∈ � of arity n the following inequation holds in the quantale order:

R(a1,b1) ⊗ ... ⊗ R(an,bn) ≤ R(σ (a1, ...,an),σ (b1, ...,bn))

As shown in [24], algebraic Q -relations form a hypergraph category:

Theorem 2. For commutative quantale Q and algebraic signature (�, E) there is a hypergraph category Rel(�,E)(Q ) with ob-
jects (�, E)-algebras and morphisms algebraic Q -relations.

In the conceptual spaces literature, convexity is conceptually important. In [18] this convexity was captured using rela-
tions between convex algebras. We refer to [18] and the extended paper [31] for explicit modelling of toy computations of 
composed concepts in this category.

These convex algebras can be described as the Eilenberg–Moore algebras of the finite distribution monad. They can in 
fact be presented by a family �c of binary operations

+p, p ∈ (0,1)

satisfying suitable axioms. We can read x +p y as “choose x with probability p and y with probability (1 − p)”. By consid-
ering algebraic B-relations over this signature, we can construct a category isomorphic to the category ConvexRel of convex 
relations from [18]. By changing our quantale of truth values, we can go further than this.

Proposition 1. In the category of convex L-relations, the internal monads are generalized metric spaces satisfying the additional axioms 
for p ∈ (0, 1):

R(a1,b1) + R(a2,b2) ≥ R(a1 +p b1,a2 +p b2)

So internal monads in the category of convex relations over the Lawvere quantale are generalized metric spaces that 
interact well with formation of convex mixtures. The usual distance on R

n is an example of such a metric.
As shown in [24], every quantale homomorphism h : Q 1 → Q 2 induces a strict monoidal functor of type Rel(�,E)(Q 1) →

Rel(�,E)(Q 2). If the quantale morphism is injective, this functor is faithful. In particular, the mapping
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⊥ �→ ∞ 
 �→ 0

is an injective quantale homomorphism from the Boolean to the Lawvere quantale. This means we can find the ordinary 
Boolean binary relations as a monoidal subcategory of the category Rel(L). This presents some flexible modelling possibili-
ties. If U and V are two subsets of a set X , they induce two states U , V : I → X in Rel(B). If we consider the number V ◦ ◦U , 
where R◦ denotes relational converse, it evaluates to true if and only if U ∩ V �= ∅.

Proposition 2. If U , V ⊆ X and d is an internal monad in Rel(L), the composite V ◦ ◦ d ◦ U is the infimum of the distances between 
elements in U and V .

This gives us the greatest lower bound on the distances between elements in U and V , providing a finer grain measure 
of similarity than can conventionally be achieved in relational models. We note that as distances are in general asymmetric, 
the number U ◦ ◦ d ◦ V may give a different measure of similarity. Similarly, we can find the ordinary Boolean convex 
relations within the category of L-valued convex relations, presenting analogous opportunities for performing calculations 
with discrete convex relations, and then measuring their separation on a continuum of values.

Such asymmetric distance measures are of practical use in cognitive science applications. A fundamental concept in 
psychology is that of similarity, which can be used as the basis of concept formation. Similarity between objects or concepts 
can be explained by locating objects in some sort of conceptual or feature space, and modelling similarity as a function of 
distance, for example in [43]. However, judgements of similarity are not necessarily symmetric [44]. In one study examining 
the similarity between pairs of countries, participants are asked to choose between statements ‘Country A is similar to 
country B’ or ‘Country B is similar to country A’. In all cases, a majority of participants preferred the statement where the 
latter country was considered more prominent.

5. Proof relevance

A span S of sets, between sets A and B , is a set X and a pair of functions X
p1−→ A and X

p2−→ B . Parallelling the notation 
for relations, we will write

Sx(a,b) := x ∈ X ∧ p1(x) = a ∧ p2(x) = b

We can think of such a span as a proof relevant relation in which Sx(a, b) tells us that x witnesses that a and b are related. 
In a computational linguistics or cognition application where relations may have been derived automatically from data in 
some way, we can exploit these proof witnesses to track evidence for our beliefs that certain relationships hold.

Sets and spans between them form a hypergraph category Span with composition given by pullback, and tensor product 
induced by a choice of products.4 In fact, as we did for relations, we can extend these spans with algebraic structure and 
a choice of truth values in a partially ordered monoid. We no longer require full quantale structure on our truth values, as 
multiple proof witnesses mean we don’t need to choose a single representative truth value when composing relations.

Definition 7. For an algebraic signature (�, E) and pomonoid Q an algebraic Q -span of type A → B between (�, E)-alge-

bras is a span A 
p1←− X

p2−→ B between the underlying objects, with a characteristic morphism χ : X → Q . We require that 
the algebraic structure is respected in that for all σ ∈ �, with arity n:∧

1≤i≤n

(p1(xi) = ai ∧ p2(xi) = bi) ⇒
⊗

1≤i≤n

χ(xi) ≤ χ(σ (x1, ..., xn))

Intuitively, these are intensional relations in which proof witnesses are weighted by a truth value, and the relations 
respect the algebraic structure. As shown in [24], algebraic Q -spans also form a hypergraph category:

Theorem 3. For commutative pomonoid Q and algebraic signature (�, E) there is a hypergraph category Span(�,E)(Q ) with ob-
jects (�, E)-algebras and morphisms algebraic Q -spans.

For algebraic Q span S we define

Sq
x(a,b) := x ∈ X ∧ p1(x) = a ∧ p2(x) = b ∧ χ(x) = q

We then read Sq
x(a, b) as telling us that x witnesses that a and b are related with strength q. In fact, we can order alge-

braic Q -spans in a manner similar to that for relations, but accounting for proof witnesses.

4 In fact, in order for composition to be associative, it is necessary to work with equivalence classes of spans. It is sufficient to consider representatives, 
and we do so to avoid distracting technicalities.
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Fig. 4. Interpretation of pullbacks as composition of paths.

Definition 8. For pomonoid Q , we define a preorder on algebraic Q -spans by setting (X1, f1, g1, χ1) ⊆ (X2, f2, g2, χ2) if 
there is a Set-monomorphism ϕ : X1 → X2 such that f1 = f2 ◦ ϕ , g1 = g2 ◦ ϕ and ∀x.χ1(x) ≤ χ2(ϕ(x)).

The ordering accounts pointwise for strengths of relatedness in a natural way. The requirement that the function ϕ in 
Definition 8 is a monomorphism ensures that even if our truth values are trivial, we take account of the “number” of proof 
witnesses available.

As internal monads provided interesting objects in the setting of relations, we should consider them in the span setting 
as well.

Proposition 3. An internal monad on A in Span(L) is an L-span S : A → A such that if S p
x (a1, a2) and Sq

y(a2, a3) we can choose an 
element ϕ(x, y) of the apex such that Sr

ϕ(x,y)(a1, a3) and p +q is greater than r in the usual ordering on the real numbers. Furthermore, 
we can do this in a way such that the assignment ϕ is injective.

So internal L-span monads further generalize metric spaces to incorporate multiple possible distances, which we can 
think of as describing different paths between points. We discuss two concrete examples.

Example 12 (Semantic ambiguity via spans). In natural language, we often encounter ambiguous situations. For example the 
word “bank” can refer to either a “river bank” or a “financial bank”. A compositional account of semantic ambiguity was 
presented in [10], using mathematical models of incomplete information from quantum theory. The techniques applied 
implicitly assume meanings are built upon a vector space model, to which we apply Selinger’s CPM construction [9] to yield 
a new category of ambiguous meanings. The CPM construction can also be applied to categories of relations, but in this case 
it does not provide a satisfactory model of ambiguity [45].

An alternative approach to ambiguity in relational models is to use spans. We consider how the ambiguous word “bank” 
is related to the word “water”

• In the “river bank” context, we would expect a strong relationship;
• In the “financial bank” context, we would expect a weaker relationship.

By using spans rather than relations, we can introduce two different proof witnesses for the different contexts under consid-
eration. By choosing our quantale of truth values to be the Lawvere quantale L, we can attach a different choice of distance 
to each of these choices. As we compose spans to describe the meanings of phrases and sentences, the proof witnesses will 
keep track of the different possible relationships in play.

Example 13 (Proof relevant family trees). We return to the family tree Example 11, this time formalizing our semantics in 

Span(N). The intuition for such a span (N
f←− X

g−→ N, χ) is that an element x ∈ X witnesses a path from f (x) to g(x) of 
length χ(x). For example, we can introduce a span C describing the child relationship, admitting a path from a to b of 
length 1 if and only if a is a child of b. The parent span P is the converse of the child span, given by reversing its legs. 
A composite of two spans encodes composites of compatible paths and the sum of their corresponding lengths. The sibling 
span is the composite P ◦ C , illustrated in Fig. 4.

If a and b are siblings, they must have some common parent c, resulting in a length two path a → c → b, as illustrated 
in Fig. 4. If the pair a and b have two different common parents, in contrast to the case of relations where this information 
is lost, the composite span will record two distinct paths between them. Similarly, if we generalize the ancestor relation to 
a span, it would witness every possible way of relating two members of the family tree, and record the corresponding path 
length. In this way, we would explicitly record that Bird is related to Kelly in two distinct ways, directly in one step, and 
via Street in two steps.
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6. Varying the underlying topos

Our definitions of algebraic Q -relations and algebraic Q -spans are constructive. This means that Theorems 2 and 3
continue to hold for any elementary topos, as proved in [24]. Background on topos theory can be found in [46]. We will 
write RelE(�,E)(Q ) and SpanE

(�,E)(Q ) for the categories of spans and relations, to make the choice of topos E explicit. We 
have already seen that Rel and Rel(B) are isomorphic as categories.

We conclude by establishing a similar connection between our framework of generalized relations and the standard 
notion of the category of relations over a regular category. This will involve the internal locale given by the subobject 
classifier.

Definition 9. A category C is regular if it is finitely complete, every kernel pair has a coequalizer and regular epimorphisms 
are stable under pullback.

There is standard construction of a category of relations Rel(C) of a regular category C , see for example [47]. For the 
category Set, this construction recovers exactly the usual category of binary relations. Every topos is regular, and in fact for 
any algebraic theory (�, E), the category of internal (�, E)-algebras in a regular category [48], meaning we can consider 
the impact of algebraic structure. In fact, the resulting category of relations is equivalent to the one produced by our 
construction with the subobject classifier as the object of truth values. In this way, we see that relations over suitable 
regular categories are a special case of our construction.

Theorem 4. Let E be a topos, � its subobject classifier and (�, E) an algebraic signature. The category RelE(�,E)(�) resulting 
from the algebraic Q -relations construction is equivalent to the category of internal relations over the regular category of inter-
nal (�, E)-algebras in E .

7. Conclusion

We have demonstrated that categories of generalized relations present a flexible modelling tool for categorical composi-
tional models of natural language and cognition, presenting case studies to motivate our claims. We also outlined various 
potential models worthy of further investigation, capturing features such as fuzziness, distances, convexity and ambiguity, 
and showed how these features can be used in combination within a generic framework. One natural direction for further 
work would be empirical investigation of the compatibility of these theoretical models with concrete applications. Another 
one would be to investigate whether the techniques in [49] can be used to build models with either non-commutative or 
typed quantales, known as quantaloids.
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