
Towards Forward Secure Internet Traffic

Eman Salem Alashwali1,2, Pawel Szalachowski3, and Andrew Martin1

1 University of Oxford, Oxford, United Kingdom
{eman.alashwali,andrew.martin}@cs.ox.ac.uk

2 King Abdulaziz University (KAU), Jeddah, Saudi Arabia
3 Singapore University of Technology and Design (SUTD), Singapore, Singapore

pawel@sutd.edu.sg

Abstract. Forward Secrecy (FS) is a security property in key-exchange algo-
rithms which guarantees that a compromise in the secrecy of a long-term private-
key does not compromise the secrecy of past session keys. With a growing aware-
ness of long-term mass surveillance programs by governments and others, FS has
become widely regarded as a highly desirable property. This is particularly true
in the TLS protocol, which is used to secure Internet communication. In this pa-
per, we investigate FS in pre-TLS 1.3 protocols, which do not mandate FS, but
are still widely used today. We conduct an empirical analysis of over 10 million
TLS servers from three different datasets using a novel heuristic approach. Us-
ing a modern TLS client handshake algorithms, our results show 5.37% of top
domains, 7.51% of random domains, and 26.16% of random IPs do not select
FS key-exchange algorithms. Surprisingly, 39.20% of the top domains, 24.40%
of the random domains, and 14.46% of the random IPs that do not select FS, do
support FS. In light of this analysis, we discuss possible paths toward forward
secure Internet traffic. As an improvement of the current state, we propose a new
client-side mechanism that we call “Best Effort Forward Secrecy” (BEFS), and
an extension of it that we call “Best Effort Forward Secrecy and Authenticated
Encryption” (BESAFE), which aims to guide (force) misconfigured servers to FS
using a best effort approach. Finally, within our analysis, we introduce a novel
adversarial model that we call “discriminatory” adversary, which is applicable to
the TLS protocol.

Keywords: Network · Security · Internet · Protocol · TLS · SSL · Measurement ·
Applied cryptography · Forward secrecy · Adversarial model · Public key

1 Introduction
1.1 Problem

Forward Secrecy (FS) is a security property in key-exchange algorithms which guar-
antees that a compromise in the secrecy of a long-term private-key does not compro-
mise the secrecy of past session keys [25]. With a growing awareness of long-term
mass surveillance programs by governments and others, FS has become widely re-
garded as a highly desirable property. This is particularly true in the TLS protocol,
which is used to secure Internet communication. Experience has shown the possibil-
ity of servers’ long-term private-key compromise. For example, RSA [34] long-term

private-keys have been compromised through prime factorisation, due to advancement
in computing power [10][20], or due to low entropy during keys generation [16]. Fur-
thermore, long-term private-keys can be compromised through implementation bugs as
in the Heartbleed bug [39], through social engineering, or other attacks. Due to the in-
creasing importance of FS, the new version of TLS, TLS 1.3, mandates it by design by
prohibiting non-FS key-exchange algorithms [33]. In recent years, it has been shown
that some FS key-exchange algorithms (e.g. ECDHE) can achieve faster performance
than non-FS (e.g. RSA) algorithms [18]. Despite recommendations to server admin-
istrators to select FS key-exchange algorithms, non-FS key-exchange algorithms are
selected by more than 25% of the servers in our IPs dataset as we will show later. As a
result, clients proceed with non-FS key-exchange algorithms when connecting to these
servers. This puts users’ encrypted data at the risk of future decryption by adversaries
who collect traffic today, and decrypt it whenever the targeted servers’ private-key is
compromised. Motivated by the importance of FS in Internet security, in this paper, we
analyse the state of FS in pre-TLS 1.3 protocols, and discuss possible paths towards
improving its adoption, including proposing a new best effort approach.

1.2 Contribution

Our contributions are as follows: first, we conduct an empirical analysis of FS on over
10 million TLS servers using a novel heuristic approach on three different datasets that
contain top domains, random domains, and random IPs, which represent the real-world
web. Unlike previous work that identifies servers that select non-FS key-exchange al-
gorithms by capturing the servers’ responses for TLS handshakes, our analysis employs
a heuristic procedure that allows us to answer a deeper question: Do servers that select
non-FS key-exchange algorithms support FS ones? Our results provide new and useful
insights to vendors, policy makers, and decision makers. Second, we discuss possi-
ble paths towards forward secure Internet traffic. Third, we propose a novel client-side
mechanism that we call “Best Effort Forward Secrecy” (BEFS), and an extension of it
that we call “Best Effort Forward Secrecy and Authenticated Encryption” (BESAFE),
which aims to guide (force) misconfigured servers to FS key-exchange algorithms us-
ing a best effort approach. We implement and evaluate a proof-of-concept for it. Our
mechanism adds value to the existing “all or nothing” approach. Finally, within our
BEFS security analysis, we introduce a novel threat model that we call “discrimina-
tory” adversary. The model is applicable to semi-trusted servers running protocols such
as TLS that gives the server the power of selecting a security level, exemplified by the
ciphersuite in our case, while the client has no means of verifying the server’s actual
capabilities (i.e. justifying the server’s decision if it selects a non-preferred ciphersuite
such as those that do not provide FS). We show how this power can be abused by semi-
trusted servers to discriminate against their users for a powerful third-party’s advantage
(e.g. government intelligence), with minimal evidence and liabilities (e.g. legal) of the
server’s involvement in carrying out the attack.

1.3 Scope

Our focus is pre-TLS 1.3 protocols, mainly the currently supported versions by most
clients and servers, TLS 1.2, TLS 1.1, and TLS 1.0. As a shorthand, we refer to them
as pre-TLS 1.3. TLS 1.2 [32] does not enforce FS by design, but is still widely used

today. As of April 2019, only 13.6% of the top 150,000 most popular domains support
TLS 1.3, according to a report by SSL Labs [31]. Furthermore, there are no known plans
from standardisation bodies or browser vendors to deprecate TLS 1.2 yet. Although our
work is mainly on pre-TLS 1.3, it has an impact on currently deployed systems.

2 Background
2.1 Transport Layer Security (TLS)

Client (C) Server (S)

CH(vmaxC ,[a1, ...,an],...)

SH(vS,aS, ...)

The rest of the handshake

Fig. 1: Illustration of the version and ciphersuite
negotiation in pre-TLS 1.3 protocols.

Transport Layer Security (TLS) [33][32]
is one of the most important and widely
used protocols to date. It is the main pro-
tocol used to secure Internet communi-
cation. TLS aims to provide data con-
fidentiality, integrity, and authentication
between two communicating parties. It has been in use since 1995, and was formerly
known as the Secure Socket Layer (SSL). TLS consists of multiple sub-protocols in-
cluding the TLS handshake protocol. In the handshake protocol, both communicating
parties authenticate each other and negotiate security-sensitive parameters, including
the protocol version and ciphersuite. The ciphersuite is an identifier that defines the
cryptographic algorithms that, upon agreement between the communicating parties
(client C and server S), will be used to secure subsequent messages of the protocol.
In pre-TLS 1.3, the ciphersuite defines the key-exchange, authentication, symmetric
encryption, and hash algorithms. Some ciphersuites provide stronger security proper-
ties than others. For example, FS guarantees that a compromise in the server’s long-
term private-key does not compromise past session keys [25]. Similarly, Authenticated
Encryption (AE) provides confidentiality, integrity, and authenticity simultaneously,
which provides stronger resilience against some attacks over the MAC-then-encrypt
schemes [40][6]. Most TLS clients today, such as mainstream web browsers, offer a
mixture of ciphersuites that provides various levels of security such as FS, AE, both FS
and AE, or none of them. The same applies to servers that select the session’s cipher-
suite.

As depicted in Figure 1, at the beginning of a new TLS handshake, both commu-
nicating parties negotiate and agree on a protocol version and ciphersuite. The client
sends a ClientHello (CH) message to the server. The CH contains several parame-
ters including the client’s maximum supported version vmaxC and a list of ciphersuites
[a1, ...,an] (we refer to them as the client’s offered versions and the client’s offered
ciphersuites). Upon receiving the CH, the server selects a single version vS and a cipher-
suite aS from the client’s offer (we refer to them as the server’s selected version and
the server’s selected sciphersuite), and responds with a ServerHello (SH) containing
vS and aS. If the server does not support the client’s offered versions or ciphersuites, i.e.
the client’s offer is not in the server’s supported versions or the server’s supported
ciphersuites, the server responds with a handshake failure alert.

2.2 TLS Key-Exchange Algorithms

There are two main key-exchange algorithms used in pre-TLS 1.3 protocols: the Rivest-
Shamir-Adleman (RSA) [34], and the Ephemeral Diffie-Hellman (DHE) [11]. DHE has

Client (C) Server (S)

Handshake messages

CKE(enc(pkS, pms))

ms = kdfms(pms,nC|nS)
kC,kS = kdfk(ms,nS|nC)

ms = kdfms(pms,nC|nS)
kC,kS = kdfk(ms,nS|nC)

The rest of the handshake

Fig. 2: Illustration of the RSA key-exchange in pre-TLS 1.3.

Client (C) Server (S)

Handshake messages

SKE(ecdhepkS ,sign(skS,hash(nC|nS|ecdhepkS)))

CKE(ecdhepkC)

pms = ecdheskC × ecdhepkS
ms = kdfms(pms,nC|nS)
kC,kS = kdfk(ms,nS|nC)

pms = ecdheskS × ecdhepkC
ms = kdfms(pms,nC|nS)
kC,kS = kdfk(ms,nS|nC)

The rest of the handshake

Fig. 3: Illustration of the (EC)DHE key-exchange in pre-TLS 1.3.

two variants: the Finite-Field (DHE) and the Elliptic-Curve (ECDHE). We use the term
(EC)DHE to refer to either ECDHE or DHE.

RSA Key-Exchange [34] does not guarantee FS. As depicted in Figure 2, to gen-
erate a session key using RSA, the client generates a random value for the pre-master
secret pms, encrypts it with the server’s long-term RSA public-key pkS using the (enc)
function, then sends it in a ClientKeyExchange (CKE) message. After that, both par-
ties derive the master secret ms from the pms and their nonces nC and nS, using a Key
Derivation Function (kdfms). Then, they compute the session keys kC and kS using the
(kdfk) function. Clearly, the secrecy of the pms relies on the secrecy of the server’s
long-term private-key skS that is associated with the server’s public-key pkS since every
pms is encrypted with the same server’s long-term key pkS during the key’s lifetime.
Therefore, if the server’s long-term private-key skS is compromised at some point in the
future, a passive adversary who has been collecting encrypted traffic, can recover the
pms, and consequently, the ms, kC and kS, and hence decrypt past sessions’ encrypted
data.

(EC)DHE [28][11] guarantees FS. As depicted in Figure 3, to generate a session key
using (EC)DHE, the server sends its (EC)DHE public-key parameters ecdhepkS , signed
with its long-term private-key skS using the (sign) function in a ServerKeyExchange

(SKE) message. The client then sends its (EC)DHE public-key parameter ecdhepkC in a

ClientKeyExchange (CKE) message. After that, both parties compute their pms, derive
the ms using the (kdfms) function. Then, they compute the session keys kC and kS using
the (kdfk) function. The (EC)DHE key is ephemeral, i.e. a fresh key is generated for
each session. Unlike RSA, in (EC)DHE key-exchange, the pms is not encrypted with the
server’s long-term key pkS. Therefore, the ms, kC and kS, do not rely on the secrecy of
the server’s long-term private-key skS. Hence, if the server’s long-term private-key skS
is compromised at some point in the future, a passive adversary who has been collecting
encrypted traffic, cannot recover the ms, kC, and kS of past sessions.

2.3 Terminology

Throughout the paper, we use the term FS-ciphersuites to denote ciphersuites that sup-
port FS using the ECDHE key-exchange algorithm. We use the term AE-ciphersuites
to denote ciphersuites that support AE using either the ChaCha20 stream cipher or
the GCM mode of operation in the symmetric encryption algorithm. We use the term
FS+AE-ciphersuites to denote ciphersuites that support both FS and AE using the
ECDHE key-exchange algorithm and either the ChaCha20 stream cipher or the GCM
mode of operation. Properties preceded with a “non” denotes a negated property. For
example, the term FS+non-AE-ciphersuites denotes ciphersuites that support FS but
not AE. These definitions are not meant for generalisation. They are limited to the
paper’s scope and to our experiment settings which are based on Google Chrome’s1

ciphersuites. For example, Chrome only supports ECDHE to provide FS. Hence, our
definition of FS-ciphersuites considers ECDHE only. To describe domains, we use the
terms we defined in [4]: main-domains denotes domains consisting of a Top Level
Domain (TLD) (e.g. “com”) prefixed by a single label, and do not have any further sub-
domains, e.g. “example.com”; plain-domains denotes domains that are not prefixed
with “www” sub-domains, e.g. “example.com”; and www-domains denotes domains
that are prefixed with “www” sub-domains, e.g. “www.example.com”.

3 Empirical Study
3.1 Datasets

We build three datasets that we name: top-domains, random-domains, and random-ips.
We end up with 999,884 distinct domains in the top-domains dataset, 4,960,390 dis-
tinct domains in the random-domains dataset, and 4,881,985 distinct IPv4 addresses
in the random-ips dataset. The rationale behind choosing these three categories is to
represent the real-world web as much as possible. In what follows, we explain how we
build and pre-process each dataset.

Top Domains Dataset The top-domains dataset initial size is 1 million domains,
obtained from the Alexa list of the top 1 million most visited domains globally [5],
retrieved on Aug. 22, 2018. We exclude the www-domains because we target plain-
domains (see section 2.3 for our definitions of plain-domains and www-domains), which
are the majority in the Alexa list. After excluding the www-domains, we end up with
999,884 domains that are mainly (around 94.81%) classified as main-domains.

1 As a shorthand, throughout the paper, we refer to Google Chrome as Chrome

Random Domains Dataset The random-domains dataset initial size is 5 million ran-
dom domains obtained from a large dataset that contains 54,063,220 distinct (alphabet-
ically unordered) domains that successfully completed a TLS handshake in Amann et
al. [7], which have been collected from multiple sources. To maintain consistency with
the top domains dataset format, we extract 5 million domains from [7] that are classified
as both plain-domains and main-domains. In this dataset, the TLDs scope is limited to
generic TLDs (gTLDs), and does not include “multi-level” TLDs such as country-code
TLDs (ccTLDs), e.g. “ac.uk”. This is to avoid the complexity of distinguishing domains
that have sub-domains from domains that have ccTLDs, which is somewhat difficult to
achieve with 100% accuracy. To avoid repeated domains, from the 5 million random do-
mains, we exclude the domains that exist in the top domains dataset, either “as is” or as a
main-domain of a sub-domain in the top domains dataset (the top domains dataset con-
tains a small percentage of sub-domains). We identify sub-domains in the top domain
dataset in two steps: first, by using a regular expression, we extract the domains that
have more than one dot “.”. Second, with the aid of tldextract [22] python library,
we distinguish sub-domains from domains with country-code TLDs (ccTLD) such as
“example.ac.uk” (the latter is considered a main-domain). We end up with 4,960,390
distinct random domains.

Random IPs Dataset The random-ips dataset initial size is 5 million distinct IPv4 ad-
dresses that have completed a successful TLS handshake with Censys, a search engine
and database for servers and network devices on the Internet [13], retrieved from the
Censys IPv4 dataset on Oct. 20, 2018, through research access to the Censys database.
To avoid repeated IPs, from the 5 million IPs, we exclude the IPs that are associated
with any domain that has responded to a handshake in the scanning or inspection phases
(further details on the scanning and inspection phases will be provided in the method-
ology in section 3.3). For this reason, we build the random IPs dataset after we finish
the domains datasets scanning and inspection phases. We end up with 4,881,985 IPs.

3.2 Research Questions

Our analysis aims to answer the following main questions:
1. What is the percentage of servers that select non-FS-ciphersuites today?
2. Do servers that select non-FS-ciphersuites support FS-ciphersuites?
3. Do different dataset natures result in different trends in selecting and supporting

FS-ciphersuites?
Whilst addressing these main questions, the following side questions arose:

1. What is the percentage of servers that select FS+non-AE-ciphersuites after the
client’s FS-ciphersuites enforcement2?

2. Do servers that select FS+non-AE-ciphersuites after the client’s FS-ciphersuites
enforcement support FS+AE-ciphersuites?

3. Can the client’s FS-ciphersuites enforcement lead servers to lose the AE property?

2 The term “client’s FS-ciphersuite enforcement” refers to a client that offers FS-ciphersuites
exclusively. The same applies for “client’s FS+AE-ciphersuite enforcement” but the latter of-
fers FS+AE-ciphersuites exclusively. More details are provided next in the methodology in
section 3.3

Fig. 4: A general overview of our methodology showing the two phases and their input.

4. Do servers that lose the AE property after the client’s FS-ciphersuites enforcement
support FS+AE-ciphersuites?

3.3 Methodology

As depicted in Figure 4, our methodology consists of two main phases: a scanning phase
followed by an inspection phase.

Scanning Phase We consider the scanning phase as an exploration phase. In this
phase, for each server address in our datasets, we perform a TLS handshake using the
tls-scan tool [43], an open source fast TLS scanner capable of performing concurrent
TLS connections. We customise the tls-scan to utilise the OpenSSL 1.1.0g library,
and to support Chrome’s latest version pre-TLS 1.3 ciphersuites, which support various
ciphersuites that provide FS, or AE, or none of them. We choose to base the scanning
client on Chrome’s ciphersuites because Chrome is the most representative TLS client
on the Internet. As of Feb. 2019, Chrome’s usage is 79.7% [41]. tls-scan includes the
Server Name Indication (SNI)3 extension for domain name scans by default. We set the
timeout argument to 5 seconds, and the concurrency argument to 50 connections. We
ran the scans between Aug. 23, 2018 and Oct. 21, 2018 at the University of Oxford in
discrete intervals based on the dataset.

Inspection Phase After the scanning phase is complete, we extract the responding
addresses that selected non-FS-ciphersuites in the scanning phase. Each dataset is in-
spected within a maximum of 48 hours after its scanning phase is complete. For the
inspection phase, we develop a TLS client that implements our heuristic procedure
(see Figure 4), which works as follows, for each server’s address:
1. The client performs a TLS handshake based on Chrome’s pre-TLS 1.3 default ci-

phersuites. This first handshake of the inspection phase is similar to the scanning

3 The SNI extension passes the domain name in the TLS handshake in order to obtain more
accurate responses in virtual hosting environments, where a single server can host multiple
domains [14].

phase handshake4. The inspection’s first handshake serves as a confirmation of the
server’s selected ciphersuite. It records the server’s selected ciphersuite from a de-
fault client’s view just before the heuristic procedure starts. If the handshake failed,
the client records the error, and the heuristic procedure ends here.

2. Upon receiving the server’s response to the first handshake (step 1), the client
checks the server’s selected ciphersuite: if it is a FS-ciphersuite, this means that
the server has changed its behaviour after the scanning phase since all the inspec-
tion input addresses are for servers that selected non-FS-ciphersuites in the scan-
ning phase. The client records the server’s response, and the heuristic procedure for
this server ends here. Otherwise, if the server’s selected ciphersuite is still a non-
FS-ciphersuite, we classify this server as “stable”, i.e. consistently selects a non-
FS-ciphersuite. The client then updates its TLS context to support FS-ciphersuites
exclusively. The set of FS-ciphersuites may or may not support AE, i.e. it contains
FS+AE-ciphersuites and FS+non-AE-ciphersuites. This context is more restricted
than the default one.

3. The client then performs a second handshake utilising the new FS-ciphersuites con-
text. If the handshake failed, the client records the error and the heuristic procedure
for this server ends here.

4. Upon receiving the server’s response to the second handshake (step 3), the client
checks the server’s selected ciphersuite: if it is a FS+AE-ciphersuite, this means that
the server supports FS+AE-ciphersuite after the client’s FS-ciphersuites enforce-
ment. The client then records the server’s response, and the heuristic procedure for
this server ends here. Otherwise, if the server’s selected ciphersuite is a FS+non-
AE-ciphersuite, the client updates its context to support FS+AE-ciphersuites exclu-
sively. This context is more restricted than the FS-ciphersuites context.

5. The client then performs a third handshake utilising the new FS+AE-ciphersuites
context. If the handshake failed, the client records the error and the heuristic proce-
dure ends here.

6. Upon receiving the server’s response, the client records the response. The heuristic
procedure for this server ends here.
We develop and run the inspection client using python 3.6.5. Similar to the

tls-scan client in the scanning phase, it utilises OpenSSL 1.1.0g. We enable the
SNI for the top and random domains inspection (the IPs dataset do not need the SNI),
and we set the timeout to 5 seconds. The results are then stored and analysed using
MySQL database and queries.

Identifying Device Types We classify device types into two categories: ordinary web
servers and network devices. We use the term “network device” to refer to non-ordinary
TLS servers, e.g. embedded web servers in network devices such as routers. To identify
the device type, we input the IPs of the dataset in question in a query to Censys database
to get the IPs metadata. We then produce a breakdown of the responding IPs grouped
by the device type. We base our device types queries on the IPs, i.e. in the domains
datasets, we first extract the distinct IPs behind the domains, because Censys is mainly
an IP-based engine. We query the Censys snapshot that dates to the starting date of the

4 Except that our inspection client does not support SSL v3 while the scanning tls-scan client
supports SSL v3. However, we analyse FS regardless of the client’s supported versions.

Table 1: Summary of the scanning results. Every additional indentation means that the percent-
ages are computed out of the previous level results. The “% Network devices” are computed over
the responding IPs to Censys metadata query (exact numbers are provided in text).

Datasets

top-domains random-domains random-ips

Dataset size 999,884 4,960,390 4,881,985

Responding servers 814,333 (81.44%) 3,221,249 (64.94%) 4,477,279 (91.71%)
Distinct IPs 468,346 (57.51%) 690,912 (21.45%) 4,477,279 (100%)

% Network devices 466 (0.10%) 1208 (0.18%) 518,988 (11.59%)

Select non-FS 43,756 (5.37%) 241,994 (7.51%) 1,171,101 (26.16%)

scan or inspection (depending on the phase) of the dataset in question. Censys labels
the device type of the network devices that it identifies, e.g. “DSL/cable modem”. If the
device type field is empty, this means that the device is either an ordinary web server, or
a network device that Censys cannot identify. Finally, we do not always obtain 100%
responses for the IPs that we query their metadata from Censys. However, overall, the
percentages of the responses that we receive are between 98.36% to 100% (depending
on the dataset) of the IPs we query.

Ethical Considerations Our study is in line with the ethical recommendations in car-
rying out measurement studies [29]. First, we do not collect private data. Second, we
do not perform an exhaustive number of handshakes on any single server. Our clients’
handshakes can by no means be classified as a Denial of Service (DoS) attack. Third,
we use a designated public IPv4 address per scanning device instead of Network Ad-
dress Translation (NAT), to avoid potential disturbance to other users in our institution’s
network if a server has blocked our scanning or inspection device’s IP. Fourth, we use
informative DNS names that contain “TLS probing” to help server administrators iden-
tify our devices’ activity in their logs. Finally, we inform the IT and security teams
in our institution where the empirical study has been conducted so they expect a high
volume of outgoing connections from our experiment devices, and to expect some in-
coming blacklisted certificates from random servers.

3.4 Results

Scanning Phase In this phase, we input the servers’ addresses in our datasets. The
results of the scanning phase are summarised in Table 1.

Responding servers As illustrated in Table 1, the highest percentage of responses is in
random IPs (91.71%), followed by top domains (81.44%), and finally random domains
(64.94%). The response rate is influenced by the dataset category. Both the IPs and
top domains datasets are recent. That is, the addresses in the IPs dataset have recently
completed a TLS handshake with the Censys engine [13], and TLS adoption in top
domains is high. The low response rate in random domains (64.94%) is very likely due
to the dataset age. It is obtained from a previous study that was published in 2017 [7].
Hence, many domains could have gone down since then.

Table 2: Summary of the inspection results. Every additional indentation means the percentages
are computed out of the previous level results. The input of the inspection phase is the servers
that selected non-FS-ciphersuites in the scanning phase. The “% Network devices” are computed
over the responding IPs to Censys metadata query (exact numbers are provided in text).

Datasets

non-FS

top-domains

non-FS

random-domain

non-FS

random-ips

Dataset size 43,756 241,994 1,171,101

Responding servers 43,374 (99.13%) 240,519 (99.39%) 1,111,802 (94.94%)

Select non-FS (stable) 43,158 (99.50%) 240,274 (99.90%) 1,111,174 (99.94%)
Distinct IPs 33,474 (77.56%) 61,522 (25.60%) 1,111,174 (100%)

% Network devices 76 (0.23%) 361 (0.59%) 434,076 (39.06%)

Support FS 16,916 (39.20%) 58,636 (24.40%) 160,706 (14.46%)
Distinct IPs 12,545 (74.16%) 13,839 (23.60%) 160,706 (100%)

% Network devices 12 (0.10%) 27 (0.20%) 1503 (0.94%)

Select FS+non-AE 10,091 (59.65%) 38,583 (65.80%) 93,566 (58.22%)

Support FS+AE 1629 (16.14%) 1289 (3.34%) 24,128 (25.79%)

Lose AE 2686 (26.62%) 1768 (4.58%) 12,769 (13.65%)

Support FS+AE 45 (1.68%) 91 (5.15%) 4668 (36.56%)

In terms of device types, from the responding top domains, there are 468,346 (57.51%)
distinct IPs behind all the top domains. We receive metadata responses for 464,191
(99.11%) of them from the Censys database. Of those, only 466 (0.10%) IPs are labeled
as network devices. From the responding random domains, there are 690,912 (21.45%)
distinct IPs behind them. We receive metadata responses for 686,085 (99.30%) of them.
Of those, there are 1208 (0.18%) labeled as network devices. From the responding ran-
dom IPs, we receive metadata responses for all of them (100%). Of those, there are
518,988 (11.59%) IPs labeled as networked devices. Clearly, the percentage of network
devices in the random IPs is higher than that in the top and random domains.

Servers that select non-FS-Ciphersuites From the responding servers, we find 5.37%
of the top domains, 7.51% of the random domains, and 26.16% of the random IPs,
select non-FS-ciphersuites. The lowest percentage is in the top domains, the highest
is in the random IPs, while in the random domains, it is slightly higher than that in
the top domains. The fact that the random IPs dataset has the highest percentage of
network devices can be correlated to the high percentage of servers that select non-FS-
ciphersuites. We can confirm this in the inspection phase when we look closer at the
device types of those servers that select non-FS-ciphersuites.

Inspection Phase In this phase, we input the addresses of servers that select non-FS-
ciphersuites in the scanning phase. Table 2 summarises the inspection phase results.

Responding servers As Table 2 illustrates, over 99% of top and random domains, and
94.94% of IPs that select non-FS-ciphersuites in the scanning phase, have responded to
our inspection client’s handshake. The low response rate in the IPs dataset compared to
the top and random domains datasets is very likely attributed to SSL v3 devices as our
inspection client does not support SSL v3, while the scanning client does. It is also very
likely that those non-responding IPs are mostly for network devices since using legacy
versions in network devices is more common than that in ordinary web servers [37].

Servers that still select non-FS-Ciphersuites (stable) In our work, we use the term
“stable” to refer to servers that consistently select non-FS-ciphersuites in both the in-
spection’s first handshake and the scanning handshake. As shown in Table 2, clearly,
the stability in selecting non-FS-ciphersuites among all datasets is high (over 99% in
all datasets), despite the difference in the supported protocol versions in the scanning
and inspection clients (the scanning client supports SSLv3 while the inspection does
not). This suggests that, to some extent, servers’ selected ciphersuites are not affected
by the negotiated versions.

In terms of device types, out of the top domains that select non-FS-ciphersuites,
there are 33,474 (77.56%) distinct IPs behind all these domains. Of those, we receive
metadata responses for 33,079 (98.82%) IPs from the Censys database. Of those, there
are 76 (0.23%) IPs labeled as networked devices. Of the random domains that select
non-FS-ciphersuites, there are 61,522 (25.60%) distinct IPs behind them. We receive
metadata for 61,176 (99.44%) IPs from Censys. Of those, there are 361 (0.59%) IPs
labeled as networked devices. Of the random IPs that select non-FS, we receive meta-
data for 1,111,174 (100%). Of those, there are 434,076 (39.06%) IPs labeled as net-
worked devices. Network devices represent no more than 0.59% of top and random
domains that select non-FS-ciphersuites. However, more than a third of servers that se-
lect non-FS-ciphersuites in the random IPs dataset are labeled as network devices. The
high percentage of network devices in the random IPs is likely the reason for the high
percentage of servers that select non-FS-ciphersuites.

Servers that select non-FS-Ciphersuites, but support FS-Ciphersuites We find 39.20%
of top domains, 24.40% of random domains, 14.46% of random IPs, that select non-FS-
ciphersuites in the inspection phase, do support FS-ciphersuites. The top-domains are
the highest, followed by the random domains, and finally, the random IPs are the low-
est. Interestingly, this is a shifted paradigm for the percentages of servers that select
non-FS-ciphersuites that is shown in Table 1, where the random IPs have the highest
percentage and the top domains have the lowest percentage. The results reflect that the
lack of FS-ciphersuite selection in the top and random domains is to a large extent due
to misconfiguration, while in the random IPs, it is mostly due to lack of support.

In terms of device types, out of the top domains that select non-FS-ciphersuites but
support FS-ciphersuites, there are 12,545 (74.16%) distinct IPs behind them. We receive
metadata responses for 12,339 (98.36%) IPs. We find 12 (0.10%) of them are labeled as
networked devices. Of the random domains that select non-FS-ciphersuites but support
FS-ciphersuites, there are 13,839 (23.60%) distinct IPs behind them. We receive meta-
data responses for 13,744 (99.31%) IPs. Of those, 27 (0.20%) are labeled as network
devices. Of the random IPs, that select non-FS-ciphersuites but support FS-ciphersuites,
we receive metadata responses for 160,706 (100%) IPs. Of those, 1503 (0.94%) are la-

beled as network devices. The results show that the majority of those devices are not
identified as network devices, even in the random IPs dataset that shows the highest per-
centage of network devices. Those servers that select non-FS-ciphersuites and turned
to support FS-ciphersuites are not network devices. Therefore, most of the network
devices that select non-FS-ciphersuites, do not support FS-ciphersuites.

Servers that select FS+non-AE-Ciphersuites after enforcing FS-Ciphersuites Out of
the top domains, random domains, and random IPs that support FS-ciphersuites af-
ter enforcement (row label “Support FS” in Table 2), there are 59.65% top domains,
65.80% random domains, and 58.22% random IPs that select FS+non-AE-ciphersuites.
The reason for selecting non-AE can be attributed to the fact that TLS 1.0 and TLS 1.1
do not support AE-ciphersuites [36], and these devices might be running legacy ver-
sions of TLS. Otherwise, this is attributed to misconfiguration. To better understand
this situation, we next check whether those servers support FS+AE-ciphersuites or not.

Servers that select FS+non-AE-Ciphersuite after enforcing FS-Ciphersuites, but sup-
port FS+AE-ciphersuites Of the top domains, random domains, and random IPs that
select FS+non-AE-ciphersuites after FS-ciphersuites enforcement (row label “Select
FS+non-AE” in Table 2), there are 16.14% top domains, 3.34% random domains, and
25.79% random IPs, that support FS+AE-ciphersuite. At this point of the heuristic pro-
cedure, the majority of the IPs do not belong to network devices. The majority of the
top and random domains that select FS+non-AE-ciphersuites do not support FS+AE-
ciphersuites. However, selecting FS+non-AE-ciphersuites while supporting FS+AE-
ciphersuites in the IPs dataset is the highest, which we classify as misconfiguration.

When enforcing FS-Ciphersuite causes losing the AE property Of the top domains,
random domains, and randm IPs that select FS+non-AE-ciphersuites after enforcing FS-
ciphersuites (row label “Select FS+non-AE” in Table 2), there are 26.62% top domains,
4.58% random domains, and 13.65% random IPs, were selecting AE before enforcing
FS-ciphersuites, i.e. were selecting non-FS+AE-ciphersuites. This can be either because
they do not support any FS+AE-ciphersuites, or due to misconfiguration. This can be
clarified next.

Servers that lose the AE property after enforcing FS-Ciphersuites, but support
FS+AE-ciphersuites Out of the top domains, random domains, and random IPs that
lose the AE property after enforcing FS (row label “Lose AE” in Table 2), we find 1.68%
top domains, 5.15% random domains, and 36.56% random IPs, do support FS+AE-
ciphersuites. The results reflect that losing the AE property after enforcing the FS in
the top and random domains is to a large extent due to a lack of support for FS+AE-
ciphersuites, but in the random IPs, it is mostly due to misconfiguration.

4 Towards Forward Secure Internet Traffic
In this section, we discuss possible paths towards forward secure Internet traffic from a
client’s perspective. Then, we propose and evaluate a novel client-side mechanism that
we call Best Effort Forward Secrecy (BEFS), and an extension of it that we call Best
Effort Forward Secrecy and Authenticated Encryption (BESAFE). We choose to focus
our discussion and solutions on clients because unlike servers, clients are controlled
by few players, e.g. browser vendors. Client-side security enhancement mechanisms

are easier to adopt, as shown by recent adoptions of client-side mechanisms such as
Google’s Certificate Transparency (CT) [23], and others.

4.1 Deprecating non-FS-Ciphersuites in TLS Clients

The most straight-forward approach towards forward secure Internet traffic is depre-
cating non-FS-ciphersuites from TLS clients. As a result, these clients will not be able
to establish TLS connections with servers that do not support FS-ciphersuites. This
is a conservative approach that has been taken by browser vendors and standardisa-
tion bodies in the past with some protocol versions and algorithms such as SSL v3 [8]
and RC4 [30], after their insecurity has become clear. However, deprecating non-FS-
ciphersuites now can be more problematic than the case of deprecating SSL v3 and RC4
in 2014 and 2016 respectively. By way of comparison, Lee et al.5 conducted a survey
in 2006 to assess the cryptographic strength of TLS servers [24]. It shows that 98.36%
of the surveyed servers support TLS 1.0, the latest version at the time of the study, and
57.17% of the servers support AES encryption, which was in its early years as it was
standardised in 2001 [15]. In light of these figures, we speculate that SSL v3 and AES
adoption when they were deprecated by most browsers in 2014 and 2016 respectively
was over 99%. On the other hand, in our results, we calculate an approximation of the
servers that support FS-ciphersuites in each dataset. To this end, we first calculate the
number of servers that select non-FS-ciphersuites and do not support FS-ciphersuite
which can be derived from Table 2 by calculating (“Select non-FS (stable)”−“Support
FS”), and then subtracting those results from the overall responses in Table 1’s row
label “Responding servers”, which gives: 788,091 (96.78%) top domains, 3,039,611
(94.36%) random domains, and 3,526,811 (78.77%) random IPs. Our results are in
line with Censys Oct. 26, 2018 snapshot figures that show 97.44% of Alexa’s top
domains, and 77.94% of IPs in all IPv4 space, support FS-ciphersuite. However, our
results are more accurate as we include not only servers that select FS, but also servers
that support FS but select non-FS, which can be guided through client’s enforcement as
we will explain next. In addition, we utilises modern client ciphersuites. On the other
hand, Censys only measures servers that select FS, and utilises somewhat legacy ci-
phersuites. We conclude that the percentages of servers that support FS-ciphersuites are
less than that in RC4 and SSL v3 cases, especially in the IPs datasets. The lack of sup-
porting FS-ciphersuites by those servers can be explained by the fact that until recent
years, (EC)DHE key-exchange algorithms have been viewed as resource-exhaustive
compared to RSA key-exchange, despite the fact that this argument is no longer true
with the ECDHE variant as shown in [18].

4.2 Best Effort Forward Secrecy (BEFS)

Overview The gist of our BEFS mechanism is guiding (forcing) misconfigured servers
towards FS-ciphersuites. As explained in section 2.1, in ordinary TLS clients such as
web browsers, the client offers default ciphersuites, which includes FS-ciphersuites and

5 Despite the study’s age (conducted in 2006), to the best of our knowledge, [24] is the only
study that tried to assess servers’ supported ciphersuites prior to deprecating RC4 and SSL v3.
Note that identifying the supported ciphersuites for a server is different from identifying the
selected ciphersuite. The former requires multiple handshakes, while the latter requires a single
handshake, for each server.

Client (C) Server (S)

CH(...,[a1 f s , ...,an f s],...)

Prefers non-Fs;
Supports FSSH(...,aS f s ,...)

FS connection

Fig. 5: A BEFS-enabled client hand-
shake when the server prefers to select
a non-FS-ciphersuite while supporting
FS-ciphersuites. The server is forced
to select FS-ciphersuite through client
FS-ciphersuite enforcement.

Client (C) Server (S)

CH(...,[a1 f s , ...,an f s],...)

Prefers non-Fs; Sup-
ports non-FS only

Error
CH(...,[a1 f s , ...,annon f s],...)

SH(...,aSnon f s ,...)

non-FS connection

Fig. 6: A BEFS-enabled client hand-
shake when the server does not support
FS-ciphersuites. The client falls back
to non-FS-ciphersuites only when the
server indeed does not support FS.

non-FS-ciphersuites. Upon receiving the client’s offer, a server that does not support or
does not prefer to select a FS-ciphersuite will select a non-FS-ciphersuite, and sends its
selected ciphersuite to the client. The client accepts the server’s choice, and the rest of
the communication proceeds with a non-FS-ciphersuite. On the other hand, in BEFS, we
exploit the TLS ciphersuite negotiation dynamics to influence (bias) the server’s choice
towards FS-ciphersuites. That is, a BEFS-enabled client first offers FS-ciphersuites ex-
clusively [a1 f s , ...,an f s]. Upon receiving the client’s offered ciphersuites, a server that
supports FS-ciphersuites will be guided (forced) to select a FS-ciphersuite aS f s , even if
it prefers to select a non-FS-ciphersuite, since FS-ciphersuites are the only offered ci-
phersuites as illustrated in Figure 5. As shown in Table 2, of the servers that select non-
FS-ciphersuites, there is between 14.46% to 39.20% that do support FS-ciphersuites,
which can benefit from the BEFS enforcement mechanism. If the server indeed does not
support FS-ciphersuites, it will return a failure alert (see section 2.1 for a background on
TLS version and ciphersuite negotiation). In this case, the BEFS-enabled client makes
a second handshake utilising default ciphersuites [a1 f s , ...,annon f s], which includes non-
FS-ciphersuites in addition to the previously offered FS-ciphersuites as Figure 6 illus-
trates. Hence, a server that does not support FS-ciphersuites can still select a non-FS-
ciphersuite aSnon f s after the client falls back. BEFS can be viewed as a form of the
“Opportunistic Security” concept [12], but at the FS property level. That is, it guides
servers to select FS whenever they support it.

The Fallback We now address the fallback aspect. We define three categories of client-
side fallbacks: silent fallback, interactive fallback, and signalled fallback. In what fol-
lows, we explain them in light of the BEFS mechanism.

Silent fallback. Silent fallbacks do not involve the user or the server. If used in
BEFS, if the FS-ciphersuites handshake failed, the client falls back to default cipher-
suites (which include non-FS-ciphersuites), in the background, and performs a second
handshake utilising default ciphersuites. Silent fallbacks remove the security decision-
making overhead from the user at the cost of security. Silent fallbacks do not provide se-
curity against active adversaries who can perform downgrade attacks (for a background
on downgrade attacks, see [3]). BEFS with silent fallback is secure against passive ad-
versaries, which adds a significant value in the case of FS. It makes mass surveillance

more difficult to achieve as the adversary has to actively perform downgrade attacks for
each session.

Interactive fallback. Interactive fallbacks involve the user. If used in BEFS, when
the FS-ciphersuites handshake fails, the client (e.g. web browser) presents an interrupt-
ing warning message and asks the user whether to proceed or not. If the user chooses
to proceed, the client falls back from FS-ciphersuites to default ciphersuites and per-
forms a second handshake. Otherwise, if the user chooses not to proceed, the client
does not fall back, and aborts the TLS handshake. Interactive fallbacks provide security
against active adversaries. Interactive fallbacks are similar to the widely-known self-
signed certificate active warnings [1]. Active security warnings have been shown to be
more effective than passive ones such as passive indicators that do not interrupt the
user’s task [1]. However, active security warnings have to be used with caution in order
to not cause the habitation effect, where users ignore them because they see them too
often [38]. Therefore, if the majority of servers that do not support FS-ciphersuites (i.e.
those that require fallback) are network devices, interactive fallback can be acceptable,
as these devices are normally visited infrequently by a limited number of users, such as
the device’s owner.

Signalled fallback. Signalled fallbacks involve the server. Therefore, if they are
not incorporated in the protocol by design, they require modifications or updates to the
server, e.g. a patch to the TLS implementation, to enable the server from interpreting the
client’s signal. In signalled fallbacks, the client sends a signal, i.e. a special value, to in-
form the server that the client has performed a fallback. The server aborts the handshake
if it is not expecting a fallback, e.g. in BEFS case, if the server supports FS-ciphersuites.
Signalled fallbacks provide security against active adversaries, if we assume authenti-
cated messages. Signalled fallbacks have been proposed in the TLS fallback “Signaling
Cipher Suite Value” (SCSV) [26]. It has been used to mitigate TLS version downgrade
attacks, mainly the POODLE attack [27], and has been widely adopted as shown in [7].
In BEFS, our problem deals with misconfigured servers and less security-aware server
administrators. Had they been security-aware, they would have configured their servers
to select FS-ciphersuites. Therefore, in BEFS case, we do not consider signaled fall-
backs as a solution that can be adopted quickly. Therefore, we do not include it in our
analysis in the coming section.

BEFS Security Analysis We now analyse the security of BEFS against three adversar-
ial models: passive network adversary, active network adversary, and our newly intro-
duced discriminatory adversary.

Passive Network Adversary Passive adversaries can collect network traffic, but
cannot interfere (e.g. modify, inject, replay, or drop) protocol messages. They may ob-
tain access to the server’s long-term private-key at some point in the future. Once the
server’s long-term private-key is compromised, a passive adversary who has been col-
lecting non-FS network traffic can now decrypt it. BEFS aims to ensure the selection
of FS-ciphersuites whenever the server supports FS-ciphersuites. In FS-ciphersuites,
an ephemeral key is generated for each session, and this key is not encrypted with the
server’s long-term private-key. By selecting FS-ciphersuites, if the server’s long-term
private-key is compromised, the adversary cannot compromise past session keys. In
TLS, the (EC)DHE key-exchange algorithms are provably secure against passive ad-

versaries [19]. Therefore, BEFS with all types of fallback mechanisms is secure against
passive adversaries.

Active Network Adversary Unlike passive adversaries, active adversaries can in-
terfere with protocol messages, e.g. by modifying, injecting, replaying, or dropping
messages. Similar to the passive adversaries, they may obtain access to the server’s
long-term private-key at some point in the future, hence be able to decrypt non-FS-
ciphersuite traffic. BEFS security against active adversaries can be analysed with the
two fallback mechanisms explained earlier in section 4.2. First, in terms of BEFS with
silent fallback, since the user of a BEFS-enabled client with silent fallback is not aware
of the fallback, an active adversary can perform a downgrade attack by dropping the
initial FS-ciphersuites handshake message to lead the client to fall back and perform
a default handshake. Hence, misconfigured servers that select non-FS-ciphersuites but
support FS-ciphersuite will not be guided, i.e. will select non-FS-ciphersuite, while
with BEFS, they will be guided (forced) to select FS-ciphersuites instead. BEFS with
silent fallback does not provide security against active adversaries. Second, we analyse
BEFS with interactive fallback against an active adversary. This moves the security de-
cision to the user. Users can be classified into two categories: security-aware users, who
read the warning message and reject the fallback when they care about FS. The second
category of users is less security-aware users, who will not do so. BEFS with interac-
tive fallback and security-aware users is secure against active adversaries. The warning
message content and the users’ reactions to it are beyond the scope of this paper. BEFS
with interactive fallbacks can find its application in special browser modes for sensitive
communications, in the same vein of Chrome’s incognito and Firefox private modes,
which are available for privacy-aware users.

Discriminatory Adversary The discriminatory adversary is located at the server
and discriminates against its clients in terms of the security level it provides to them (FS-
ciphersuite vs. non-FS-ciphersuite in our case). The discriminatory adversarial model
is applicable to semi-trusted servers running protocols such as TLS, which gives the
server the power of selecting some parameters that define the security level of a particu-
lar session, exemplified by the ciphersuite in our case, while the client has no means of
verifying the server’s actual capabilities, i.e. justifying the server’s decision if it selects
a non-preferred ciphersuite such as a non-FS-ciphersuite. This power can be abused
by semi-trusted servers to discriminate against their users, for a powerful third-party’s
advantage. The discriminatory adversary can be compelled by, or collude with the third-
party, such as government intelligence, to weaken the security of some connections, e.g.
those coming from specific geographic locations. In our case, the discriminatory adver-
sary denies the FS property to some users, whilst enabling it for others. The discrimina-
tory adversary (server) can then provide its long-term private-key that is used for digital
signatures and non-FS session keys (pms) encryption to the powerful third-party, after
the key’s expiration, when it is no longer used by the server. This allows the third-party
to decrypt the data of those users who have been discriminated against, but not the
data of other users who have been provided with strong security, i.e. FS-ciphersuite in
our case. This adversarial model gives the semi-trusted server several advantages com-
pared to giving every session key or the decrypted data itself to the third-party, which
is impractical for servers to carry out, especially in the case of large-scale surveillance.

Another advantage to the semi-trusted server lies in the minimal liabilities (e.g. legal)
in being directly involved in leaking their users’ data, or in giving their private-key to
the adversary during the key’s lifetime. Such an adversarial model is not far from the
export-grade cryptography law that was mandated until the late 90s, where software
vendors, for example, were compelled to weaken the security of software exported out-
side the United States (US), to enable US intelligence from breaking their security.
Furthermore, leaked confidential documents by Edward Snowden suggest similar sce-
narios, where giant companies collude with government intelligence by introducing
backdoors that are known to, and can be exploited by, those powerful adversaries (e.g.
the “PRISM” program) [42].

Our discriminatory adversarial model is inspired by the “malicious-but-cautious” [35]
and the Secretly Embedded Trapdoor with Universal Protection (SETUP) [44] adver-
sarial models. The “malicious-but-cautious” model assumes a cloud service provider
(server) can act maliciously but is cautious not to leave a verifiable trace of its mali-
cious behaviour. However, it does not assume that the malicious server is willing to
enable a third-party to access some users’ data. On the other hand, the SETUP model
assumes a cryptographic system (server in our case) can enable a third-party to se-
cretly obtain secret information such as the private-key that decrypts the encrypted data
from the system’s encrypted output. Our discriminatory adversary weakens the security
against some users for a third party’s advantage, and is also cautious not to leave a ver-
ifiable trace of its malicious behaviour, e.g. by selecting a supported but non-preferred
ciphersuite (non-FS-ciphersuite), as it is still accepted by most clients for backward
compatibility.

To better analyse BEFS against the discriminatory adversary (server), we further
classify this adversary into two variants: weak discriminatory and strong discrimina-
tory. In the weak variant, the adversary submits to the client’s offer (ciphersuites in
our case). That is, if the client offers strong choices exclusively, the weak discrimina-
tory has no choice but to select from them, mainly to avoid detection. In the strong
variant, the adversary refuses to select strong choices, which forces the client to fall-
back in order to connect to the server. BEFS with silent fallback is secure against the
weak discriminatory adversaries. However, strong discriminatory adversaries require
interactive fallback and security-aware users. In today’s real-world settings, the weak
variant is more realistic. However, the strong variant can be detected through BEFS and
security-aware users. Note that this analysis of BEFS against a discriminatory adversary
is independent of considerations about the communication channel. That is, if an active
adversary is present in the communication channel, interactive fallback is required with
both variants of the discriminatory adversary, in order for BEFS to meet its security
goal.

Best Effort Forward Secrecy and Authenticated Encryption (BESAFE) Given the
fact that more than 50% of the servers select FS+non-AE-ciphersuite after enforcing FS-
ciphersuites and that between 16.14% to 25.79% of them support FS+AE-ciphersuites,
as an extension to BEFS, we propose BESAFE which adds an additional step to enforce
not only FS-ciphersuites, but also FS+AE-ciphersuites. This improvement adds an addi-
tional restriction: the client offers FS+AE-ciphersuites exclusively at the first handshake
attempt. If it failed, the client falls back to BEFS: it tries FS-ciphersuites exclusively,

and if it failed, it falls back to default ciphersuites. The BESAFE mechanism guides
servers towards FS+AE-ciphersuites. Similar to BEFS, BESAFE is secure against pas-
sive adversaries, or weak discriminatory adversaries with all types of fallbacks, and
against active adversaries, or strong discriminatory adversaries with interactive fallback
and security-aware users.

Table 3: The BEFS and BESAFE mechanisms
latency in ms compared to the default one when
connecting to servers that do not support FS-
ciphersuites.

TLS Client Max. Min. Avg.

Default 4.10 0.64 1.69
BEFS-Enabled 5.34 1.79 3.47
BESAFE-Enable 8.60 3.27 5.19

BEFS and BESAFE Performance We
measure the latency that BEFS and its
extension BESAFE incur into a TLS
connection establishment with domains
that do not support FS-ciphersuites, i.e.
when more than one attempt is per-
formed to complete a TLS handshake
(otherwise, in BEFS, if the server sup-
ports FS-ciphersuites, and in BESAFE, if
the server supports FS+AE-ciphersuites,
there will be a single handshake as nor-
mal and no additional latency is incurred). To this end, we extract 5000 top domains
that do not support FS-ciphersuites from our results. We implement a TLS client that
supports Chrome’s pre-TLS 1.3 default ciphersuites using Python 3.6.5 and utilising
OpenSSL 1.1.0g. We disable TLS certificate validation and session tickets (resump-
tion), and enable the SNI. Our client performs three consecutive handshakes for each
domain: default, BEFS-enabled, and BESAFE-enabled handshakes. We run the client
on a machine equipped with a 3.2 GHz Intel Core i5 processor, 8 GB of RAM, and
a 1000 Mbps wired Ethernet card that has a public IPv4 address at the University of
Oxford. We measure the time to complete a TLS handshake in a socket connection in
milliseconds using the process time(), a process-wide timer in python’s time mod-
ule. We count the domains that triggered BEFS and BESAFE to resort to default ci-
phersuites (i.e. do not support FS-ciphersuites), and also responded to the default TLS
handshake. Then we extract the maximum, minimum and average time they take for
each of the three handshake types. There are 4501 domains that do not support FS-
ciphersuites and responded to the three types of handshakes we examine. The results
based on these responses are summarised in Table 3. We can also infer the latency that
BESAFE incurs into a connection to a server that does not support FS+AE-ciphersuites
but supports FS+non-AE-ciphersuites from the BEFS latency (since both require two
attempts).

Improved Performance Through Parallel Attempts As shown in the previous sec-
tion, BEFS introduces a latency on the default TLS connection establishment, but only
if the server does not support FS-ciphersuites. To minimise this latency, the client can
implement BEFS attempts in parallel instead of consecutively. That is, the client sends
two CHs one with default ciphersuites and the second with FS-ciphersuites, in parallel
to the server. For each TLS session establishment, the client waits for all the CH at-
tempts’ responses to return. If there is a valid response to the FS-ciphersuites attempt,
the client proceeds with the FS-ciphersuites response. Otherwise, if the FS-ciphersuites
attempt has failed, the client proceeds with the default ciphersuite response. The same
applies to BESAFE but the client sends three handshakes and first checks the FS+AE-

ciphersuites, then the FS-ciphersuites attempts’ response, before deciding to proceed
with default ciphersuites.

5 Related work
Lee et al. [24] scanned around 19,000 TLS servers based on top domains lists. They
evaluate the cryptographic strengths in TLS servers including the supported key-exchange
algorithms. In [17], Holz et al. provide statistics for the most popular selected cipher-
suite by TLS servers. More recently, Kotzias et al. [21] examined the impact of high-
profile attacks on TLS deployment, and Calzavara et al. [9] analysed the Alexa top
10,000 websites against known HTTPS vulnerabilities. All the aforementioned stud-
ies do not analyse the selected versus supported key-exchange algorithms as we do.
In [18], Huan et al. provide an experimental study on TLS FS deployment on 473,802
of Alexa’s top domains using an enumeration-based method. Our study analyses larger
and more diverse datasets than that in [18], using a novel heuristic approach. Addition-
ally, our study provides a recent view on FS adoption over the one in [18], which dates
back to 2014. Apart from measurement studies, several studies show that RSA long-
term private-keys can be compromised either due to advances in computing power,
deployment, or implementation flaws. Kleinjung et al. [20] and Cavallar et al. [10]
show that 786-bit and 512-bit RSA keys can be factored using powerful machines.
Heninger et al. [16] conducted a measurement study, which is replicated by Alash-
wali [2], that shows that factorable RSA keys are widespread in network devices on the
Internet, due to low entropy during prime generation. The Heartlbleed bug [39] in the
OpenSSL TLS library shows that implementation bugs can cause private-key compro-
mise.

6 Conclusions
In this paper, we analysed the state of FS on over 10 million servers on the Internet. Us-
ing a modern TLS client handshake algorithms, our results show 5.37% of top domains,
7.51% of random domains, and 26.16% of random IPs do not select FS key-exchange
algorithms. Surprisingly, we found that 39.20% of the top domains, 24.40% of the ran-
dom domains, and 14.46% of the random IPs that do not select FS, do support FS.
We then discussed possible paths towards FS. We showed that a best effort approach
can add a value over the “all or nothing” approach and can increase FS or FS and AE
adoption in misconfigured servers.

Acknowledgment
We thank the Censys team [13], the CS’s IT and OxCERT teams at the University
of Oxford, and the tls-scan developer, Binu Ramakrishnan, for technical support.
Pawel’s work was supported by the SUTD SRG ISTD 2017 128 grant.

References
1. Akhawe, D., Felt, A.P.: Alice in Warningland: A Large-Scale Field Study of Browser Secu-

rity Warning Effectiveness. In: Proceedings of USENIX Security Symposium (2013)
2. Alashwali, E.S.: Cryptographic Vulnerabilities in Real-Life Web Servers. In: Proceedings of

Int. Conference on Communications and Information Technology (ICCIT). pp. 6–11 (2013)

3. Alashwali, E.S., Rasmussen, K.: What’s in a Downgrade? A Taxonomy of Downgrade At-
tacks in the TLS Protocol and Application Protocols Using TLS. In: Proceedings of Appli-
cations and Techniques in Cyber Security (ATCS) (2018)

4. Alashwali, E.S., Szalachowski, P., Martin, A.: Does “www.” Mean Better Transport Layer
Security? In: Proceedings of Availability, Reliability and Security (ARES) (2019)

5. Alexa Internet, Inc.: Alexa Top Sites (2018), http://s3.amazonaws.com/alexa-static/
top-1m.csv.zip, accessed Aug. 22, 2018

6. AlFardan, N.J., Paterson, K.G.: Lucky Thirteen: Breaking the TLS and DTLS Record Proto-
cols. In: Proceedings of Security and Privacy (SP). pp. 526–540 (2013)

7. Amann, J., Gasser, O., Scheitle, Q., Brent, L., Carle, G., Holz, R.: Mission Accomplished?:
HTTPS Security After Diginotar. In: Proceedings of Internet Measurement Conference
(IMC). pp. 325–340 (2017)

8. Barnes, R., Thomson, M., Pironti, A., Langley, A.: Deprecating Secure Sockets Layer Ver-
sion 3.0 (2015), https://tools.ietf.org/html/rfc7568, accessed Sept. 30, 2018

9. Calzavara, S., Focardi, R., Nemec, M., Rabitti, A., Squarcina, M.: Postcards from the Post-
HTTP World: Amplification of HTTPS Vulnerabilities in the Web Ecosystem. In: Proceed-
ings of Security and Privacy (SP) (2019)

10. Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W., Montgomery, P.L., Murphy, B., te Riele,
H., Aardal, K., Gilchrist, J., Guillerm, G., Leyland, P., Marchand, J., Morain, F., Muffett, A.,
Putnam, C., Craig, Zimmermann, P.: Factorization of a 512-Bit RSA Modulus. In: Proceed-
ings of Advances in Cryptology (EUROCRYPT). pp. 1–18 (2000)

11. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Information
Theory 22(6), 644–654 (1976)

12. Dukhovni, V.: Opportunistic Security: Some Protection Most of the Time (2014), https:
//tools.ietf.org/html/rfc7435.html, accessed Oct. 1, 2018

13. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A Search Engine Backed
by Internet-Wide Scanning. In: Proceedings of Computer and Communications Security
(CCS). pp. 542–553 (2015)

14. Eastlake 3rd, D.: Transport Layer Security (TLS) Extensions: Extension Definitions, https:
//tools.ietf.org/html/rfc6066#page-6, accessed Jun. 19, 2019

15. FIPS: Advanced Encryption Standard (AES) (2001), https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.197.pdf, accessed Sept. 30, 2018

16. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining Your Ps and Qs: Detec-
tion of Widespread Weak Keys in Network Devices. In: Proceedings of USENIX Security
Symposium (2012)

17. Holz, R., Braun, L., Kammenhuber, N., Carle, G.: The SSL Landscape: a Thorough Analysis
of the X. 509 PKI Using Active and Passive Measurements. In: Proceedings of Internet
Measurement Conference (IMC). pp. 427–444 (2011)

18. Huang, L.S., Adhikarla, S., Boneh, D., Jackson, C.: An Experimental Study of TLS Forward
Secrecy Deployments. IEEE Internet Computing 18(6), 43–51 (2014)

19. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the Security of TLS-DHE in the Standard
Model. In: Proceedings of Advances in Cryptology (CRYPTO). pp. 273–293 (2012)

20. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry, P., Kruppa,
A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmermann, P.: Factoriza-
tion of a 768-bit RSA Modulus. In: Proceedings of Advances in Cryptology (CRYPTO). pp.
333–350 (2010)

21. Kotzias, P., Razaghpanah, A., Amann, J., Paterson, K.G., Vallina-Rodriguez, N., Caballero,
J.: Coming of Age: A Longitudinal Study of TLS Deployment. In: Proceedings of Internet
Measurement Conference (IMC). pp. 415–428 (2018)

22. Kurkowski, J.: tldextract (2017), https://github.com/john-kurkowski/tldextract,
accessed Oct. 30, 2018

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://tools.ietf.org/html/rfc7568
https://tools.ietf.org/html/rfc7435.html
https://tools.ietf.org/html/rfc7435.html
https://tools.ietf.org/html/rfc6066#page-6
https://tools.ietf.org/html/rfc6066#page-6
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://github.com/john-kurkowski/tldextract

23. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency (2013), accessed Feb. 25, 2019
24. Lee, H.K., Malkin, T., Nahum, E.: Cryptographic Strength of SSL/TLS Servers: Current and

Recent Practices. In: Proceedings of Internet Measurement Conference (IMC). pp. 83–92
(2007)

25. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.
CRC press (1996)

26. Moeller, B., Langley, A.: TLS Fallback Signaling Cipher Suite Value (SCSV) for Prevent-
ing Protocol Downgrade Attacks (2014), https://tools.ietf.org/html/draft-ietf-
tls-downgrade-scsv-00, accessed Oct. 1, 2018

27. Möller, B., Duong, T., Kotowicz, K.: This POODLE Bites: Exploiting the SSL 3.0 Fallback
(2014), https://www.openssl.org/~bodo/ssl-poodle.pdf, accessed Jul. 6, 2018

28. Nir, Y., Josefsson, S., Pegourie-Gonnard, M.: Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier (2018), https://
tools.ietf.org/html/rfc8422, accessed Jun. 21, 2019

29. Partridge, C., Allman, M.: Ethical Considerations in Network Measurement Papers. Com-
munications of the ACM 59(10), 58–64 (2016)

30. Popov, A.: Prohibiting RC4 Cipher Suites (2015), https://tools.ietf.org/html/
rfc7465, accessed Sept. 30, 2018

31. Qualys Inc.: SSL Labs (2018), https://www.ssllabs.com/ssl-pulse/, accessed Apr.
10, 2019

32. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2 (2008), https:
//www.ietf.org/rfc/rfc5246.txt, accessed Jul. 6, 2018

33. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 draft-ietf-tls-tls13-28
(2018), https://tools.ietf.org/html/draft-ietf-tls-tls13-28, accessed Jul. 6,
2018

34. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126

35. Ryan, M.D.: Enhanced Certificate Transparency and End-to-End Encrypted Mail. In: Pro-
ceedings of Network and Distributed System (NDSS) (2018)

36. Salowey, J., Choudhury, A., McGrew, D.: AES Galois Counter Mode (GCM) Cipher Suites
for TLS (2008), https://tools.ietf.org/html/rfc5288#page-3, accessed Nov. 12,
2018

37. Samarasinghe, N., Mannan, M.: Short Paper: TLS Ecosystems in Networked Devices vs.
Web Servers. In: Proceedings of Financial Cryptography and Data Security (FC). pp. 533–
541 (2017)

38. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying Wolf: An Empiri-
cal Study of SSL Warning Effectiveness. In: Proceedings of USENIX Security Symposium.
pp. 399–416 (2009)

39. Synopsys Inc.: The Heartbleed Bug (2014), http://heartbleed.com, accessed Sept. 17,
2018

40. Vaudenay, S.: Security Flaws Induced by CBC Padding-Applications to SSL, IPSEC,
WTLS.... In: Proceedings of Theory and Applications of Cryptographic Techniques (EU-
ROCRYPT). pp. 534–546 (2002)

41. W3Schools: Browser Statistics (2019), https://www.w3schools.com/browsers, ac-
cessed Feb. 27, 2019

42. Wikipedia: PRISM (Surveillance Program) (2018), https://en.wikipedia.org/wiki/
PRISM (surveillance program), accessed Oct. 3, 2018

43. Yahoo Inc.: tls-scan (2016), https://github.com/prbinu/tls-scan, accessed Sept. 8,
2018

44. Young, A., Yung, M.: The Dark Side of Black-Box Cryptography or: Should We Trust Cap-
stone? In: Proceedings of Advances in Cryptology (CRYPTO). pp. 89–103 (1996)

https://tools.ietf.org/html/draft-ietf-tls-downgrade-scsv-00
https://tools.ietf.org/html/draft-ietf-tls-downgrade-scsv-00
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://tools.ietf.org/html/rfc8422
https://tools.ietf.org/html/rfc8422
https://tools.ietf.org/html/rfc7465
https://tools.ietf.org/html/rfc7465
https://www.ssllabs.com/ssl-pulse/
https://www.ietf.org/rfc/rfc5246.txt
https://www.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/html/draft-ietf-tls-tls13-28
https://tools.ietf.org/html/rfc5288#page-3
http://heartbleed.com
https://www.w3schools.com/browsers
https://en.wikipedia.org/wiki/PRISM_(surveillance_program)
https://en.wikipedia.org/wiki/PRISM_(surveillance_program)
https://github.com/prbinu/tls-scan

	Towards Forward Secure Internet Traffic

