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Abstract The objective of this paper is to investigate how a
Danger Theory based Artificial Immune System—in partic-
ular the Dendritic Cell Algorithm (DCA) can detect an at-
tack on a sensor network. The method is validated using
two separate implementations: a simulation using J-sim and
an implementation for the T-mote Sky sensor using TinyOS.
This paper also introduces a new sensor network attack
called an Interest Cache Poisoning Attack and investigates
how the DCA can be applied to detect this attack in a series
of experiments.
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1 Introduction

Danger threatens living organisms every day of their lives.
Intuitively, one might therefore suppose that a successful
strategy in our immune systems would be to detect danger
instead of relying solely on an ability to detect the antigens
that identify specific pathogens. A hotly debated hypothe-
sis in immunology known as the Danger Theory [1] pro-
poses just this. This theory suggests that the human immune
system can detect danger in addition to antigens in order to
trigger appropriate immune responses. The Danger Theory
states that the appropriate immune responses produced by
the immune system emerge from the balance between the
concentration of danger and safe signals within the tissue of
a body, not from the discrimination of self from non-self.
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Danger also threatens modern computer networks every
day. Aickelin et al. [2] presented the first in-depth discus-
sion on the application of Danger Theory to intrusion de-
tection and the possibility of combining research from wet
and computer laboratory results. Their work aimed to build
a computational model of Danger Theory in order to define,
explore, and find danger signals. Greensmith et al. [3] em-
ployed Dendritic Cells (DCs) within a Danger Theory based
artificial immune system (AIS). DCs are a class of antigen
presenting cells that ingest antigens or protein fragments in
the tissue. DCs are also receptive to danger signals in the
environment that may be associated with antigens (more de-
tails are provided in Sect. 2.2). Greensmith et al. abstracted
several properties of DCs that would be useful for anomaly
detection and proposed the DC Algorithm (DCA) to accom-
modate these properties. Recent work by the same authors
[4] has also shown some initial results of using the DCA to
detect port scanning. The outcome demonstrated the capa-
bility of the DCA as an anomaly detector.

The objective of this paper is to investigate how a Dan-
ger Theory based AIS—in particular the Dendritic Cell Al-
gorithm (DCA) can detect one type of attack on a sensor
network. The method is validated using two separate im-
plementations: a simulation using J-sim and an implemen-
tation for the T-mote Sky sensor using TinyOS. For ease of
reference, for the remainder of the article, the sensor net-
work based artificial immune system will be abbreviated to
SNAIS. The J-sim implementation is abbreviated as Sim-
SNAIS and the hardware-specific implementation referred
to as Tiny-SNAIS.

The paper continues with a presentation of the previous
work related to Danger Theory based AIS. Section 3 illus-
trates how properties and functional requirements of sensor
networks conform to an artificial tissue. Section 4 introduces
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a new sensor network attack called the ‘Interest cache poi-
soning attack’ and Sect. 5 discusses how the DCA can be
applied to detect this attack in Sim-SNAIS and Tiny-SNAIS.
The effectiveness of the poisoning attack and the two imple-
mentations of SNAIS are tested in a series of experiments in
Sect. 6. Finally, Sect. 7 concludes the article.

2 Danger theory based AIS

2.1 Previous work

Since the first in-depth discussion of Danger Theory on the
possibility of computing research [2], Bentley et al. [5] in-
troduced the concept of artificial tissue in order to adapt dan-
ger and safe signals (apoptosis and necrosis) thereby trigger-
ing artificial immune responses within an AIS. The authors
stressed that the tissue is an integral part of immune func-
tion, with danger signals being released when tissue cells
die under stressful conditions. Related work by Greensmith
et al. [3] employed DCs within AIS that coordinated T-cell
immune responses. Kim et al. [6] continued Greensmith et
al.’s work by discussing T-cell immunity and tolerance for
computer worm detection. This work presented how three
different processes within the function of T-cells, namely
T-cell maturation, differentiation and proliferation could be
embedded within the Danger Theory-based AIS. Twycross
and Aickelin [7] provided a review of biological principles
and properties of innate immunity, and showed how these
could be incorporated into artificial models. In this work, au-
thors addressed six properties of the innate immune system
that would influence the capability of AIS. The same authors
implemented the libtissue software that provides an innate
immunity framework [8]. Finally, Le Boudec and Sarafi-
janovic [9] were also influenced by the idea of the Danger
Theory, and chose to regard a packet loss in the network as
a danger signal. Danger signals were used as co-stimulation
signals confirming successful detection.

2.2 Dendritic cell algorithm

This paper focuses specifically on the Dendritic Cell Algo-
rithm of Greensmith et al. [4, 10], which abstracted a num-
ber of properties of DCs that are possibly advantageous to
design AIS for anomaly detection.

In the human immune system, during the antigen inges-
tion process, immature DCs experience different types of
signals that indicate the context (either safe or dangerous)
of an environment where the digested antigens exist. The
different types of signals lead DCs to differentiate into two
types: mature and semi-mature. Chemical messages known
as cytokines produced by mature and semi-mature DCs are
different and influence the differentiation of naive T-cells

into several distinctive paths such as helper T-cells or killer
T-cells. In order to employ these properties of DCs, Green-
smith et al.. categorised DC input signals into four groups—
PAMPs (signals known to be pathogenic), Safe Signals (sig-
nals known to be normal), Danger Signals (signals that may
indicate changes in behaviour) and Inflammatory Cytokines
(signals that amplify the effects of other signals). When each
artificial DC experiences the combination of these four dif-
ferent signal groups released by the artificial tissue, it in-
terprets the context of ingested antigens by using a signal
processing function, which weights each type of input sig-
nal differently. The output of a signal processing function
determines the differentiation status of the DC (either semi-
mature or mature).

3 AIS applied to sensor networks

The parallels between intrusion detection and immunity
have long been the source of inspiration for AIS researchers,
but conventional computer networks do not closely resem-
ble the dynamic, distributed and fluid nature of organisms
and their immune systems well. There is, however, a type of
network that does share many of these features: sensor net-
works. In the following sections, we introduce this type of
network and outline one popular routing protocol, known as
Directed Diffusion [11].

3.1 Sensor network overview

Emerging sensor networks are aimed at providing distrib-
uted and massively parallel monitoring in heterogeneous
physical environments. Sensors are typically low-cost, lim-
ited capacity, mass production units, consisting of no more
than (i) a sensing unit, (ii) a processing unit, (iii) memory,
(iv) a transceiver and (v) a power unit [12]. Their aim is two
fold: (i) to faithfully execute their intended task, and (ii) to
efficiently manage their limited resources, such as energy,
so as to maximise their lifetime. The following features of
sensor networks distinguish them from traditional comput-
ing environments [12, 13]:

P1: Constrained resources. Limited in physical capacity,
bandwidth, cost, etc.

P2: High-density. Number of nodes and density of the net-
work can be several orders of magnitude higher than in
mobile ad-hoc or wired networks.

P3: Fidelity though redundancy. Due to their physical con-
straints, individual nodes are prone to failure through
deliberate attack or normal malfunction. The redun-
dancy of nodes is used to compensate for this.

P4: Flexibility. Aimed at operating under diverse conditions
with minimal structured support, for example deploy-
ment in remote areas.
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Fig. 1 Directed diffusion [11]

P5: Dynamic network topology. The topology may change
often.

P6: Frequently data centric. Networks often use data-
centric routing instead of IP-like routing.

P7: Self-organising. Network connectivity is often ad-hoc
and dynamically maintained.

P8: Distributed computation. Each node carries out sim-
ple data processing locally and sends out the partially
processed data to other nodes.

Together, these properties have provided the catalyst
for a wide range of new applications, including environ-
mental monitoring, disaster relief operations, military con-
trol/surveillance and health monitoring [12].

3.2 Directed diffusion

In addition to the distributed and dynamic nature of sensor
network hardware, one popular routing method is equally
suggestive of natural immune metaphors: the Directed Dif-
fusion protocol. This is a routing algorithm used to gather
data sensed by a large number of sensor nodes and dissem-
inate to a node that requests such data [11]. Directed Diffu-
sion works in two phases, an initial exploratory phase that
is followed by a reinforcement phase. Together these phases
make up the three different stages discussed in Fig. 1.

The requesting node, referred to as the ‘sink node’ may
request data from one or multiple other sensor nodes. As
shown in Fig. 1(a), the sink periodically broadcasts its ‘in-
terest’ packets (containing a description of the sensing task
e.g. the regular reading of a patient’s blood pressures) to its
neighbours. Interest packets are then propagated throughout
the whole network, resulting in creation of gradient fields
representing the possible data flow paths from the source,
back to the sink as shown in Fig. 1(b). Once the sink receives
its requested data, it is then in a position to choose between
its various neighbours by reinforcing the paths deemed most
advantageous, for example based on the quality of service
on the path that led to the neighbour, as shown in Fig. 1(c).
As a result, though during the exploratory data packets are

forwarded toward the sink node along multiple paths, the
gradient refinement process chooses the most preferred path.

Reinforcements in Directed Diffusion come in two forms:
positive and negative. Positive reinforcement encourages
data flow along a given path, and the result is that data flows
at a higher rate through the given path. In contrast, nega-
tive reinforcement discourages data flow along given paths,
thereby reducing the rate at which data is sent through the
path. The result is that the algorithm is dynamically able
to tune its performance (with respect to the data flow path)
based on arbitrary criteria.

3.3 Wireless sensor tissue

Readers familiar with the field of AIS should find the prop-
erties of the sensor network using Directed Diffusion very
familiar, because they mirror many of the properties of AIS
algorithms. In this work we regard sensor networks as a suit-
able metaphor for the tissue of an organism—with diffusing
packets acting as signals between cells and the hardware of
the sensor nodes acting as a physical embodiment of the tis-
sue cells. Using the work of Bentley [5] and Twycross [7]
to aid this analogy (and noting that not every aspect of this
analogy is investigated in the paper):

• Tissue cells have limited processing, storage, and com-
munication capacity; while a cell has its own capability of
processing and storage, it takes a limited amount of input
proteins such as cytokines or binds to a restricted number
of neighbour cells. As described in (P1) sensor networks
share these features.

• Biological tissue comprises a large number of cells. A tis-
sue cell is the basic structural and functional unit, capable
of functioning independently. A sensor network is simi-
larly structured, see (P2).

• Each cell is prone to failure: cells in biological tissue are
continuously exposed to pathogenic attacks, just as indi-
vidual nodes of a sensor network are at risk, see (P3).
Later sections explain how an immune algorithm can in-
tegrate with a sensor network to help detect and overcome
such attacks.
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• The cells in living tissue move and reorganise themselves,
just as nodes of a sensor network may move or be de-
ployed in different places and have variable topologies,
see (P4) and (P5).

• Communication between biological cells is through the
diffusion of signalling proteins and the matching of anti-
genic patterns; communication between sensor network
nodes (using the Directed Diffusion protocol) is through
diffusion and the matching of packets, see (P6).

• Tissue cells are self-organising, growing without prede-
termined global control; the spatial and temporal infor-
mation is passed by signals while receptors help the entire
structure of the tissue develop. Likewise a sensor network
automatically and dynamically forms its connectivity, see
(P7).

• Biological tissue cells are distributed, they work in paral-
lel, signalling to each other to perform the desired func-
tions. A sensor network is a truly distributed system with
nodes that are processing in parallel and communicating
with each other, see (P8).

As discussed, the sensor network itself plays the role of
artificial tissue and therefore the development of a separate
artificial tissue as suggested in [5] and [7] is unnecessary.

4 Poisoning sensor networks

The analogy between sensor networks and tissue can also
incorporate ideas of harm and damage. There are various
types of vulnerabilities identified in sensor network envi-
ronments that are often not found in conventional wired net-
works. This work focuses on vulnerabilities in sensor net-
work routing protocols that rely on presence of limited ca-
pacity caches to keep a track of state of the network, for
example the next hop for a packet. Directed Diffusion is one
such protocol. Such protocols are typically optimised for
nodes with limited resources and for specific applications,
with little consideration for security.

In their seminal work Karlof and Wagner [14] analysed
diverse attacks against sensor network routing protocols
and introduced some countermeasures. Notable attacks dis-
cussed include: Selective forwarding, Sinkhole attacks,
Sybil attacks, Wormhole attacks, HELLO flood attacks and
Acknowledge spoofing. In this paper, we introduce a new
attack called the ‘Interest Cache Poisoning Attack’, which
can easily disrupt multiple data paths in a network. The at-
tacks discussed in [14] exploit the vulnerabilities of sen-
sor networks that are also found from mobile ad-hoc net-
works. In contrast, the interest cache poisoning attack re-
flects the vulnerability of data-centric approaches which are
often adopted for routing in sensor networks.

Under the Directed Diffusion protocol, each node main-
tains an interest cache that records the history of received

interest packets. Each entry contains an interest and gradi-
ent(s) towards neighbouring node(s) that have sent the in-
terest packets, such that when a data packet arrives, a node
looks up its interest cache in order to find the next hop for
the data. If there is a matching interest, the node forwards
the data packet to the neighbour node(s) indicated by the
gradient(s). Otherwise the data packet is dropped. The basic
idea of the interest cache poisoning attack is to inject fabri-
cated interest packets to replace benign entries in the interest
caches of other nodes. The attack is ideally aimed at nodes
on established data paths that shall be referred to as the tar-
gets of the attack.

4.1 Attack mechanism and impact

A review of Tiny Diffusion (an implementation of the Di-
rected Diffusion protocol for real sensor nodes running the
TinyOS.1) reveals that: (i) An interest cache always has a
fixed size and (ii) whenever a new interest packet arrives
and the cache is full, the entry that would expire next is re-
placed. Therefore to realise a successful attack, the attacker
can take advantage of the normal behaviour of the target by
forcing it to drop the content of its cache. The attack works
in two phases: First by flooding the target with bogus inter-
ests, thereby forcing it to drop those interests in its cache
already. This leads to the second phase of the attack, when
the requested data packets that were intended for distribu-
tion arrive, the target node is forced to drop them, since it no
longer has gradients to those interested in the data.

This process will result in the disruption of data packet
delivery to the sink node. Ideally, a given cache entry needs
to be wiped out before the first data packet from the source
node arrives at the target node. Otherwise the attack may
succeed but may not be able to completely suppress the
data flow. Though mechanistically different, the effect of
this attack is analogous to that of ‘DNS cache-poisoning’
[17]. However, we cannot use the same methods for protect-
ing against DNS cache-poisoning i.e. randomised ports, re-
stricted relaying and etc. since these are aimed at the control
plane and the Interest Cache Poisoning Attack is performed
on the data plane.

Figure 2(a) shows the impact of the attack. The attacker
sends out the bogus packets and fills up the cache of the
nodes on the data path. The bogus interests will replace the
original interest with ID 1. When the requested data with
ID 1 arrives later, the target node will just drop it. This is
because there is no matching entry in the cache. As shown
in the Fig. 2(b), the attack will even be successful if the at-
tacker is not next to the target node. The attack exploits the
flooding behaviour of Directed Diffusion. Whenever a node

1TinyOS is an open-source operating system designed for wireless em-
bedded sensor networks (http://www.tinyos.net/).

http://www.tinyos.net/
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(a) Interest Cache Poisoning Attack Overview (b) Bogus interest packet propagation

Fig. 2 The interest cache poisoning attack

Fig. 3 Subscriptions sent out at
once and with a gap between
two consecutive interests

receives a new interest packet it will rebroadcast it to all
its neighbours. Hence, the bogus interest packets are spread
and affect the caches of many nodes, eventually the cache of
a target node. As a result, the impact of bogus packets can
propagate over an entire network and disrupt multiple paths
of data packet delivery.

4.2 Normal behaviour of directed diffusion

SNAIS can be classified as an anomaly-based IDS. For
an anomaly detection algorithm, it is important to define the
normal behaviour since the anomaly detector regards devia-
tions from normal behaviour as an attack. The problem we
encounter with Directed Diffusion in defining normal behav-
iour is that there is no standard application. There are many
scenarios and applications with different requirements and
behaviours where Directed Diffusion operates. This makes
the generation of ‘normal’ data sets difficult. In order to
tackle this difficulty, this work defines some normal behav-
iour for Directed Diffusion. This normal operation is mainly
determined by the behaviour of the sink node. This is be-
cause the behaviour of a sensor node is well-defined and is
determined based on the behaviour of the sink node. The
sink node can change several parameters that affect the nor-

mal operation, and thus the signals generated by the intru-
sion detection system (see Sect. 5.2.2).

• The interest expiration determines how long an interest
is stored in the cache. If an entry is overwritten before
it expires, the IDS will conceive this as deviation from
normal behaviour (see danger signal DS2).

• The number of subscriptions affects the load of the sys-
tem. More subscriptions lead the interest cache to have
more interest cache entries on average. Hence, an attack
causes more damage and creates more danger and PAMP
signals.

• Time between multiple interests: If the sink node sends
out all interests at once, they expire and need to be re-sent
at the same time. Alternatively, the sink node can send out
multiple entries over a certain interval with a gap between
two consecutive packets. Figure 3 shows both options. We
use the cache update rate to generate danger and safe sig-
nals (see danger signal 1 and safe signal 3).

• The sink can change the order of the interests. This is in-
teresting if the sink is aware that some malicious behav-
iour is going on. The first interest that arrives at a node
is most likely the one that is overwritten first. Therefore,
subscriptions with a higher priority could be sent later
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than interests with a lower priority. On the other hand, in-
terest packets experience different delays when travelling
different paths, which may change the order anyway.

The sink can either change the subscriptions frequently
or maintain the same subscriptions over a long period. If the
sink node changes the subscriptions often, the data paths are
likely to change as well and hence the nodes on the data
paths change too. This affects the generation of safe signal
and inflammatory cytokine on these nodes and the nodes on
the previous paths. Furthermore, the attack impact changes
if the attacker’s distance to the new data paths has changed
too.

4.3 Design of the interest cache poisoning operation

Section 4.1 introduced the general idea of the interest cache
poisoning attack. This section describes the various types of
the attack. The aim is to identify significant attack parame-
ters that will be evaluated in Sect. 6.

4.3.1 Attack parameters

The attacker can collect various information in order to per-
form a successful attack, for example, to achieve a high data
suppression rate and a low probability of being detected by
the intrusion detection system. The following list is impor-
tant information for an attacker in order to set the right attack
parameters.

• An attacker that is aware of the intrusion detection system
would set the interest expiration time to a short value.
Then the DCA has less time to classify the packet be-
cause it is removed from the cache quickly. However, if
the expiration time of the bogus packets is too short, the
attack might fail. This happens if the cache update rule
is designed to replace the entry with the shortest remain-
ing expiration time. If the bogus packets have a shorter
expiration time than the benign packets, the attacker will
overwrite its own packets and the attack will fail. Thus,
the attacker needs to be aware of the interest expiration
time set by the sink node in order to set the expiration
time of the bogus interest packets correctly.

• The TTL (Time-to-Live) field of an interest packet de-
termines the number of hops that the packet travels before
it is dropped. If the attacker is aware of the default TTL
that the sink node sets to its interests, he can estimate the
distance between himself and the sink node. This is use-
ful information if the attacker does not want the bogus
packet to approach the sink node, because he expects the
sink node to become suspicious about the bogus interest
packets. The attacker can set the TTL of his bogus inter-
ests to a small enough value and the bogus packets will be
dropped before they arrive at the sink node. As the TTL

affects the number of hops that a bogus packet travels,
it also affects the impact of the interest cache poisoning
attack. Bogus packets with smaller TTL arrive at fewer
nodes, and hence fewer interest caches are poisoned.

• The number of bogus packets influences the success of
the attack and the energy used by the attacker. If the at-
tacker is not interested in suppressing the entire data pack-
ets of all sink subscriptions, fewer than ‘cache size’ pack-
ets can be sufficient. For example, if the benign interests
of the sink node completely fills the interest caches of the
nodes, a few bogus interest packets are enough to wipe
out some of the benign entries. Moreover, if the attacker
is aware of the intrusion detection system, fewer bogus
packets increase his chances of not being detected by the
IDS.

• The position of the attacker is not a parameter that
the attacker can influence directly. However, different at-
tacker positions will affect the success of the attacks.
An attacker close to the established data paths or close
to the sensor nodes, which generate the requested data,
will most likely suppress more data packets. If all the
subscribed sensors are located close to the sink and the
attacker is many hops away from them, it takes relatively
long to complete the attack. Hence, more data packets will
be delivered to the sink node and the attack will not be so
successful.

• The attacker can change the sender node ID when send-
ing out packets. This will prevent the linkage of malicious
behaviour to a certain node ID.

• The interest attributes determine whether a bogus inter-
est packet results in data generation or not. An attacker
that is aware of the IDS might want to generate bogus in-
terests that result in data being delivered to him, because
interests that generate data cause the release of safe sig-
nal and appear less suspicious. On the other hand, receiv-
ing many data messages consumes the attacker’s energy.
However, the attacker needs to be aware of the addressing
scheme of the network in order to send correct interests.
He cannot re-send the benign packets, sent by the sink
node, because those will either be dropped as duplicates
or just set up a second gradient towards the attacker with-
out wiping out the benign entries. Also, slightly changing
the attributes of the benign packets is not necessarily suc-
cessful if the addressing scheme is not known. For exam-
ple, if X is an invalid attribute in the addressing scheme,
that does not mean that X + 1 is valid as well.

• Attacking specific data streams: As the sink might have
prioritised the requested data, the attacker might be inter-
ested in suppressing specific streams with a high priority.
Hence, if he does not want to wipe out all the packets in
the cache, fewer bogus packets might be sufficient.

• Time between multiple bogus packets: The attacker can
either burst out the bogus interests very quickly or leave
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Fig. 4 Normal sending
behaviour (left) and bursting
packets (right)

a pause between two consecutive packets. For example,
the Tiny Diffusion implementation [15] leaves a pause
between two consecutive packets in the sending queue.
This pause is randomly chosen between tmin = 125 ms
and tmax = 1000 ms. If the attacker sends out his bogus
packets faster, they arrive at the target nodes earlier, and
hence more data packets are dropped because the attack
is completed earlier. On the other hand, the attack might
be detected by the IDS because this is a deviation from
the normal sending out behaviour. Figure 4 shows both
sending behaviours.

• Attack time: The attacker needs to figure out when to
start sending the bogus packets. An early attack might be
less successful, because the bogus packets might be over-
written by benign packets again and a late attack might
be less successful, because too many data packets are al-
ready delivered to the sink node. Finding the right attack
time is discussed in more detail in the following sections.

Many variants of the interest cache poisoning attack are
possible by changing the attack parameters described. How-
ever, this work cannot investigate all these possible attacks.
Our attacker uses the same interest expiration time as the
sink in order to avoid overwriting his own entries. He also
uses the default TTL value and does not care whether the
bogus packets arrive at the sink node or not. The attacker
sends out as many bogus packets as the interest cache has
cache lines. Fewer packets would cause less damage and
more packets increase the risk of being dropped due to full
sending queues. As already mentioned, the position of the
attacker is chosen randomly. The attributes of the interest
packets are filled with random data. The attacker does not
attack specific streams, because he does not know the sink
node’s priorities on data streams. The attack time and the
time between multiple bogus packets are discussed in more
detail in the next section when three attack variations are
described.

4.3.2 The simple burst attack

The burst attack is a simple form of the interest cache poi-
soning attack. Every time the attacker receives a new inter-
est, he sends out at least as many packets as a cache has
lines, maybe even more. The advantage of the attack is that

it is very simple and does not require the collection of any in-
formation before it can be performed. The drawback is that
it uses a lot of resources, because the attacker has to send
out a lot more packets than actually required. If the sink
sends out all its interests at once, the attacker can wait until
the last interest has been sent out before sending the bogus
packets. This would reduce the packet overhead and save the
attacker energy. Another issue is that the sending queues of
the nodes are limited and such an amount of packets might
cause many nodes, including the attacker, to drop packets
because the sending queue is full. The behaviour of the sim-
ple burst attack might easily be detected by a simple burst
detector. A detector could compare the sending behaviour
of the attacker with the sending behaviour of a normal node
and raise an alarm if an anomaly is detected.

4.3.3 Improving the attack

The first step to improve the attack is to reduce the packet
overhead. To achieve this, the attacker has to determine
when to send the bogus packets. With the assumption that
the sink node sends all its interests at once, the attacker
needs to determine when the last interest has been sent. He
could start a timer whenever an interest packet is received
and start his attack when there has not been any packet for a
time t . Another way is to measure the cache updates for the
last n seconds using a sliding window technique similar to
the one used to calculate the danger signal DS1 (see Sect. 5).

The attack that uses this technique but still sends out the
bogus packets without the random pause between two pack-
ets is referred to as the fast attack. If the attacker shows the
same sending behaviour as any other node, in other words
inserts the random pause between two consecutive packets,
the attack is slowed down but the detection probability is
likely to be decreased. This attack is called the slow attack.
Yet another attack sends out bogus packets constantly with
a gap between two consecutive packets. This is referred to
as the constant attack. All these attacks have a trade off be-
tween being detected and the damage caused by the attacks.
Section 6 will examine more closely the effectiveness and
efficiency of these four variations of the interest cache poi-
soning attack. Clearly, there are many more variations of the
interest cache poisoning attack.
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4.3.4 Attacking the IDS mechanism

This work does not analyse attacks on the intrusion detec-
tion system itself. These kinds of attacks are possible and
can have an impact on the system, especially the automatic
response. If the attacker is aware of the IDS and knows how
it works, he can try to make benign packets look dangerous
so that the packet filter will drop them. This form of attack
is beyond the scope of this work.

5 SNAIS design

The following sections detail the design of the sensor net-
work based artificial immune system (SNAIS), giving all
design assumptions, algorithm, signals, and implementation
details. Sim-SNAIS and Tiny-SNAIS are both Intrusion De-
tection Systems that share the same algorithm (the Dendritic
Cell Algorithm), but the different hardware and software
constraints imposed by J-sim and TinyOS mean there are
minor differences in signals and implementation. Further de-
tails are available in [3, 4, 15].

5.1 Assumptions

There are two main reasons for making assumptions. Firstly,
no system can provide a perfect solution to every possible
situation or application. Indeed, this work does not claim
to detect all existing attacks. Thus, we make assumptions
that limit the network environment. The IDS in this work
aims to provide a solution to such a limited environment.
Secondly, simulation environments have several constraints
and this makes assumptions necessary. These assumptions
are described in the following sections.

5.1.1 Link layer assumptions

Links between nodes are bidirectional and symmetric, al-
though links in wireless sensor networks are usually asym-
metric and lossy. If two nodes maintain a link, the bit error
rate for this link is 0% and so the link is not lossy. However,
packets might get dropped, for example, because of packet
collision. The intrusion detection system does not require
the nodes to operate in promiscuous mode, but it might be
necessary for future extensions. A node in the promiscuous
mode is able to overhear packets sent by neighbour nodes.
One example where the promiscuous mode is needed is the
watchdog mechanism [16]. The watchdog overhears packets
and hence can monitor the forwarding behaviour of neigh-
bour nodes.

5.1.2 Sensor node assumptions

The nodes are low-cost sensor nodes with small capacity
CPU and memory and limited battery power. Each node has
a unique ID, but the node ID assignment is not secured by
any central authority. Hence, changing one’s own ID and
impersonating other sensor nodes is possible. Impersonating
the sink node is also possible because even messages from
the sink node are not authenticated. Compromising the sink
node itself is not possible, because it maintains stronger se-
curity mechanisms than the sensor nodes. Nodes do not use
the sleep mode: they are always able to receive and send
packets. A node trusts its own hardware (e.g. clock or send-
ing unit) and is aware of whether it is able to respond to
a sensing task or not. Nodes do not share any key material
with other nodes or the sink node. Packets are not authenti-
cated or encrypted. Therefore, nodes cannot trust each other,
and the packets they receive cannot be verified. Each node
has only a local view of the network and is only aware of its
neighbours.

5.1.3 Network traffic assumptions

In Sim-SNAIS, Directed Diffusion has been implemented
using J-sim. In Tiny-SNAIS, Tiny Diffusion, a simplified
version of Directed Diffusion implemented by researchers at
UCLA,2 is used, providing an adequate framework to eval-
uate the intrusion detection system design. There are only
two message types: (i) interest messages sent by the sink
node and (ii) data messages generated by sensor nodes. De-
tails of the Tiny Diffusion implementation are given in [15].
All traffic is treated equally so there is no critical or pri-
oritised traffic. The communication primitives are broadcast
for interests and unicast for data messages. The sink broad-
casts interests periodically and then the sensors generate and
forward the data packets back to the sink node.

5.1.4 Network assumptions

The number of nodes in a network lies between 10 and 100.
The sensor nodes are randomly deployed in a fixed-sized
area. The topology does not change during the operation
time of the network. No nodes join or leave the network and
no nodes fail. The number of neighbours for each node is
in the order of 5–10 nodes. There is no hierarchy between
the nodes except the distinction between sink and sensor
node. Nodes do not build up clusters or filter, aggregate or
summarise data or interest messages. There is only one sink
node that does not change its position. The intrusion detec-
tion system will operate on all nodes apart from the sink
node and the compromised node.

2The Tiny Diffusion project. Center for Embedded Network Sensing,
http://www.cens.ucla.edu/ eoster/tinydiff/.
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Fig. 5 System overview

5.1.5 Attacker assumptions

The design of the intrusion detection system focuses on the
newly introduced interest cache poisoning attack, which is
a denial of service attack on the routing layer. The attacker
may physically attack and compromise a node or send mali-
cious code to change the behaviour of a node. Once he has
compromised a node, he is able to control that node. For
instance, the attacker can extract all the information stored
on the compromised node or can re-program it. The attacker
can change the sender node ID of a packet and imperson-
ate other nodes, even the sink node. The compromised node
still has the same resources as a normal node and has no
possibility of collecting global information. There is only
one compromised node and this node is chosen randomly
from within the network. The attacker does not change the
position of the compromised node. Regarding the interest
cache poisoning attack, the bogus packets sent out by the
attacker are slightly different from those that the sink node
sends. The attacker does not care whether a bogus interest
will result in actual data delivered to any node. He is aware
of the structure of an interest message, but the attributes that
describe the sensing tasks are filled with random data.

5.2 SNAIS design

5.2.1 System overview

Dendritic Cells act as intrusion symptom collectors and de-
tectors, and T-cells are responsible for an automated re-
sponse. Inspired by this behaviour, the intrusion detection
system has two aims: (i) detect an interest cache poisoning
attack and (ii) trigger an appropriate response to an attack.
Figure 5 illustrates the system overview. The main com-
ponents of the system are explained in more detail in the
following sections. According to the biological model, the
Dendritic Cells act as detectors. An antigen is represented
by interest packets that are stored in the interest cache. Im-
mature DCs capture antigens from the interest cache. The
data cache and the interest cache are the sources for the var-
ious signals collected by the DCs. These signals indicate
normal and abnormal situations and the generated signals
are then stored in the signal matrix. When a new antigen
arrives, a new immature DC is created and captures the anti-
gen. Immature DCs then copy the signals from the signal
matrix into their own signal store. When an immature DC
has received enough signals, it differentiates then into either
a semi-mature or a mature DC. The captured antigen is clas-
sified as either dangerous if the DC is mature or safe if the
DC is semi-mature.



C. Wallenta et al.

Responding to the attack is done by filtering out interest
packets before they enter the system. The problem is that the
IDS cannot know in advance if a packet is dangerous or safe.
The basic idea is to extract generalised patterns from packets
that have been classified by the Dendritic Cells, and to use
this information to filter out new packets depending on their
patterns. With the information from the classified antigens,
the filter is updated. Therefore, a content classifier, which
classifies the content of a new packet, and a packet filter that
drops packets depending on their content, is needed. Over-
all, the system is a stand-alone intrusion detection system
because the nodes do not exchange any information about
intrusions. This design decision is made because nodes do
not share any secret keys, and thus signing and verifying
such information is not possible. Without the possibility of
authentication, a cooperative IDS is always vulnerable to
false claims and accusation.

5.2.2 Signals

The Dendritic Cell Algorithm within SNAIS uses four dif-
ferent types of input signals: PAMP signals, danger signals,
safe signals and inflammatory cytokines. The following sec-
tions describe suggested signals that are collected from a
Directed Diffusion based sensor network. Safe signals are
designed to indicate normal operating situations, while dan-
ger and PAMP signals are designed to indicate the presence
of an interest cache poisoning attack.

PAMP signal (PS)—Generated from data delivery failures
A PAMP signal (PS) is a strong indicator of a pathogenic
presence. Hence, the signal collected from the network en-
vironment should strongly indicate the presence of an at-
tacker. The failure of data delivery to the sink node can be
such an indicator. Delivery failures may also result from
node failures on the established path or the absence of sen-
sor nodes generating the requested data. The PAMP signal,
however, definitively establishes that what was expected did
not happen and can be used to launch further investigation.
This relative difference of confidence in abnormal behav-
iour makes the PAMP signal stronger than a danger signal.
For this purpose, the failure of requested data delivery would
cause the sink node to generate a PAMP signal. Unlike other
signals that are just generated locally and not forwarded to
other nodes, the PS is forwarded to other nodes. In order to
transport the PAMP signal, a re-sent interest packet is used.
When the sink node subscribes to a data stream, it expects as
many packets in one refresh period as specified in the data
rate of the interest packet. For example, if the data interval
is set to 10 s and the refresh interval is set to 60 s, the sink
node expects to receive 6 data packets within one refresh in-
terval. In Tiny-SNAIS, the concentration of the PS is given

as the fraction between the number of expected data packets
nexpected and the number of received data packets nreceived:

PSconc = 1 − nreceived

nexpected
.

Any node receiving the refreshed interest with PSconc > 0
inserts the packet into the interest cache and the actual PS is
generated later when this interest cache entry is overwritten.

In Sim-SNAIS the basic definition of PS is the same,
however, the calculation of nexpected and nreceived is slightly
different from that used in Tiny-SNAIS. Sim-SNAIS uses
the full version of Directed Diffusion, which sets up the rein-
forcement paths for data delivery. In Tiny-SNAIS, nexpected

is calculated by dividing the interest refreshing rate by the
data rate. The one phase pull version of Directed Diffusion,
used by Tiny-SNAIS, has only one data rate since there is no
separate exploration stage and data delivery stage. The full
version of Directed Diffusion, which is used by Sim-SNAIS
has two different data rates: a higher rate for delivering the
data packet at the exploration stage and a smaller rate for de-
livering actual data at the data delivery stage. In Sim-SNAIS,
nreceived and nexpected is counted as follows.

Whenever a sink node receives the exploratory data
packet (data packet matching to the sent interest with a big-
ger rate equal to 50), it sends out a positive reinforcement
packet, meaning that sets up the positive reinforcement data
delivery path. At this moment, nexpected is calculated as:

(the next interest refresh time

− the time that the positive reinforcement packet

is sent out)

/(the data rate)

In addition, at this moment, IDS module at the sink node
sets up the data counting timer and starts counting the data
packet delivered to the sink node. This counting continues
until the refreshed exploration interest is sent out again by
a sink node. The counted value becomes nreceived . When the
count of nreceived is finished, PSconc is calculated and added
to the refreshed interest as an additional attribute and sent
out. One final consideration was needed to generate the PS
in the full version of Directed Diffusion. As soon as the pos-
itively reinforced path is negatively reinforced, nreceived is
counted no longer and PSconc is not calculated either. Hence,
PS is not generated.

Safe signal 1 (SS1)—Generated from data packet arrival
This signal shows that the data requested by the sink node
has been forwarded to a given node. The nature of the safe
signal is to indicate normal operation of Directed Diffusion.
The absence of a safe signal does not necessarily indicate
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the existence of an attack, but a safe signal aims to sup-
press a false detection alert. The entry of a data cache, which
records the data packet forwarded, would serve this purpose.
Whenever a data packet that matches an interest in the inter-
est cache arrives, it will be forwarded and recorded in the
data cache. Therefore, whenever a new entry is inserted into
the data cache, a safe signal is generated and the concentra-
tion is simply 1. It has to be taken into account that this safe
signal is only generated if the node is on the reinforced data
path of this particular data stream.

Safe signal 2 (SS2)—Generated from cache entry expiration
The second safe signal, the normal expiration of an interest
cache entry, is the counterpart of the danger signal DS2. It
indicates the normal, regulated ‘death’ of a cell, represented
in Tiny-SNAIS by an interest cache entry. Whenever a cache
entry expires normally or is just refreshed by the same inter-
est, the safe signal is released. The concentration of the SS2
is simply 1.

Unfortunately, this process also works for bogus packets,
i.e., bogus packets remaining in the interest cache also ex-
pire. Thus, too much of this signal is generated when an at-
tack is on-going. Therefore, in Sim-SNAIS the definition of
this signal is slightly modified. In Sim-SNAIS, SS2 is gen-
erated when the interest cache entry is refreshed (not over-
written). In general, an attacker does not want to send ex-
actly the same bogus packets over and over because it can
increase the chance of being detected. Thus, SS2 generation
whenever the interest packet is refreshed appears to be a rea-
sonable modification. The concentration of SS2 is simply 1.

Danger signal 1 (DS1)/safe signal 3 (SS3)—Generated
from cache update rate The interest cache update rate is
used to calculate either the first danger signal DS1 or the
safe signal SS3. A normal cache update rate will generate
a safe signal while an abnormally high update rate will re-
lease a danger signal. Given C, the cache size, any number
of updates n that is less than or equal to C for the last T sec-
onds is normal. Any number higher than that indicates dan-
ger since the interest can be overwritten immediately. For
the sink node, it does not make any sense to send more up-
dates than a cache can handle within a short time. Hence,
if the number of updates is greater than C, the danger sig-
nal DS1 is released. The concentration of the two signals is
calculated as follows:

SS3conc = 1 − n − 1

C
; 0 ≤ n ≤ C,

DS1conc =
(

n

C

)2

; n ≥ C.

With a higher number of updates, the safe signal will de-
crease linearly until it reaches the threshold C, while the

DS1 increases with the power of 2 to emphasise the abnor-
mal behaviour. To count the number of cache updates, a slid-
ing window is used. The window has two parameters: (i) the
window size T in seconds and (ii) the sliding size r . The
intrusion detection system will constantly count the number
of updates for the last T seconds and the window is shifted
every r seconds. For example, a window with T = 10 and
r = 1 counts the packets within the last 10 seconds and shifts
the window every second by 1.

Danger signal 2 (DS2)—Generated from cache entry over-
writing There are two ways for an entry to be removed
from the interest cache: (i) when the entry expires, or
(ii) when the cache is already full and it is replaced by a new
entry. Although a sink is able to overwrite its own entries
in a cache by carelessly sending a large number of different
interests during a short interval, we do not expect this be-
haviour to be the norm. Therefore, the overwriting of entries
long before their expiration time can indicate the presence
of an attack. In order to identify such an event, the expi-
ration field is checked when an entry is inserted and when
it is overwritten. The concentration of a DS2 signal is the
difference between the remaining time Tremaining of an inter-
est and its original expiration time Texpiration. Overwriting a
very recent entry will lead to a much stronger signal than
overwriting an early expired entry.

DS2conc = Tremaining

Texpiration
.

5.2.3 Signal matrix

Signals need to be stored in a data-structure where they are
easily accessible for the Dendritic Cells. Greensmith et al.
[4] suggest the use of a signal matrix to represent the signals
that are released into the tissue. Their matrix contains entries
for all the different signals. Whenever a signal is generated,
it is stored in the signal matrix. In every cell cycle, a Den-
dritic Cell copies the signals from the matrix into its own
signal store. The copying models the signal collection by a
DC from the environment.

The first design choice regarding the signal matrix is the
general structure of the matrix. Greensmith el al. use a sim-
ple signal matrix with one entry per signal. This simple ma-
trix is shown in the top figure of Fig. 6. Another option is
a signal matrix that has as many rows as interest cache en-
tries. This is shown in the bottom of Fig. 6. The larger matrix
makes it possible to link some signals directly to cache en-
tries. For example, if a new interest packet overwrites an old
entry, the danger signal DS2 is released. Using the larger
signal matrix, this danger signal is only stored in the matrix
row linked to this cache entry. Moreover, only the Dendritic
Cell that captured this interest entry copies this danger sig-
nal into its own signal store.
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Fig. 6 Two options for the
signal matrix structure

(In Sim-SNAIS the signal matrix with multiple rows is
implemented in a slightly different way. A signal lifespan is
used, which limits how long each signal can remain in the
matrix. For multiple rows, all signals stay as long as their
ages do not reach their lifespan. So, in theory, there is no
limit in the number of rows for the signal matrix. This im-
plementation of the big matrix was performed in order to
investigate any side effects caused by overwritten signals.)

The update rule of the signal matrix determines how the
signal matrix is updated when new signals are generated.
The original Dendritic Cell Algorithm simply overwrites the
old signal when the same signal type is generated again. An-
other option is to overwrite an old signal, only if the new sig-
nal has a stronger concentration to avoid situations where a
signal with a strong concentration is quickly overwritten by
one with a weaker concentration and not collected by any
DC at all. Yet another possibility is to store the last n sig-
nals of each type. This option requires more memory and is
therefore not used.

Signals can either be stored in the matrix until they are
overwritten, or they can be aged and expire after a certain
time. This prevents a signal from being in the cache for a
very long time if no new signal of this type overwrites it.
Another option is to weaken the concentration of a signal
each time interval. This system uses a maximum signal age
for each signal. After a signal has expired, it is removed from
the signal matrix. This mechanism is simpler than weaken-
ing the signals but still prevents a signal from being stored
in the cache long after it was caused.

5.2.4 Antigens

In vivo, antigens are collected by Dendritic Cells and clas-
sified as dangerous or safe depending on the balance of the

collected signals. In a Directed Diffusion based system, in-
terest packets, data packets, interest cache entries and data
cache entries could be used as antigens. Regarding the inter-
est cache poisoning attack, the data packets and data cache
entries are not a threat for the system. Furthermore, interest
messages that are dropped as duplicates before they enter the
cache do not harm the system. Hence, interest cache entries
are used as antigens.

The cache is filled with benign antigens represented by
the interest messages sent by the sink node, and malicious
antigens (pathogens) represented by the interest messages
sent by the attacker node. The task of the DCs is to capture
those antigens and classify them correctly as safe or danger-
ous.

5.2.5 Dendritic cells

A natural Dendritic Cell captures antigens and collects sig-
nals which have been released into the tissue. After being
exposed to a sufficient number of signals, an immature DC
will differentiate into either a semi-mature or mature DC.
Captured antigens are presented to immune cells that trig-
ger an appropriate response. Antigens presented by a semi-
mature DC are regarded as safe, whereas antigens presented
by a mature DC are regarded as dangerous.

Figure 7 shows the work of the artificial DCs in the intru-
sion detection system. An immature DC is idle until a new
interest message is stored in the cache entry that the DC is
linked to. This event causes the immature DC to start its
work. It captures the antigen represented by the new cache
entry and starts collecting signals from the environment.
This is modelled by periodically copying signals from the
signal matrix into the input signal store of the DC. Every
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Fig. 7 Dendritic Cells working
on the interest cache

time signals are copied, the DC calculates the temporary
output cytokines using the formula described in [15]. This
temporary output cytokine is accumulated and stored in the
DC.

When the interest cache entry is removed from the cache,
the DC that captured this cache entry makes its decision
about this entry. The output cytokines (ox ) show whether
the DC is mature (omature > osemi-mature) or semi-mature
(osemi-mature >= omature). A mature DC indicates that the
captured interest message is dangerous while a semi-mature
DC indicates that the interest message is safe. There are sev-
eral design choices regarding the design of the Dendritic
Cells:

1. The total number of DCs that are deployed by the intru-
sion detection system.

2. The antigen capacity determines how many antigens a
single DC can capture.

3. If a single antigen is captured by multiple DCs (multiple
sampling) or not.

4. The maturation time of a DC, in other words, when does
the DC become mature or semi-mature?

5. The cycle rate of a DC determines how often the signals
are copied from the signal matrix into the signal store of
the DC and how often the temporary output cytokines are
calculated.

6. The signal weights that determine the contribution of
each signal to the output cytokines.

When Greensmith et al. (2006) applied their algorithm
to detect 12 port scanning, they used a DC population of
100. Each DC sampled only one antigen, but a single anti-
gen could be sampled by multiple DCs. A DC differentiated
when the costimulatory cytokine, a cytokine that indicates

how much signals have been received so far, exceeded a cer-
tain threshold that was randomly chosen from a given inter-
val. This randomisation caused the DCs to maturate at dif-
ferent times and collect different numbers of signals. A final
decision about an antigen was made by a majority vote of all
DCs that captured this antigen.

The use of the Dendritic Cell Algorithm on sensor nodes
forces the algorithm to be as simple as possible while still
being effective. To create a lightweight system, in SNAIS
each DC captures only one interest cache entry and an entry
is not sampled by multiple DCs. Thus, the total number of
DCs will be as many as the total number of interest cache en-
tries. The signal collection of a DC is done by simply copy-
ing the signals currently stored in the signal matrix into the
internal signal store of the DC.

Natural Dendritic Cells differentiate after they have been
exposed to a sufficient number of signals, but it is not yet
completely understood how much signal is needed to launch
this process. The original Dendritic Cell Algorithm uses the
costimulatory cytokine to decide the maturation time of a
DC. This cytokine indicates the number of signals a DC has
already collected. When the cytokine reaches the threshold,
the DC becomes either semi-mature or mature. This cannot
be applied to the intrusion detection system for sensor net-
works because an interest message might be removed from
the interest cache before the costimulatory cytokine reaches
the threshold. For example, cache entries can be overwritten
very quickly by another entry. Therefore, in SNAIS a DC
maturates when the captured interest cache entry leaves the
cache. At each cell cycle, a DC copies the current signals
from the signal matrix and calculates the temporary output
cytokines. The cycle rate and the signal weights are parame-
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Fig. 8 Behaviour and content
classification

Table 1 Summary of the design choices

Design choice Design decision

total number of DCs as many as cache entries

antigen capacity 1

multiple sampling no

maturation time when the captured entry is removed from cache

cycle rate variable (see experiments)

signals weights variable (see experiments)

ters that have to be evaluated later. All design choices are
summarised in Table 1.

The packet classification by a Dendritic Cell can be in-
terpreted as a behaviour classification. A packet enters the
system, more precisely the interest cache, and its behaviour
causes the release of various signals. A DC captures this
packet and collects signals from the signal matrix. When
the packet leaves the cache, the DC classifies it as either
the cause of malicious or safe behaviour. Both behaviours
are clearly not only caused from one single interest packet
captured by a DC. For example, when an attack starts, dan-
ger and PAMP signals are released. Most likely, there will
be still benign interest messages in the cache at this time
and they are possibly misclassified as the cause of malicious
behaviour. However, in order to maintain a packet filter, the
IDS needs to identify each packet as either malicious or safe.

As the classified packet will not be sent again, the next
task of the system is to extract information that reflects safe
and dangerous packets from the packets classified by the
DCs. This information is then used to configure the packet
filter that drops malicious packets before they can cause
damage. In the human immune system, this automatic re-
sponse is triggered by immune cells such as T-cells. In our
system, the response will be handled by the second stage of
the algorithm, which is described in more detail in the next
section.

5.2.6 Content classifier and packet filter

The aim of the content classifier and the packet filter is to
trigger an automated response to the interest cache poison-
ing attack. Bogus packets should be filtered before they en-
ter the interest cache and cause damage. The packet filter
needs the information whether a new packet is dangerous or
safe in order to make the correct filter decision. The system
needs to extract generalised patterns from the packets that
have been classified by a DC. These patterns should reflect
features that distinguish safe and dangerous packets.

To extract these patterns, a content classifier is used. The
algorithm to be used for the content classifier is a kind
of clustering algorithm. Figure 8 shows a simple example.
A new interest packet is classified by the content classifier
and partitioned into class A or B. The packet filter initially
does not drop any packet and thus the packet is stored in
the interest cache and is classified by a DC as either safe or
dangerous.

The information about the class (A or B) and the informa-
tion about the DC decision (safe or dangerous) are then used
to update the filter. The filter maintains a drop rate rdropA for
packets partitioned into class A and rdropB for packets parti-
tioned into class B. The drop rate reflects the history of the
last N packets of each class. For example, if 86 of the last
100 packets of class B have been classified as dangerous, the
drop rate rdropB is 86%. Hence, a new interest packet that is
classified as belonging to class B is dropped by the packet
filter with a probability of 86%. Each packet that passes the
filter causes the update of the filter drop rates according to
its class and its DC classification.

Design decisions regarding the content classifier and the
packet filter are the length of the decision history and the
number of different classes. The length of the history deter-
mines the effect of a single packet on the drop rate. Using
a shorter history, a single packet has a greater influence on
the drop rate. If the number of classes is not predefined, the
content classifier can dynamically create a new class if the
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content of the packets differs too much from the existing
classes.

Another issue is that if many packets from one class have
been classified as dangerous, the drop rate for this class will
be very high. Hence, fewer packets will enter the system and
be classified by the Dendritic Cells. As a result, the drop rate
for that class cannot change back to normal very easily. This
makes it hard to normalise the drop rate if the initial DC
classifications were wrong for this class. Thus, a filter has to
age its decision in some way; for example, the drop rate can
be decreased every time interval. Another possibility is to
decrease the drop rate if less danger and PAMP signals are
released. Yet another option is to reset the filter completely
after a certain time. The length of the decision history and
the reset rule of the filter are evaluated in [15].

As this work focuses on the detection part of the algo-
rithm, the second stage of the algorithm is kept simple and
is only simulated. Nevertheless, the response part of the al-
gorithm is important and needs to be evaluated. With the
assumption that packets sent by the sink node and packets
sent by the attacker have a different content, the number
of classes is simply 2. The accuracy of the content classi-
fier is simulated by setting a probability Paccuracy that de-
fines the accuracy of the classifier. For example, Paccuracy =
0.8 means that the classifier partitions 80% of the packets
into the correct class. Therefore, when our simulation sets
Paccuracy = 0.8, we assume that the content classifier per-
forms with the accuracy 80%. Simulating the content classi-
fier allows us to investigate the performance of the automatic
response.

6 Experiments

Three sets of experiments were carried out on SNAIS in or-
der to evaluate its behaviour. The first was an assessment of
the impact of the new cache poisoning attack proposed in
this work. The TinyOS implementation was used (for rea-
sons of speed) to assess four variations of the attack. The
second set of experiments assessed the detection capabili-
ties of both implementations of SNAIS and their sensitivity
to different internal parameter settings. The final set of ex-
periments assessed the effectiveness of both the detection
and response of Sim-SNAIS and Tiny-SNAIS when under
attack.

6.1 The impact of the cache poisoning attack

This first section measures the impact of the interest cache
poisoning attack. Four different versions of the attack are
performed and then compared in terms of effectiveness and
efficiency.

6.1.1 Effectiveness measurements

The effectiveness measurement is performed to measure the
impact and success of the attack. Since the goal of the at-
tacker is to suppress the data flow from the sensor nodes to
the sink node, the success of the attack can be measured by
counting the number of data packets received by the sink
node. Nnormal is the number of data packets received with-
out the presence of the attacker and Nattack is the number of
data packets received with an attacker mounting the cache
poisoning attack. The experimentally determined suppres-
sion rate rsuppress,exp is calculated as:

rsuppress,exp = 1 −
(

Nattack

Nnormal

)
.

For each run Nnormal and Nattack are measured and
rsuppress,exp is derived. Additionally the mean and standard
deviation for both counters and for the suppression rate are
calculated.

6.1.2 Efficiency measurements

The efficiency measurement compares the attack variations
in terms of resources used while performing the attack.
Clearly, an attacker wants to cause as much damage as pos-
sible, but since a malicious node has the same energy re-
sources as a normal node, the attacker does not want to waste
his energy. The attack cannot be continued if the malicious
node has no more energy to send out bogus packets. For
nodes in sensor networks most energy is consumed when
performing sending and receiving operations. Thus, we use
B , the number of bogus packets sent out by the attacker, as
a metric of resources used for the attack. The effectiveness
metric defined in Sect. 6.1.1 is combined with the energy
used, in calculating an efficiency index. With the assumption
that the sink requests the same data rate from each sensor,
the theoretical best case suppression rate rsuppress,theo can be
expressed as follows:

rsuppress,theo = 1 −
(

C − B

S

)
; C − B > 0

where C is cache size, B is number of bogus packets sent
out, S is number of subscriptions (with each subscription
resulting in data delivered).

For example, with S = 2 subscriptions and a cache size
of 10, the attacker needs to send 10 bogus packets to achieve
a rate of 100% and 9 packets for 50%.

For the length of the experiment, the sink sends out the in-
terests several times. If I is the refresh interval and T is the
run time of the experiment, the number of updates is n =
T/I . Given the experimental suppression rate rsuppress,exp



C. Wallenta et al.

Fig. 9 Effectiveness of the burst attack (10 nodes left, 30 nodes right)

Table 2 Overview of the fixed parameters for this section

Parameter Value

nodes 10 [30]

topologies 10

run time each 300 seconds

sink subscriptions 5

data interval 10 seconds

refresh interval 60 seconds

interest expiration 75 seconds

from the experiment, the following formula gives the theo-
retical number of bogus packets needed to achieve this sup-
pression rate:

Bneeded = n · (S · (rsuppress,exp − 1) + C).

The theoretical suppression rate is compared to the experi-
mental rate. Therefore, the efficiency of the attack is defined
as

Eattack = Bneeded

Bsent
.

6.1.3 Experimental settings

Ten different network topologies were generated [15]. For
each topology a normal run and a run for each different at-
tack was performed. For each run, the number of data pack-
ets delivered to the sink was measured. The mean number
of packets was calculated and used to show and compare
the effectiveness and efficiency of the attacks. Four different
types of the poisoning attack are compared. The attacks and
the reason why these four types were chosen are explained
in the following sections. Table 2 gives an overview of the
fixed experimental parameters.

6.1.4 The burst attack

The first experiment shows the impact for the burst attack as
described in Sect. 4.3.2. C packets are sent out every time
the attacker receives a new interest, where C is the size of the
interest cache. The attacker does not send out bogus packets
for duplicated benign interests. Since the attacker stores the
benign interests in its interest cache he is able to tell if an in-
terest is duplicated or new. This attack is easy to perform
but, on the other hand, a waste of energy, because a lot of
unnecessary packets are sent out. The simple attack should
show the concept of the cache poisoning attack. Figure 9
(left) shows the results of the experiment using 10 nodes.
The mean number of data packets delivered to the sink is
131.3 during a normal situation. The same run with an at-
tacker sending C bogus packets for each received interest
results in only 5.5 received packets on average. This is a
suppression rate of nearly 96%. So the effectiveness of this
burst attack is very good. The result for the attack with 30
nodes is shown in Fig. 9 (right). With 7.2 received packets
on average, the attack is still very good.

6.1.5 The fast attack

The fast attack requires a smarter attacker than the burst at-
tack. An observation of the network behaviour shows that
the sink node sends out the interest packets for its subscrip-
tions as a bundle. Therefore, the attacker can figure out when
the last interest packet for a refresh period has arrived and
then starts the attack. This saves the attacker a lot of packets
(and energy) and should have the same suppression rate.

The results for the fast attack are still very good. The
mean suppression rate is 87% with 17.4 data packets de-
livered to the sink on average, as shown in Fig. 10 (left).
With 5 sink subscriptions, this attack needs only 20% of the
amount of packets that the simple burst attack needs. The
results for the attack in a network with 30 nodes are shown
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Fig. 10 Effectiveness of the fast attack (10 nodes left, 30 nodes right)

Fig. 11 Effectiveness of the slow attack (10 nodes left, 30 nodes right)

in Fig. 10 (right) and do not differ much from the results for
10 nodes.

6.1.6 The slow attack

An attacker that is aware of burst detection will try to behave
more like any other node during the attack. Therefore, he
sends out the packets with the speed the Tiny Diffusion im-
plementation suggests. That means that there is a randomly
chosen pause between two consecutive bogus packets. The
pause lies in the range between 0.125 and 1 second. The at-
tacker also waits for a sink node to send all interest packets
before starting the attack.

The suppression rate of this attack goes down to 73%
with 35.5 data packets delivered to the sink on average.
The number of packets used is the same as in the fast at-
tack. Therefore, the effectiveness of the slow attack is lower
than the fast one. The results for a network with 30 nodes
are shown in Fig. 11 (right). The results are better than
for 10 nodes (Fig. 11, left). One reason for that could be

the higher density of the larger network. In the topolo-
gies generated with 30 nodes, the nodes have more neigh-
bours which leads to more duplicated packets. Full message
buffers might result in data packets being dropped.

6.1.7 Comparison of the efficiency

The attacks are now compared using the efficiency metric
described in Sect. 6.1.2. Figure 12 gives an overview of the
results for 10 and 30 nodes using the mean values. Clearly,
the burst attack is inefficient, but the effectiveness is the best.
The differences between the two other attacks are in terms
of efficiency, but the fast attack is more effective than the
slow one.

6.1.8 The constant attack

The constant attack is performed by sending out bogus in-
terest packets constantly. The attacker does not calculate the
correct time to start the attack. Every n seconds a bogus in-
terest is sent out. We compare different attacks by varying
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Fig. 12 Efficiency of the different attack versions

Fig. 13 Effectiveness of the constant attack (10 nodes)

the pause between two consecutive bogus packets. The sim-
ulation time is now 350 seconds and not 300 seconds as for
the previous experiments. This is because the constant at-
tack is used in Sect. 6.2 to measure the detection results with
a different attack pattern and was originally not supposed
to appear in this section. Due to time constraints, we only
evaluate this attack with a network of 10 nodes. Figure 13
shows an overview of the effectiveness and the efficiency of
the constant attack. Overall, the constant attack shows worse
suppression results than the previous attacks. Clearly, with
a larger gap between two consecutive packets, the effective-
ness of the attack becomes worse, although the efficiency is
better.

Regarding the number of bogus packets that are sent out,
the constant attack with a pause of 6 seconds between two
consecutive packets can be compared with the previous at-
tacks, because it sends out about the same number of bo-
gus packets. The achieved suppression rate of the constant
attack is much worse than the rate of a burst, fast or slow
attack. The efficiency of the constant attack is worse than

the efficiency of the fast and slow attack, but better than the
efficiency of the burst attack.

6.2 Evaluation of the detection mechanism

This section evaluates the accuracy of the Dendritic Cell Al-
gorithm within SNAIS and assesses its sensitivity to changes
in signal weights and other parameters.

6.2.1 Experimental setup

Table 3 shows the 4 different sets of weights used for the six
signals described previously. The first signal weight set con-
tains the weights suggested by Greensmith et al. [3]. Set 2
and 3 increase the weights of the danger and PAMP signals,
because the first set showed too many false negatives (shown
as ‘bogus wrong’ in the figure). Table 4 gives the main fixed
parameters for the two implementations of SNAIS. (Note
that the number of nodes was 7 in Sim-SNAIS in order to
make the simulation time practical.) Finally, Table 5 shows
the variables changed in each of the six experiments.

6.2.2 Results

The detection results are shown in Fig. 14. Overall, the
intrusion detection results show hardly any false positives
(benign wrong) for Tiny-SNAIS and few wrong for Sim-
SNAIS. The signal weight set 3 shows the best results for
both implementations. More bogus packets are classified
correctly.

Comparing experiments 1–3 with 4–6, for Tiny-SNAIS
the simple matrix shows better results than the large matrix.
This can be explained with the fact that the simple matrix
models the biological mechanism better, because it reflects
the classification of antigens within the context. In other
words, even bogus packets that do not cause the release of
danger signals are still classified as dangerous, because the



Detecting interest cache poisoning in sensor networks using an artificial immune algorithm

Table 3 Different signal weight
sets used for the experiments Weight set Cytokine PS DS1 DS2 SS1 SS2 SS3

1 Semi-Mature 0 0 0 3 3 3

Mature 2 1 1 −3 −3 −3

2 Semi-Mature 0 0 0 2 2 2

Mature 6 4 4 −1 −1 −1

3 Semi-Mature 0 0 0 2 2 2

Mature 12 8 8 −1 −1 −1

Table 4 Fixed parameters for
the experiments Parameter Tiny-SNAIS value Sim-SNAIS value

Node number 10 7

Different topologies (runs) 10 1

Simulation time per run 350 seconds 300 seconds

Maximum signal age 10 seconds 10 seconds

Sliding window size (DS1/SS3) 10 seconds 10 seconds

Sliding window shift size 1 second 1 second

Number of subscriptions 7 5

Interest expiration 75 seconds 75 seconds

Interest cache size 10 10

Refresh time 60 seconds 60 seconds

Attack mode Fast mode Fast mode

Bogus packets per attack 10 10

DC cycle rate 0.5 seconds 0.5 seconds

Update rule Simple (overwrite) Simple (overwrite)

Table 5 Parameters varied for the experiments

Experiment Parameter Value Parameter Value

1 Signal weight set 1 Matrix structure Simple

2 Signal weight set 2 Matrix structure Simple

3 Signal weight set 3 Matrix structure Simple

4 Signal weight set 1 Matrix structure Large

5 Signal weight set 2 Matrix structure Large

6 Signal weight set 3 Matrix structure Large

DCs that capture these bogus packets still receive danger and
PAMP signals caused by the other bogus packets. For exam-
ple, a bogus packet that is inserted in an empty cache slot
does not cause the release of danger signal DS2, but other
bogus packets that overwrite the entries do. Hence, the con-
text is rather dangerous than safe. This is not the case with
the large signal matrix where packets are mainly classified
according to the signals they cause.

While the Tiny-SNAIS results show that the simple ma-
trix always performed better than the large matrix, the re-
sults shown for Sim-SNAIS do not indicate the simple ma-
trix is always better. In fact, comparisons show that there is
not much difference in true positive (TP) and false positive

(FP) rates and the best true negative (TN) rates in the third
signal weight set is not significantly different. However, it
should be noted that the large matrix used in Sim-SNAIS
is different from the large matrix used in Tiny-SNAIS (see
Sect. 5.2.3). The matrix of Sim-SNAIS was designed so that
it can hold all signals as long as the signals do not get old.

With this difference, it can be observed that the best TN
rates are shown to be at a similar level, which implies that
there is no great difference between interpreting the context
with only the most recent signal and interpreting the context
with the average signal vote results that were collected for
the previous 60 seconds.

6.2.3 Analysis

It is clear that the different signal weights do have great im-
pact on the DC’s detection rates. These results are consis-
tent in both implementations of SNAIS. The relatively good
results in TP and FP rates do not require changing the sig-
nal weights in the semi-output cytokines. However, the poor
results in TN and FN rates led us to create new sets of sig-
nal weights that reduce the safe signal weights by one third
and double and triple the danger and PAMP signals respec-
tively in calculating the mature output cytokines. The results
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Fig. 14 Detection rates for
Tiny-SNAIS and Sim-SNAIS in
experiments 1–6

show that the reduction of safe signal weights dropped the
TP rates around 10% while it increases the TN rates greatly
(max nearly 50%). On the other hand, without the safe signal
weight decrease, the increase of danger and PAMP signals
increase the TN rate while the TP rate no longer drops sig-
nificantly. Further increase of the danger and PAMP signal
weights no longer increases the TN rate largely although it
has shown some increase.

The above results clearly suggest that the appropriate set-
ting of signal weight values is crucial for the DCA to work
properly. Although the initial signal weights were borrowed
from actual biological statistics, these are specific statistics
and they do not necessarily conform to different computer
applications. Therefore, a method for automatically setting
the signal weights would be useful in the future. One in-
teresting finding from these experiments is that the initial
results of signal weight setting can provide some clues to

adjust the weights. Although different results would be ex-
pected depending on the applied application areas, it appears
likely that the DCA might be able to adapt its signal weights
automatically depending on the initial detection results it is
producing. As shown in these experiments, if a high TP rate
and low TN rate are produced in early results, the DCA can
simply start to increase the danger signal or PAMP signal
weights.

6.2.4 Number of sink subscriptions

Having explored the effects of different signal weights and
matrices, the following experiments investigate how a the
number of interest subscriptions affects the detection accu-
racy of the intrusion detection system. We expect SNAIS to
perform better when the sink node subscribes to more data
streams. This is because an interest cache poisoning attack
causes more damage. Therefore, more danger and PAMP
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Fig. 15 Detection rates for
Tiny-SNAIS and Sim-SNAIS in
the sink subscription
experiments

signals are generated, leading to better detection results. For
the experiments the fixed parameters shown in Table 4 are
used again and only the number of interest subscriptions is
varied. The third signal weight set and the simple signal ma-
trix are used for these experiments as they showed the best
results in the previous experiments. 10 runs for each exper-
iment with 2, 4, 6 and 8 subscriptions were performed on
both implementations of SNAIS.

Figure 15 plots the simulation results. It can be observed
that the number of correctly classified bogus packets is af-
fected by the number of subscriptions, while the number of
false positives does not change much. In Tiny-SNAIS there
is no significant difference between two and four subscrip-
tions; in Sim-SNAIS there is a 10% drop in TP rates when
the number of subscriptions is increased from 2 to 4. Both
implementations show that the overall detection results be-
come better (improved TN rates) with a higher number of
subscriptions.

6.3 DCA + response test

6.3.1 Experiment objectives and setup

This section evaluates how the automatic response affects
the impact of the interest cache poisoning attack. First,
a content classifier with a classification accuracy of 80% and
two classes A and B was tested.

In this setting, we assume that class A indicates ‘benign’
packets and class B represents ‘bogus’ packets. This means
that an interest packet, which has been sent by the sink node,
will be correctly classified as class A with a probability of
80%. A packet that has been sent by the attacker will be clas-
sified as class B with a probability of 80%. However, with
an error rate of 20%, the content classifier classifies ‘benign’
packets as class B and ‘bogus’ packets as class A respec-
tively. The packets classified by the content classifier are
passed to the packet filter. Then, the packet filter drops inter-
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est packets according to the packet pass rate of each class,
which is constantly updated by the DC decisions. For in-
stance, if the pass rate of class B is currently 75%, an inter-
est packet that has been classified as class B is dropped with
a probability of 25%.

Second, SNAIS was tested without a content classifier.
Using this setting, newly arrived packets are no longer clas-
sified by a content classifier, they are directly handled by the
packet filter. The packet filter maintains only one pass rate,
which is configured by the number of safe and dangerous
packets classified by the DCs within the last n packets. For
example, if 10 of the last 30 packets have been classified as
dangerous, the pass rate of the filter is set to 66% and pack-
ets are dropped with a probability of 33%.

We expect the packet filter with the content classifier to
perform better than the one without content classifier, be-
cause it will drop fewer benign interests. However, it is not
clear whether a content classifier can be deployed on a sen-
sor node and how accurately it can classify the packets.
Moreover, a very clever attacker can try to make the benign
packets look dangerous. As a result, the packet filter would
drop benign packets and the data delivery to the sink node
will be disturbed. The setting without the content classifier is
not vulnerable to this attack. Although the content classifier
is suggested by the inspiration of immune cells, the limited
capacity of sensor nodes might prevent the implementation
of this idea. Hence, we test this alternative but simpler op-
tion in the second set of experiments.

The automatic response was evaluated by using a sliding
window to measure the number of data packets that have
been received by the sink node within the last 60 seconds.
This measurement was done for the normal situation without
the presence of an attacker and for both different packet fil-
ter configurations. Furthermore, the current packet pass rates
were recorded and the mean rates were calculated among all
the nodes. We use a simulation time of 1000 seconds, which
is longer than the time in the previous experiments. This is
because the response mechanism needs some time before it
can react to the attack. A bit field with a length of 32 bits
is used to keep track of the number of safe and dangerous
packets. Both implementations of SNAIS use the settings
that showed the best results in Sect. 6.2 and the fixed para-
meters are the same as shown in Table 4.

6.3.2 Results

Figure 16 shows the results of both filter configurations,
showing packet pass rates of each class and the number of
data packets delivered in 3 different cases: (i) normal sit-
uation without an attacker present, (ii) attack without the
packet filter active and (iii) attack with the packet filter ac-
tive. The average packet pass rates are calculated among all
nodes.

Examining the results for Tiny-SNAIS, initially no bogus
packets are dropped by the filter, and not many data packets
are delivered to the sink node. As a result of the attack, dan-
ger and PAMP signals are released and packets start to be
classified as dangerous. Thus, the pass rates of the packet
filters decrease. As more interest packets are dropped, the
attack is less successful, and hence more data packets are
routed back to the sink node. This has the effect that the con-
centration of the danger and PAMP signals becomes weaker.
As a consequence, fewer interest packets are classified as
dangerous and the packet pass rates increase again. More bo-
gus packets are inserted in the interest caches again and the
impact of the attack is higher. Afterwards, the whole process
is repeated.

The correlation between the pass rates and the number
of delivered data packets can be clearly seen. Overall, the
results of the packet filter without the content classifier do
not differ much from the results of the packet filter with the
content classifier. This is a promising result as the filter with-
out the content classifier is a much simpler response mech-
anism. However, the filter with content classifier cannot do
worse than the filter without the content classifier because it
uses additional information to make its filter decision.

Unexpectedly, the results for Sim-SNAIS differ slightly
to those for Tiny-SNAIS. As described, for Tiny-SNAIS, the
average bogus packet pass rate decreased until some implicit
threshold is reached and then increased again. However, the
results for Sim-SNAIS show that the bogus packet pass rate
continuously decreased until it reached zero and never in-
creased again. Further investigation reveals that the differ-
ence in results may originate from the number of nodes used
in each network. In the Sim-SNAIS experiments, the net-
work size is very small and most of nodes become the neigh-
bour nodes of the attacker’s node. Even the furthest node
from the attacker’s node is only two hops away and so sim-
ilar trends can be observed. Nevertheless, despite this dif-
ference, the overall result for Sim-SNAIS using the packet
filter without the content classifier conforms to the results
seen for Tiny-SNAIS.

7 Conclusions

In this work we described SNAIS (Sensor Network Artifi-
cial Immune System)—an IDS approach for Directed Dif-
fusion based sensor networks inspired by the Danger The-
ory and the Dendritic Cell Algorithm [4]. This work also
introduced a new attack on sensor networks employing the
Directed Diffusion routing protocol. The attack highlights a
general vulnerability in sensor network protocols that rely
on caches with limited capacities to keep track of state of
the network.
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Fig. 16 Packet pass rates of each class and the number of data packets delivered, with and without content classifier (Tiny-SNAIS results shown
with a clear background, Sim-SNAIS results shown with a grey background)

Two implementations of SNAIS were evaluated: one
hardware specific for the T-mote Sky sensor using TinyOS,
and one simulation (enabling the full use of the Direct Dif-
fusion protocol) using J-Sim. The experiments have shown
that a Danger Theory inspired approach shows promising
detection results.

In more detail, the evaluation of the interest cache poi-
soning attack showed that the attack heavily affects the suc-
cessful operation of a sensor network that employs the Di-
rected Diffusion routing protocol. It can easily disturb the
data delivery from the sensor nodes to the sink node. The

investigation of different signal weights showed that SNAIS
is sensitive to the weight values, but that these values can be
fine-tuned relatively easily, which implies that this process
could be automated in the future. Both implementations of
SNAIS were shown to be capable of detecting instances of
the interest cache poisoning attack.

A packet filter, which implements the automatic response
of the intrusion detection, was also briefly evaluated. Using
the packet filter in combination with the context classifier
and without a content classifier showed acceptable results.
Future work should analyse whether a content classifier can
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Fig. 16 (Continued)

be deployed on a sensor node at all and how accurately it is
able to classify the packets. However, the packet filter with-
out the content classifier, which is a much simpler solution
showed promising results.

Sensor and other similar dynamic networks are becoming
increasingly common. It is important to realise that attacks
that exploit the weaknesses in their hardware and software
will also become common, as they have become for desk-
top computers on the Internet. This work has suggested one
possible form of attack. It has also shown that a lightweight
detection system using an analogy of the immune system by
exploiting signals derived from system behaviours is useful
and effective.
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