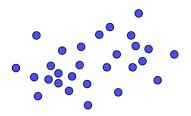
On the Hardness of Robust Classification

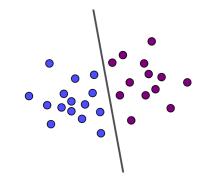
P. Gourdeau, V. Kanade, M. Kwiatkowska and J. Worrell

University of Oxford

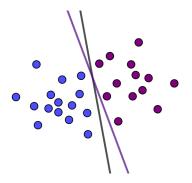
NeurIPS 2019



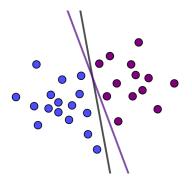
Our setting: Data i.i.d. from unknown distribution,



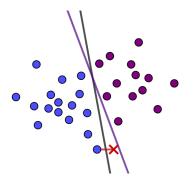
Our setting: Data i.i.d. from unknown distribution, realizable setting.



Our setting: Data i.i.d. from unknown distribution, *realizable setting*. **Goal:** learn a function that will be robust (with high probability) against an adversary who can perturb the test data.

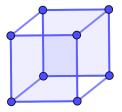


Our setting: Data i.i.d. from unknown distribution, *realizable setting*. **Goal:** learn a function that will be robust (with high probability) against an adversary who can perturb the test data.

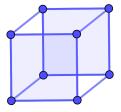


Our setting: Data i.i.d. from unknown distribution, *realizable setting*. **Goal:** learn a function that will be robust (with high probability) against an adversary who can perturb the test data.

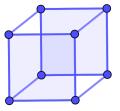
Input space: boolean cube $\mathcal{X} = \{0, 1\}^n$.



Input space: boolean cube $\mathcal{X} = \{0, 1\}^n$. **Requirement**: *polynomial* sample complexity (*efficient robust learning*).



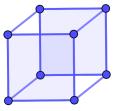
Input space: boolean cube $\mathcal{X} = \{0, 1\}^n$. **Requirement**: *polynomial* sample complexity (*efficient robust learning*).



Theorem

 $\mathcal C$ is efficiently distribution-free robustly learnable iff it is trivial.

Input space: boolean cube $\mathcal{X} = \{0, 1\}^n$. **Requirement**: *polynomial* sample complexity (*efficient robust learning*).

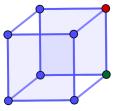


Theorem

 $\mathcal C$ is efficiently distribution-free robustly learnable iff it is trivial.

 $\exists c_1 \neq \neg c_2$

Input space: boolean cube $\mathcal{X} = \{0, 1\}^n$. **Requirement**: *polynomial* sample complexity (*efficient robust learning*).

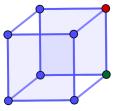


Theorem

 $\mathcal C$ is efficiently distribution-free robustly learnable iff it is trivial.

 $\exists c_1 \neq \neg c_2 \ \exists x, \mathbf{x} \text{ s.t. } d_H(x, \mathbf{x}) = 1,$

Input space: boolean cube $\mathcal{X} = \{0, 1\}^n$. **Requirement**: *polynomial* sample complexity (*efficient robust learning*).



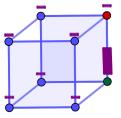
Theorem

 $\mathcal C$ is efficiently distribution-free robustly learnable iff it is trivial.

 $\exists c_1 \neq \neg c_2 \ \exists x, x \text{ s.t. } d_H(x, x) = 1, \ c_1(x) = c_2(x) \text{ and } c_1(x) \neq c_2(x)$

Input space: boolean cube $\mathcal{X} = \{0, 1\}^n$.

Requirement: polynomial sample complexity (efficient robust learning).



Theorem

 $\mathcal C$ is efficiently distribution-free robustly learnable iff it is trivial.

 $\exists c_1 \neq \neg c_2 \ \exists x, x \text{ s.t. } d_H(x, x) = 1, \ c_1(x) = c_2(x) \text{ and } c_1(x) \neq c_2(x)$

"Nice" Distributions

Idea: We need distributional assumptions to have efficient robust learning.

Log-Lipschitz distributions: D is α -log-Lipschitz if the logarithm of the density function is $log(\alpha)$ -Lipschitz w.r.t. the Hamming distance.

Log-Lipschitz distributions: D is α -log-Lipschitz if the logarithm of the density function is $log(\alpha)$ -Lipschitz w.r.t. the Hamming distance.

$$\begin{array}{l} x_1 = (0, \dots, 1, 1, 1, 1, \dots, 0) \\ x_2 = (0, \dots, 1, 0, 1, \dots, 0) \end{array} \implies \frac{D(x_1)}{D(x_2)} \le \alpha \end{array}$$

Log-Lipschitz distributions: D is α -log-Lipschitz if the logarithm of the density function is $log(\alpha)$ -Lipschitz w.r.t. the Hamming distance.

$$\begin{array}{l} x_1 = (0, \dots, 1, 1, 1, \dots, 0) \\ x_2 = (0, \dots, 1, 0, 1, \dots, 0) \end{array} \implies \frac{D(x_1)}{D(x_2)} \le \alpha \end{array}$$

Intuition: input points that are close to each other cannot have vastly different probability masses.

Log-Lipschitz distributions: D is α -log-Lipschitz if the logarithm of the density function is $log(\alpha)$ -Lipschitz w.r.t. the Hamming distance.

$$\begin{array}{l} x_1 = (0, \dots, 1, 1, 1, \dots, 0) \\ x_2 = (0, \dots, 1, 0, 1, \dots, 0) \end{array} \implies \frac{D(x_1)}{D(x_2)} \le \alpha \end{array}$$

Intuition: input points that are close to each other cannot have vastly different probability masses.

Examples: uniform distribution, product distribution where the mean of each variable is bounded, etc.

Question: Given a concept class C, what is the threshold ρ such that we can *efficiently* robustly learn against adversary with budget ρ ?

Question: Given a concept class C, what is the threshold ρ such that we can *efficiently* robustly learn against adversary with budget ρ ?

Our paper: We study the class MON-CONJ of monotone conjunctions, e.g. $x_1 \land x_2 \land x_5$

Question: Given a concept class C, what is the threshold ρ such that we can *efficiently* robustly learn against adversary with budget ρ ?

Our paper: We study the class MON-CONJ of monotone conjunctions, e.g. $x_1 \land x_2 \land x_5$

Theorem

The threshold to efficiently robustly learn MON-CONJ under log-Lipschitz distributions is $\rho(n) = O(\log n)$.

Question: Given a concept class C, what is the threshold ρ such that we can *efficiently* robustly learn against adversary with budget ρ ?

Our paper: We study the class MON-CONJ of monotone conjunctions, e.g. $x_1 \land x_2 \land x_5$

Theorem

The threshold to efficiently robustly learn MON-CONJ under log-Lipschitz distributions is $\rho(n) = O(\log n)$.

 $\rho(n) = O(\log n)$: PAC learning algorithm with larger (but still polynomial) sample complexity is a robust learner.

Question: Given a concept class C, what is the threshold ρ such that we can *efficiently* robustly learn against adversary with budget ρ ?

Our paper: We study the class MON-CONJ of monotone conjunctions, e.g. $x_1 \land x_2 \land x_5$

Theorem

The threshold to efficiently robustly learn MON-CONJ under log-Lipschitz distributions is $\rho(n) = O(\log n)$.

 $\rho(n) = O(\log n)$: PAC learning algorithm with larger (but still polynomial) sample complexity is a robust learner.

 $\rho(n) = \omega(\log(n))$: no sample-efficient learning algorithm exists to robustly learn MON-CONJ under the uniform distribution.

• The definitions and models come from previous work in adversarial machine learning theory.

- The definitions and models come from previous work in adversarial machine learning theory.
- At first glance, they seem in many ways natural and reasonable.

- The definitions and models come from previous work in adversarial machine learning theory.
- At first glance, they seem in many ways *natural* and *reasonable*.
 - Their *inadequacies* surface when viewed under the lens of computational learning theory.

- The definitions and models come from previous work in adversarial machine learning theory.
- At first glance, they seem in many ways natural and reasonable.
 - Their *inadequacies* surface when viewed under the lens of computational learning theory.
- It may be possible to only solve "easy" robust learning problems with strong *distributional assumptions*.

- The definitions and models come from previous work in adversarial machine learning theory.
- At first glance, they seem in many ways natural and reasonable.
 - Their *inadequacies* surface when viewed under the lens of computational learning theory.
- It may be possible to only solve "easy" robust learning problems with strong *distributional assumptions*.
- Other learning models, e.g. when one has access to *membership queries*.

Thank you!

Poster Information ...