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Problem Setting

Our setting: Data i.i.d. from unknown distribution, realizable setting.
Goal: learn a function that will be robust (with high probability) against
an adversary who can perturb the test data.
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Sample Complexity

Input space: boolean cube X = {0, 1}n.

Requirement: polynomial sample complexity (efficient robust learning).

Theorem

C is efficiently distribution-free robustly learnable iff it is trivial.

∃c1 6= ¬c2 ∃x ,x s.t. dH(x ,x) = 1, c1(x) = c2(x) and c1(x) 6= c2(x)
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“Nice” Distributions

Idea: We need distributional assumptions to have efficient robust learning.

Log-Lipschitz distributions: D is α-log-Lipschitz if the logarithm of the
density function is log(α)-Lipschitz w.r.t. the Hamming distance.

x1 = (0, . . . , 1, 1, 1, . . . , 0)
x2 = (0, . . . , 1, 0, 1, . . . , 0)

=⇒ D(x1)

D(x2)
≤ α .

Intuition: input points that are close to each other cannot have vastly
different probability masses.

Examples: uniform distribution, product distribution where the mean of
each variable is bounded, etc.
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A Robustness Threshold

Question: Given a concept class C, what is the threshold ρ such that we
can efficiently robustly learn against adversary with budget ρ?

Our paper: We study the class MON-CONJ of monotone conjunctions,
e.g. x1 ∧ x2 ∧ x5

Theorem

The threshold to efficiently robustly learn MON-CONJ under log-Lipschitz
distributions is ρ(n) = O(log n).

ρ(n) = O(log n): PAC learning algorithm with larger (but still
polynomial) sample complexity is a robust learner.

ρ(n) = ω(log(n)): no sample-efficient learning algorithm exists to
robustly learn MON-CONJ under the uniform distribution.
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Take Away

The definitions and models come from previous work in adversarial
machine learning theory.

At first glance, they seem in many ways natural and reasonable.

Their inadequacies surface when viewed under the lens of
computational learning theory.

It may be possible to only solve “easy” robust learning problems with
strong distributional assumptions.

Other learning models, e.g. when one has access to membership
queries.
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Thank you!
Poster Information...

Pascale Gourdeau (University of Oxford) On the Hardness of Robust Classification NeurIPS 2019 7 / 7


