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Overview

A computational and information-theoretic study of
the hardness of robust learning.

Setting: Binary classification tasks on input space X = {0, 1}n in the
presence of an adversary.

E.g.: distinguishing between handwritten 0’s and 1’s:

{((0, 1, . . . , 1), 0), ((1, 1, . . . , 1), 1), . . . , ((0, 1, . . . , 0), 0)}
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Overview

Today’s talk:

A comparison of different notions of robust risk,

A result on the impossibility of sample-efficient distribution-free
robust learning,

Robustness thresholds to robustly learn monotone conjunctions under
log-Lipschitz distributions,

A simple proof of the computational hardness of robust learning.
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Machine Learning Classification Tasks

Big picture:

Data i.i.d. from unknown distribution labelled from some concept. We
focus on the realizable setting, as opposed to the agnostic setting.

Learning algorithm A with sample complexity m: when given a sample
S of size ≥ m, A outputs a hypothesis that has low error w.h.p. over S .
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Robust Classification Tasks

Goal: learn a function that will be robust (with high probability) against
an adversary who can perturb the test data.
Question: How do we define a misclassification?
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Adversarial Examples

General idea: An adversarial example is constructed from a natural
example drawn from a distribution D by adding a perturbation.

c : target concept
h: hypothesis
ρ: robustness parameter (adversary’s perturbation budget)
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Robust Risk Definitions

c : target concept
h: hypothesis
ρ: robustness parameter (adversary’s perturbation budget)

Robust risks:
Constant-in-the-ball: probability that an adversary can perturb a point x
drawn from D to z with budget ρ, so that c on x and h on z differ:

RC
ρ (h, c) = P

x∼D
(∃z ∈ Bρ (x) . c(x) 6= h(z)) .

Exact-in-the-ball: probability that an adversary can perturb a point x
drawn from D to z with budget ρ, so that c and h disagree on z :

RE
ρ (h, c) = P

x∼D
(∃z ∈ Bρ (x) . c(z) 6= h(z)) .
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Comparing Robust Risk Functions

In general, the constant-in-the-ball and the exact-in-the-ball risk functions
are not comparable:

(a) RE
ρ > 0, RC

ρ = 0 , (b) RE
ρ = 0, RC

ρ > 0 , (c) RE
ρ > 0, RC

ρ > 0.
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Choosing a Robust Risk Function

RC
ρ pros and cons:

simple: only need to know x ’s correct label to evaluate its loss,

can have positive risk when c = h,

some concept classes are inherently not robust w.r.t. to this definition,

as ρ→ n, we require the function to be constant.

RE
ρ pros and cons:

requires knowledge of c outside of sampled points, e.g. through
membership queries,

RR
ρ (c , c) = 0.

In our view: adversary’s power = creating perturbations that cause
c 6= h, so we choose RE

ρ , despite its drawbacks.
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Efficient Robust Learning

A efficiently ρ-robustly learns a concept class C with respect to
distribution class D:

There exists a polynomial sample complexity function poly such that

for any input dimension n, any target concept c , any distribution D,
and any accuracy and confidence parameters ε, δ > 0,

when A is given access to a sample S ∼ Dm, where
m ≥ poly(1/ε, 1/δ, n), A outputs h : {0, 1}n → {0, 1} such that

P
S∼Dm

(
RE
ρ(n)(h, c) < ε

)
> 1− δ .

Note:

We require polynomial sample complexity,

It might make more sense to require finite sample complexity in other
contexts, e.g. Rn.
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No Distribution-Free Robust Learning

Theorem

C is efficiently distribution-free robustly learnable iff it is trivial.

Proof idea:

If C is non-trivial, we can find c1 and c2 and x such that

(0, 0, . . . , 0, . . . , 0, 0)

c1(x) 6= c2(x) .

Construct a distribution such that c1 and c2 will likely agree on a
sample of size polynomial in n but have RE

ρ (c1, c2) = Ω(1).

Let c ∼ Unif(c1, c2) before labelling the sample. Then any function
we learn won’t be robust against c with positive probability.
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“Nice” Distributions

Idea: We need distributional assumptions to have efficient robust learning.

Log-Lipschitz distributions: D is α-log-Lipschitz if the logarithm of the
density function is log(α)-Lipschitz w.r.t. the Hamming distance.

x1 = (0, . . . , 1, 1, 1, . . . , 0)
x2 = (0, . . . , 1, 0, 1, . . . , 0)

=⇒ D(x1)

D(x2)
≤ α .

Intuition: input points that are close to each other cannot have vastly
different probability masses.

Examples: uniform distribution, product distribution where the mean of
each variable is bounded, etc.
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Monotone Conjunctions

Efficient distribution-free robust learning is not possible in general, but
what happens when we restrict the class of distributions?

We look at
MON-CONJ : monotone conjunctions

E.g.: h(x) = x1 ∧ x3 ∧ x5.

Theorem

The threshold to robustly learn MON-CONJ under log-Lipschitz
distributions is ρ(n) = O(log n).
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Monotone Conjunctions

Theorem

The threshold to robustly learn MON-CONJ under log-Lipschitz
distributions is ρ(n) = O(log n).

To show that MON-CONJ is not efficiently robustly learnable for
ρ(n) = ω(log n), we can show that, under the uniform distribution

Choose long enough monotone conjunctions c1 and c2

Choose input dimension n large enough,

A sample of size polynomial in n will likely look constant with fixed
probability.

Again, choose target at random before labelling.
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Robust Learnability for Logarithmically-Bounded Adversary

Theorem

The algorithm to PAC-learn MON-CONJ is an efficient ρ-robust learning
algorithm for log-Lipschitz distributions when ρ = O(log n).

Algorithm: Start with h(x) =
∧

i∈[n] xi . For each positive example x , if
xi = 0, remove i from the index set.

Example:
Input space: X = {0, 1}5

Target: x1 ∧ x3 ∧ x5

Sample:
(1, 1, 1, 0, 1), 1
(0, 0, 1, 1, 1), 0
(1, 0, 1, 1, 1), 1
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Robust Learnability for Logarithmically-Bounded Adversary

Theorem

The algorithm to PAC-learn MON-CONJ is an efficient ρ-robust learning
algorithm for log-Lipschitz distributions when ρ = O(log n).

Proof idea: Two cases:

If the target conjunction is short enough, we have learned exactly, and
hence robustly.

If the target conjunction is large enough, we can use concentration
bounds to show that the adversary is unlikely to cause a label change.
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Computational Hardness of Robust Learning

Previous computational hardness of robust learning results used:

Another learning model (statistical query) [Bubeck et al., 2018],

Cryptographic assumptions [Degwekar and Vaikuntanathan, 2019].

Our proof is quite simple, and only relies on the existence of a hard
problem on the boolean hypercube in the PAC-learning framework.

(C,D,X )
PAC learning

(C′,D′,X ′)
Robust learning
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Take Away

The definitions and models come from previous work in adversarial
machine learning theory.

At first glance, they seem in many ways natural and reasonable.

Their inadequacies surface when viewed under the lens of
computational learning theory.

It may be possible to only solve “easy” robust learning problems with
strong distributional assumptions.

Other learning models, e.g. when one has access to membership
queries.
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Current and Future Work

Generalize robustness threshold for other concept classes:

Majority functions,
Linear threshold functions,
etc.

More powerful learning model (e.g., membership queries).
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