
Creating an Agile Hardware Accelerator Design Flow

Priyanka Raina

Stanford AHA! Agile Hardware Center

Nov 27, 2019



CPU

Mobile GPU

Energy Efficient 
Core

Energy Efficient 
Core

Energy Efficient 
Core

Energy Efficient 
Core

High 
Performance 

Core

High 
Performance 

Core

Image 
Processing 
Accelerator

Video 
Coding

Accelerator

Neural 
Network 

Accelerator

Signal 
Processing

2

• With the slowdown of technology scaling we cannot achieve higher 
performance and energy-efficiency with general purpose hardware

• Instead we are relying on specialized hardware aka accelerators to meet 
performance and energy demands 

Need for hardware accelerators



3

Study the
application

Design
hardware

Write
software

How hardware design is done today



4

Study the
application

Design
hardware

Write
software

Verilog, VHDL, SystemVerilog...

How hardware design is done today



5

Study the
application

Design
hardware

Write
software

How hardware design is done today



6

• Change of application requirements

• Incomplete knowledge/understanding of the problem
• The only software that works is the software you use
• New software never works well

Problems with this waterfall approach

Requirement changes Prolonged hardware design time



7

An Agile Approach to Hardware Design



8

• Create an end-to-end system 
• From Halide application code to working CGRA based accelerators

• Evolve that system to make it more efficient

Our vision of agile hardware design

Algorithm + Schedule

Graph of operations and 
memory blobs



9

Halide Application Example – MobileNet Layer

// Algorithm
1 RDom r_dw(-1,3, -1,3), r_pw(0, 32);
2 dw_conv(x, y, c) += input(x+r_dw.x, y+r_dw.y, c)
3 * w1(1 + r_dw.x, 1 + r_dw.y, c);
4 pw_conv(x, y, k) += dw_conv(x,y, r_pw.c)
5 * w2(r_pw.c, k);
// Schedule
6 pw_conv.split(x, xo, xi, 16)
7 .split(y, yo, yi, 16)
8 .reorder(k, xi, yi, r_pw.c, xo, yo);
9 dw_conv.reorder(x, y, c);
10 dw_conv.compute_at(pw_conv, xi)
11 .store_at(pw_conv, xo)
12 pw_conv.accelerate({input}, xo)
13 dw_conv.unroll(r_dw.x, 3).unroll(r_dw.y, 3);
14 pw_conv.unroll(k, 32);

On-chip buffering

Parallel compute

Tiling



10

Halide to CoreIR



11

• Choose coarse-grained reconfigurable array (CGRA) as our base architecture
• Since acceleration comes from exploiting parallelism in compute and locality in memory references

• Create accelerators through specialization of the base CGRA

An experiment on building accelerators

MEM

MEM

PE

PE

PE

PE

PE MEM PE

Halide Compiler

Application in Halide

Mapper

Place and Route

Configured CGRA

CoreIR Graph

Bitstream Generation



12

• A 16x16 island-style CGRA with simple processing elements (16 bit integer ALU, registers, LUT) and 
memories (2 KB – SRAM, FIFO, line buffer) for image processing applications

• Built with Genesis2, a hardware generation framework that uses Perl to meta-program hardware 
modules written in SystemVerilog

• Taped out in Summer 2018, received packaged parts in January 2019. Chip is fully functional.

Jade: Our first generation CGRA

MEM

MEM

MEM

PE

PE

PE

PE

PE

PE

Jade
CGRA



13

• For Jade, we really had two flows – one for application mapping, and other for CGRA 
generation
• Loosely coupled – changes to hardware required manual updates to all the tools

Lesson 1: Single source of truth

Halide Compiler

Application in Halide

Mapper

Place and Route

Configured CGRA

CoreIR Graph

MEM

MEM

MEM

PE

PE

PE

PE

PE

PE
Bitstream Generation



14

• We wanted to make several changes to the logical design for physical design concerns
• We had several global signals in the design – place and route tools were unsuccessful in routing 

them to all the tiles in narrow channels – leading to low area efficiency 

Lesson 2: Staged generation of design

Global Controller

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

…

…

Global Controller

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

…

…



Garnet: Our second generation CGRA SoC

15

• Garnet is more complex
• PEs with floating point
• MEMs with unified buffers 

support image + NN apps
• Memory hierarchy: MEMs à

Global Buffer à DRAM
• Fast reconfiguration
• Configurable power domains

• Full processor sub-system 
Global Buffer

TLX

CoreLink

TLX

DRAM

DRAM 
ControllerApplication 

Processor

FPGA

AXI

AXI

DMA 
Engine

DMA 
Engine

AXIAXI

Control Processor
(ARM Cortex M3)

N
es

te
d 

Ve
ct

or
 In

te
rr

up
t 

Co
nt

ro
lle

r (
N

VI
C)

W
ak

e-
up

 In
te

rr
up

t 
Co

nt
ro

lle
r (

W
IC

)

Memory Protection 
Unit (MPU)

I-Bus D-Bus

De
bu

g 
JT

AG

AHB AHB

D-Mem

AXI

I-Mem

AXI

SoC

MEM

MEM

MEM

MEM

PE

PE

PE

PE

PE

PE

PE

PE

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

PE

PE

PE

PE

PE

PE

PE

PE

MEM

MEM

MEM

MEM

CGRA Processor



16

• Goal is to generate hardware and software from a higher-level specification (single source of 
truth)

• But generating arbitrary hardware from arbitrary higher-level specification is an extremely 
difficult problem

• We divide the problem into generating different specific types of hardware – like processing 
elements, memories and interconnect

A DSL-based hardware-software generation framework



17

• We create DSLs that easily express functionality of 
specific types of hardware
• PEak for processing elements
• Lake for memories
• Canal for interconnect
• Gemstone for CGRAs
• These sit on top of our 

• Python-embedded HDL - Magma
• Hardware intermediate representation – CoreIR

• Generate collateral for all tools in the flow from a 
single source of truth 

• Allow passes/staged generation for separation of 
concerns

A DSL-based hardware-software generation framework

CoreIR

Magma

Higher Level DSLs

PEak
PE DSL

Lake
Memory DSL

Canal
Interconnect DSL



18

• Python-embedded DSL for specifying PEs
• Defines an instruction set – using algebraic data types
• Declares all state
• Precisely describes instruction semantics

PEak: DSL for Processing Elements (PEs)

PEak
Program

Functional 
Model

Generate

RTL

Generate

Textual
Specification

Generate

Rewrite Rules 
for Mapper

Generate

Tests
Rewrite Rule



19

Multiple interpretations of the same PEak program

Python
Context

Functional 
Model

PEak
Program

Magma
Context

PEak
Program

RTL

SMT
Context

PEak
Program

Symbolic 
Representation

PEak Program



20

• Canal DSL specifies interconnect using a directed graph 
(DiGraph)
• Anything connectable in RTL is a node in the DiGraph
• It introspects the PEak/Lake core to obtain IO information 

automatically
• Allows multiple passes to construct and transform the 

graph

Canal: DSL for Interconnect

PEPEPEPE

SB

SB

SB

SB

data1

data_out

data0

Traditional

Representation

DiGraph
Representation



21

Automatically generates the hardware and collateral for software tools

Functional Model

Generate

RTL

Generate

Configuration 
Bitstream

Generate

Routing Graph for 
Application PnR

Generate

PEPE

PE/MEM Core
Designer

PEPEPEPE

PEPE

PEPE

PEPE

SB

SB

SB

SB

SB

SB

SB

SB

SB

Interconnect
Generator

FF000101 00AF000B

00000101 0000000C

00000201 0000000A

FF0000201 00AF00C

Bitstream
Con�guration

Verilog/RTLApplication
PnR

Interconnect
Designer

parameters
passes

Physical Design
PnR

PEPE

PE/MEM Core
Designer

PEPEPEPE

PEPE

PEPE

PEPE

SB

SB

SB

SB

SB

SB

SB

SB

SB

Interconnect
Generator

FF000101 00AF000B

00000101 0000000C

00000201 0000000A

FF0000201 00AF00C

Bitstream
Con�guration

Verilog/RTLApplication
PnR

Interconnect
Designer

parameters
passes

Physical Design
PnR

Canal DiGraph

PEPE

PE/MEM Core
Designer

PEPEPEPE

PEPE

PEPE

PEPE

SB

SB

SB

SB

SB

SB

SB

SB

SB

Interconnect
Generator

FF000101 00AF000B

00000101 0000000C

00000201 0000000A

FF0000201 00AF00C

Bitstream
Con�guration

Verilog/RTLApplication
PnR

Interconnect
Designer

parameters
passes

Physical Design
PnR

PE/MEM Core 
Designer

Interconnect 
Designer Parameters

Passes



22

• All our DSLs create RTL in the form of gemstone circuit generator objects
• Gemstone allows multiple passes to 

• Change the RTL
• Generate non-RTL collateral 

• Well-defined primitives on circuit generator objects, such as add/remove ports and instantiate 
generators/circuits

Gemstone: A staged generator

Logical 
Description

Logical 
Description’

Logical 
Description’’

Logical 
Description’’’

Physical 
Design

RTL with power 
domains

RTL with 
configuration 

registers 
distributed

Initial RTL from 
logical designer

Pass

RTL with global 
signals river 

routed

Pass Pass
Verilog to 
physical 
design

Floorplanning
Constraints

Timing 
Constraints



23

Passes modify gemstone generator objects

Global Controller

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

…

…

Global Controller

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

…

…

Pass

An example pass that changes fanout global signals to river-routed global signals



24

• CGRA array-level application tests
• CGRA with control logic (AXI/JTAG) and second-level memory
• CGRA with ARM M3 (full SoC) tests
• These end-to-end flows are required to be “green” throughout the agile development 

process. 

Multiple end-to-end flows for the SoC system



25

• We are creating an agile design methodology for highly-efficient accelerator systems 
(hardware + software) where we
• Evaluate current system and make incremental improvements
• Always keep an end-to-end application flow running 
• Maintain separation of concerns in the design process

• We are doing this by creating domain-specific languages (DSLs) that
• Easily express functionality of specific types of hardware (like processors, memories and 

interconnect)
• Generate collateral for all tools in the flow from a single source of truth 
• Allow passes/staged generation for separation of concerns

• We have designed an SoC called Garnet with this approach for image, vision and machine 
learning applications

Summary



26

https://aha.stanford.edu
https://github.com/StanfordAHA

• Faculty: Myself, Mark Horowitz, Pat Hanrahan, Clark Barrett, Kayvon Fatahalian

• Students: Nikhil Bhagdikar, Alex Carsello, Ross G Daly, Caleb Donovick, David Durst, 
Kathleen Feng, Teguh Hofstee, Dillon Huff, Taeyoung Kong, Qiaoyi Liu, Makai Mann, Ankita 
Nayak, Aina Niemetz, Gedeon Nyengele, Raj Setaluri, Jeff Setter, Maxwell Strange, James 
Thomas, Leonard Truong, Keyi Zhang 

• Advisors: Rick Bahr, Stephen Richardson

Stanford AHA (Agile HArdware Center)

https://aha.stanford.edu/
https://github.com/StanfordAHA


27

• All our DSLs, tools and architectures are open source
• CoreIR: Hardware intermediate representation

• Magma: Python-embedded HDL
• Gemstone: Generator infrastructure on top of Magma

• Fault: Unified testing + formal verification for Magma
• CoSA: SMT based model checker

• Peak: DSL for PEs
• Lake: DSL for memories
• Canal: DSL for interconnect

• Halide-to-Hardware: Application compiler for our SoC/FPGAs
• Jade, Garnet: Our SoCs 

Collaboration Opportunities

CoreIR

Magma

Higher Level DSLs

Peak
PE DSL

Lake
Memory DSL

Canal
Interconnect DSL

CoreIR

FPGA CGRA ASIC

“LLVM for HW”

Verilog Magma Chisel Halide …

https://github.com/rdaly525/coreir
https://github.com/phanrahan/magma
https://github.com/StanfordAHA/gemstone
https://github.com/leonardt/fault
https://github.com/cristian-mattarei/CoSA
https://github.com/cdonovick/peak
https://github.com/StanfordAHA/canal
https://github.com/StanfordAHA/Halide-to-Hardware
https://github.com/StanfordAHA/CGRAGenerator
https://github.com/StanfordAHA/garnet

