
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds

Qingyong Hu1, Bo Yang1∗*, Linhai Xie1, Stefano Rosa1, Yulan Guo2,3,
Zhihua Wang1, Niki Trigoni1, Andrew Markham1

1University of Oxford, 2Sun Yat-sen University, 3National University of Defense Technology
firstname.lastname@cs.ox.ac.uk

Abstract

We study the problem of efficient semantic segmentation
for large-scale 3D point clouds. By relying on expensive
sampling techniques or computationally heavy pre/post-
processing steps, most existing approaches are only able
to be trained and operate over small-scale point clouds.
In this paper, we introduce RandLA-Net, an efficient and
lightweight neural architecture to directly infer per-point
semantics for large-scale point clouds. The key to our ap-
proach is to use random point sampling instead of more
complex point selection approaches. Although remarkably
computation and memory efficient, random sampling can
discard key features by chance. To overcome this, we in-
troduce a novel local feature aggregation module to pro-
gressively increase the receptive field for each 3D point,
thereby effectively preserving geometric details. Extensive
experiments show that our RandLA-Net can process 1 mil-
lion points in a single pass with up to 200× faster than ex-
isting approaches. Moreover, our RandLA-Net clearly sur-
passes state-of-the-art approaches for semantic segmenta-
tion on two large-scale benchmarks Semantic3D and Se-
manticKITTI.

1. Introduction

Efficient semantic segmentation of large-scale 3D point
clouds is a fundamental and essential capability for real-
time intelligent systems, such as autonomous driving and
augmented reality. A key challenge is that the raw point
clouds acquired by depth sensors are typically irregularly
sampled, unstructured and unordered. Although deep con-
volutional networks show excellent performance in struc-
tured 2D computer vision tasks, they cannot be directly ap-
plied to this type of unstructured data.

Recently, the pioneering work PointNet [37] has
emerged as a promising approach for directly processing 3D
point clouds. It learns per-point features using shared multi-

∗Corresponding author

PointNet++ (2.4s) SPG (10.8s)

Ours (0.04s) Ground Truth

Figure 1. Semantic segmentation results of PointNet++ [38], SPG
[23] and our approach on SemanticKITTI [3]. Our RandLA-Net
takes only 0.04s to directly process a large point cloud with 105

points over 150×130×10 meters in 3D space, which is up to 200×
faster than SPG. Red circles highlight the superior segmentation
accuracy of our approach.

layer perceptrons (MLPs). This is computationally efficient
but fails to capture wider context information for each point.
To learn richer local structures, many dedicated neural mod-
ules have been subsequently and rapidly introduced. These
modules can be generally categorized as: 1) neighbouring
feature pooling [38, 28, 19, 64, 63], 2) graph message pass-
ing [51, 42, 49, 50, 5, 20, 30], 3) kernel-based convolution
[43, 18, 54, 26, 21, 22, 48, 33], and 4) attention-based aggre-
gation [55, 62, 60, 36]. Although these approaches achieve
impressive results for object recognition and semantic seg-
mentation, almost all of them are limited to extremely small
3D point clouds (e.g., 4k points or 1×1 meter blocks) and
cannot be directly extended to larger point clouds (e.g., mil-
lions of points and up to 200×200 meters). The reasons
for this limitation are three-fold. 1) The commonly used
point-sampling methods of these networks are either com-
putationally expensive or memory inefficient. For example,
the widely employed farthest-point sampling [38] takes over
200 seconds to sample 10% of 1 million points. 2) Most ex-
isting local feature learners usually rely on computationally

1

expensive kernelisation or graph construction, thereby be-
ing unable to process massive number of points. 3) For a
large-scale point cloud, which usually consists of hundreds
of objects, the existing local feature learners are either inca-
pable of capturing complex structures, or do so inefficiently,
due to their limited size of receptive fields.

A handful of recent works have started to tackle the task
of directly processing large-scale point clouds. SPG [23]
preprocesses the large point clouds as super graphs before
applying neural networks to learn per super-point seman-
tics. Both FCPN [39] and PCT [7] combine voxelization
and point-level networks to process massive point clouds.
Although they achieve decent segmentation accuracy, the
preprocessing and voxelization steps are too computation-
ally heavy to be deployed in real-time applications.

In this paper, we aim to design a memory and com-
putationally efficient neural architecture, which is able
to directly process large-scale 3D point clouds in a sin-
gle pass, without requiring any pre/post-processing steps
such as voxelization, block partitioning or graph construc-
tion. However, this task is extremely challenging as it re-
quires: 1) a memory and computationally efficient sampling
approach to progressively downsample large-scale point
clouds to fit in the limits of current GPUs, and 2) an effec-
tive local feature learner to progressively increase the recep-
tive field size to preserve complex geometric structures. To
this end, we first systematically demonstrate that random
sampling is a key enabler for deep neural networks to effi-
ciently process large-scale point clouds. However, random
sampling can discard key semantic information, especially
for objects with low point densities. To counter the poten-
tially detrimental impact of random sampling, we propose
a new and efficient local feature aggregation module to
capture complex local structures over progressively smaller
point-sets.

Amongst existing sampling methods, farthest point sam-
pling and inverse density sampling are the most frequently
used for small-scale point clouds [38, 54, 29, 64, 15]. As
point sampling is such a fundamental step within these net-
works, we investigate the relative merits of different ap-
proaches in Section 3.2, both by examining their computa-
tional complexity and empirically by measuring their mem-
ory consumption and processing time. From this, we see
that the commonly used sampling methods limit scaling to-
wards large point clouds, and act as a significant bottleneck
to real-time processing. However, we identify random sam-
pling as by far the most suitable component for large-scale
point cloud processing as it is fast and scales efficiently.
Random sampling is not without cost, because prominent
point features may be dropped by chance and it cannot be
used directly in existing networks without incurring a per-
formance penalty. To overcome this issue, we design a new
local feature aggregation module in Section 3.3, which is

capable of effectively learning complex local structures by
progressively increasing the receptive field size in each neu-
ral layer. In particular, for each 3D point, we firstly in-
troduce a local spatial encoding (LocSE) unit to explicitly
preserve local geometric structures. Secondly, we leverage
attentive pooling to automatically keep the useful local fea-
tures. Thirdly, we stack multiple LocSE units and attentive
poolings as a dilated residual block, greatly increasing the
effective receptive field for each point. Note that all these
neural components are implemented as shared MLPs, and
are therefore remarkably memory and computational effi-
cient.

Overall, being built on the principles of simple random
sampling and an effective local feature aggregator, our ef-
ficient neural architecture, named RandLA-Net1, not only
is up to 200× faster than existing approaches on large-scale
point clouds, but also surpasses the state-of-the-art seman-
tic segmentation methods on both Semantic3D [16] and Se-
manticKITTI [3] benchmarks. Figure 1 shows qualitative
results of our approach. Our key contributions are:
• We analyse and compare existing sampling approaches,

identifying random sampling as the most suitable com-
ponent for efficient learning on large-scale point clouds.

• We propose an effective local feature aggregation mod-
ule to automatically preserve complex local structures
by progressively increasing the receptive field for each
point.

• We demonstrate significant memory and computational
gains over baselines, and surpass the state-of-the-art se-
mantic segmentation methods on multiple large-scale
benchmarks.

2. Related Work
To extract features from 3D point clouds, traditional ap-

proaches usually manually hand-craft features [11, 41]. Re-
cent learning based approaches mainly include projection-
based, voxel-based and point-based schemes which are out-
lined here.

(1) Projection and Voxel Based Networks. To lever-
age the success of 2D CNNs, many works [27, 8, 57, 24]
project/flatten 3D point clouds onto 2D images to address
the task of object detection. However, many geometric
details are lost during the projection. Alternatively, point
clouds can be voxelized into 3D grids and then powerful
3D CNNs are applied as in [14, 25, 10, 34, 9]. Although
they achieve leading results on semantic segmentation and
object detection, their primary limitation is the heavy com-
putation cost, especially when processing large-scale point
clouds.

1Code and data are available at: https://github.com/
QingyongHu/RandLA-Net

https://github.com/QingyongHu/RandLA-Net
https://github.com/QingyongHu/RandLA-Net

(2) Point Based Networks. Inspired by Point-
Net/PointNet++ [37, 38], many recent works introduced so-
phisticated neural modules to learn per-point local features.
These modules can be generally classified as 1) neighbour-
ing feature pooling [28, 19, 64, 63], 2) graph message pass-
ing [51, 42, 49, 50, 5, 20, 30], 3) kernel-based convolution
[43, 18, 54, 26, 21, 22, 48, 33], and 4) attention-based ag-
gregation [55, 62, 60, 36]. Although these networks have
shown promising results on small point clouds, most of
them cannot directly scale up to large scenarios due to their
high computational and memory costs. Compared with
them, our proposed RandLA-Net is distinguished in three
ways: 1) it only relies on random sampling within the net-
work, thereby requiring much less memory and computa-
tion; 2) the proposed local feature aggregator can obtain
successively larger receptive fields by explicitly considering
the local spatial relationship and point features, thus being
more effective and robust for learning complex local pat-
terns; 3) the entire network only consists of shared MLPs
without relying on any expensive operations such as graph
construction and kernelisation, therefore being superbly ef-
ficient for large-scale point clouds.

(3) Learning for Large-scale Point Clouds. SPG [23]
preprocesses the large point clouds as super graphs to learn
per super-point semantics. The recent FCPN [39] and PCT
[7] apply both voxel-base and point-based networks to pro-
cess the massive point clouds. However, both the graph par-
titioning and voxelisation are computationally expensive. In
constrast, our efficient RandLA-Net is end-to-end trainable
without requiring any additional pre/post-processing steps.

3. RandLA-Net
3.1. Overview

As illustrated in Figure 2, given a large-scale point cloud
with millions of points spanning up to hundreds of meters,
to process it with a deep neural network inevitably requires
those points to be progressively and efficiently downsam-
pled in each neural layer, without losing the useful point
features. In our RandLA-Net, we propose to use the simple
and fast approach of random sampling to greatly decrease
point density, whilst applying a carefully designed local fea-
ture aggregator to retain prominent features. This allows the
entire network to achieve an excellent trade-off between ef-
ficiency and effectiveness.
3.2. The quest for efficient sampling

Existing point sampling approaches [38, 29, 15, 12, 1,
54] can be roughly classified into heuristic and learning-
based approaches. However, there is still no standard sam-
pling strategy that is suitable for large-scale point clouds.
Therefore, we analyse and compare their relative merits and
complexity as follows.

Local Feature

Aggregation

Random

Sampling

𝑁~105 𝑁~102

Local Feature

Aggregation

Random

Sampling

Figure 2. In each layer of RandLA-Net, the large-scale point cloud
is significantly downsampled, yet is capable of retaining features
necessary for accurate segmentation.

(1) Heuristic Sampling
• Farthest Point Sampling (FPS): In order to sample
K points from a large-scale point cloud P with N
points, FPS returns a reordering of the metric space
{p1 · · · pk · · · pK}, such that each pk is the farthest point
from the first k − 1 points. FPS is widely used in
[38, 29, 54] for semantic segmentation of small point
sets. Although it has a good coverage of the entire point
set, its computational complexity is O(N2). For a large-
scale point cloud (N ∼ 106), FPS takes up to 200 sec-
onds to process on a single GPU. This shows that FPS is
not suitable for large-scale point clouds.

• Inverse Density Importance Sampling (IDIS): To sample
K points from N points, IDIS reorders all N points ac-
cording to the density of each point, after which the top
K points are selected [15]. Its computational complexity
is approximately O(N). Empirically, it takes 10 seconds
to process 106 points. Compared with FPS, IDIS is more
efficient, but also more sensitive to outliers. However, it
is still too slow for use in a real-time system.

• Random Sampling (RS): Random sampling uniformly se-
lects K points from the original N points. Its computa-
tional complexity is O(1), which is agnostic to the total
number of input points, i.e., it is constant-time and hence
inherently scalable. Compared with FPS and IDIS, ran-
dom sampling has the highest computational efficiency,
regardless of the scale of input point clouds. It only takes
0.004s to process 106 points.

(2) Learning-based Sampling
• Generator-based Sampling (GS): GS [12] learns to gen-

erate a small set of points to approximately represent the
original large point set. However, FPS is usually used in
order to match the generated subset with the original set
at inference stage, incurring additional computation. In
our experiments, it takes up to 1200 seconds to sample
10% of 106 points.

• Continuous Relaxation based Sampling (CRS): CRS ap-
proaches [1, 60] use the reparameterization trick to relax
the sampling operation to a continuous domain for end-
to-end training. In particular, each sampled point is learnt
based on a weighted sum over the full point clouds. It re-
sults in a large weight matrix when sampling all the new

(𝑁, 𝑑𝑖𝑛)

Input

point features
Shared

MLP
(𝑁, 𝑑𝑜𝑢𝑡/2)

LocSE
Attentive

Pooling
LocSE

Attentive

Pooling

(𝑁, 3)

(𝑁, 2𝑑𝑜𝑢𝑡)

lrelu

Aggregated

features

(𝑁, 2𝑑𝑜𝑢𝑡)

Local Spatial Encoding (LocSE)

S

Attentive Pooling

(𝐾, 3 + 𝑑)

(1, 3 + 𝑑)

(𝐾, 3) (𝐾, 𝑑)

(𝐾, 𝑑)

(𝐾, 2𝑑) (𝐾, 2𝑑) (𝐾, 2𝑑)
(1, 𝑑′)

𝑔(መ𝐟𝑖
𝑘 ,𝑊)

(𝑝𝑖 , fi)

Input

point features

(𝑁, 3 + 𝑑)

K

(𝑁, 𝑑𝑜𝑢𝑡) (𝑁, 𝑑𝑜𝑢𝑡/2) (𝑁, 𝑑𝑜𝑢𝑡) (𝑁, 𝑑𝑜𝑢𝑡) (𝑁, 2𝑑𝑜𝑢𝑡)

Dilated Residual Block

(𝑁, 𝑑′)

Aggregated

features

(𝑁, 3)

3D coordinates Point features

 Concatenation K K nearest neighborDot product SumS Softmax
Attention scores Attention features Aggregated feature

Shared

MLP

Shared

MLP

Shared

MLP

ሚf𝒊

{p𝑖
𝑘 , 𝐟𝑖

𝑘}

{𝑝𝑖
𝑘}

{𝐫𝑖
𝑘}

{𝐟𝑖
𝑘}

{ መ𝐟𝑖
𝑘} {s𝑖

𝑘}
Relative Point

Position Encoding

Figure 3. The proposed local feature aggregation module. The top panel shows the location spatial encoding block that extracts features,
and the attentive pooling mechanism that weights the most important, based on the local context and geometry. The bottom panel shows
how two of these components are chained together, to increase the receptive field size, within a residual block.

points simultaneously with a one-pass matrix multiplica-
tion, leading to an unaffordable memory cost. For exam-
ple, it is estimated to take more than a 300GB memory
footprint to sample 10% of 106 points.

• Policy Gradient based Sampling (PGS): PGS formulates
the sampling operation as a Markov decision process
[56]. It sequentially learns a probability to sample each
point. However, the learnt probability has high variance
due to the extremely large exploration space when the
point cloud is in large scale. For example, to sample 10%
of 106 points, the exploration space is C105

106 and it is un-
likely to learn an effective sampling policy. We empiri-
cally find that the network is difficult to converge if PGS
is used for large point clouds.

Overall, FPS, IDIS and GS are too computationally ex-
pensive to be applied for large-scale point clouds. CRS ap-
proaches have an excessive memory footprint and PGS is
hard to learn. By contrast, random sampling has the fol-
lowing two advantages: 1) it is remarkably computational
efficient as it is agnostic to the total number of input points,
2) it does not require extra memory for computation. There-
fore, we safely conclude that random sampling is by far the
most suitable approach to process large-scale point clouds
compared with all existing alternatives. However, random
sampling may result in many useful point features being
dropped. To overcome it, we propose a powerful local fea-
ture aggregation module as presented in below Section 3.3.

3.3. Local Feature Aggregation

As shown in Figure 3, our local feature aggregation mod-
ule is applied to each 3D point in parallel and it consists of
three neural units: 1) local spatial encoding (LocSE), 2) at-
tentive pooling, and 3) dilated residual block.

(1) Local Spatial Encoding
Given a point cloud P together with per-point features (e.g.,
raw RGB, or intermediate learnt features), this local spatial
encoding unit explicitly embeds the x-y-z coordinates of
all neighbouring points, such that the corresponding point
features are always aware of their relative spatial locations.
This allows the LocSE unit to explicitly observe the local
geometric patterns, thus eventually benefiting the entire net-
work to effectively learn complex local structures. In par-
ticular, this unit includes the following steps:

Finding Neighbouring Points. For the ith point, its
neighbouring points are firstly gathered by the simple K-
nearest neighbours (KNN) algorithm for efficiency. Note
that, the KNN is based on the point-wise Euclidean dis-
tances.

Relative Point Position Encoding. For each of the near-
est K points {p1i · · · pki · · · pKi } of the center point pi, we
explicitly encode the relative point position as follows:

rki =MLP
(
pi ⊕ pki ⊕ (pi − pki)⊕ ||pi − pki ||

)
(1)

where pi and pki are the x-y-z positions of points, ⊕ is the
concatenation operation, and || · || calculates the Euclidean
distance between the neighbouring and center points. It
seems that rki is encoded from redundant point position in-
formation. Interestingly, this tends to aid the network to
learn local features and obtains good performance in prac-
tice.

Point Feature Augmentation. For each neighbouring
point pki , the encoded relative point positions rki are con-
catenated with its corresponding point features fki , obtain-
ing an augmented feature vector f̂ki .

Eventually, the output of LocSE unit is a new set of
neighbouring features F̂i = {f̂1i · · · f̂ki · · · f̂Ki }, which ex-

plicitly encodes the local geometric structures for the center
point pi. We notice that the recent work [32] also uses point
positions to improve semantic segmentation. However, the
positions are used to learn point scores in [32], while our
LocSE explicitly encodes the relative positions to augment
the neighbouring point features.
(2) Attentive Pooling
This neural unit is used to aggregate the set of neighbour-
ing point features F̂i. Existing works [38, 29] typically use
max/mean pooling to hard integrate the neighbouring fea-
tures, resulting in the majority of the information being lost.
By contrast, we turn to the powerful attention mechanism to
automatically learn important local features. In particular,
inspired by [59], our attentive pooling unit consists of the
following steps.

Computing Attention Scores. Given the set of local fea-
tures F̂i = {f̂1i · · · f̂ki · · · f̂Ki }, we design a shared function
g() to learn a unique attention score for each feature. Ba-
sically, the function g() consists of a shared MLP followed
by softmax. It is formally defined as follows:

ski = g(f̂ki ,W) (2)

where W is the learnable weights of a shared MLP.
Weighted Summation. The learnt attention scores can

be regarded as a soft mask which automatically selects the
important features. Formally, these features are weighted
summed as follows:

f̃i =

K∑
k=1

(f̂ki · ski) (3)

To summarize, given the input point cloud P , for the
ith point pi, our LocSE and Attentive Pooling units learn
to aggregate the geometric patterns and features of its K
nearest points, and finally generate an informative feature
vector f̃i.
(3) Dilated Residual Block
Since the large point clouds are going to be substantially
downsampled, it is desirable to significantly increase the re-
ceptive field for each point, such that the geometric details
of input point clouds are more likely to be reserved, even
if some points are dropped. As shown in Figure 3, inspired
by the successful ResNet [17] and the effective dilated net-
works [13], we stack multiple LocSE and Attentive Pooling
units together with a skip connection as a dilated residual
block.

To further illustrate the capability of our dilated resid-
ual block, Figure 4 shows that the red 3D point observes
K neighbouring points after the first LocSE/Attentive Pool-
ing operation, and then is able to receive information from
up to K2 neighbouring points i.e. its two-hop neighbour-
hood after the second. This is a cheap way of dilating the
receptive field and expanding the effective neighbourhood

through feature propagation. Theoretically, the more units
we stack, the more powerful this block as its sphere of reach
becomes greater and greater. However, more units would
inevitably sacrifice the overall computation efficiency. In
addition, the entire network is likely to be over-fitted. In
our RandLA-Net, we simply stack two sets of LocSE and
Attentive Pooling as the standard residual block, achieving
a satisfactory balance between efficiency and effectiveness.

AL AL

Figure 4. Illustration of the dilated residual block which signifi-
cantly increases the receptive field (dotted circle) of each point,
colored points represent the aggregated features. L: Local spatial
encoding, A: Attentive pooling.

Overall, our local feature aggregation module is de-
signed to effectively preserve complex local structures via
explicitly considering neighbouring geometries and signif-
icantly increasing receptive fields. Moreover, this module
only consists of feed-forward MLPs, thus being computa-
tionally efficient.

3.4. Implementation

We implement RandLA-Net by stacking multiple local
feature aggregation modules and random sampling layers.
The detailed architecture is presented in the Appendix. We
use the Adam optimizer with default parameters. The initial
learning rate is set as 0.01 and decreases by 5% after each
epoch. The number of nearest pointsK is set as 16. To train
our RandLA-Net in parallel, we sample a fixed number of
points (∼ 105) from each point cloud as the input. During
testing, the whole raw point cloud is fed into our network to
infer per-point semantics without any pre/post-processing.
All experiments are conducted on an NVIDIA RTX2080Ti
GPU.

4. Experiments
4.1. Efficiency of Random Sampling

In this section, we empirically evaluate the efficiency of
existing sampling approaches including FPS, IDIS, RS, GS,
CRS, and PGS, which have been discussed in Section 3.2.
In particular, we conduct the following 4 groups of experi-
ments.

• Group 1. Given a small scale point cloud (∼ 103

points), we use each sampling approach to progres-
sively downsample it. Specifically, the point cloud is

（b）（a）
Figure 5. Time and memory consumption of different sampling
approaches. The dashed lines represent estimated values due to
the limited GPU memory.

downsampled by five steps with only 25% points be-
ing retained in each step on a single GPU i.e. a four-
fold decimation ratio. This means that there are only
∼ (1/4)5 × 103 points left in the end. This downsam-
pling strategy emulates the procedure used in Point-
Net++ [38]. For each sampling approach, we sum up
its time and memory consumption for comparison.

• Group 2/3/4. The total number of points are in-
creased towards large-scale, i.e., around 104, 105 and
106 points respectively. We use the same five sampling
steps as in Group 1.

Analysis. Figure 5 compares the total time and memory
consumption of each sampling approach to process different
scales of point clouds. It can be seen that: 1) For small scale
point clouds (∼ 103), all sampling approaches tend to have
similar time and memory consumption, and are unlikely to
incur a heavy or limiting computation burden. 2) For large-
scale point clouds (∼ 106), FPS/IDIS/GS/CRS/PGS are ei-
ther extremely time-consuming or memory-costly. By con-
trast, random sampling has superior time and memory ef-
ficiency overall. This result clearly demonstrates that most
existing networks [38, 29, 54, 32, 64, 60] are only able to be
optimized on small blocks of point clouds primarily because
they rely on the expensive sampling approaches. Motivated
by this, we use the efficient random sampling strategy in our
RandLA-Net.

4.2. Efficiency of RandLA-Net

In this section, we systematically evaluate the overall ef-
ficiency of our RandLA-Net on real-world large-scale point
clouds for semantic segmentation. Particularly, we evalu-
ate RandLA-Net on SemanticKITTI [3] dataset, obtaining
the total time consumption of our network on Sequence
08 which has 4071 frames of point clouds in total. We
also evaluate the time consumption of recent representa-
tive works [37, 38, 29, 23, 48] on the same dataset. For

Total time
(seconds)

Parameters
(millions)

Maximum inference
points (millions)

PointNet (Vanilla) [37] 192 0.8 0.49
PointNet++ (SSG) [38] 9831 0.97 0.98

PointCNN [29] 8142 11 0.05
SPG [23] 43584 0.25 -

KPConv [48] 717 14.9 0.54
RandLA-Net (Ours) 176 0.95 1.15

Table 1. The computation time, network parameters and maximum
number of input points of different approaches for semantic seg-
mentation on Sequence 08 of SemanticKITTI [3] dataset.

a fair comparison, we feed the same number of points (i.e.,
81920) from each scan into each neural network.

In addition, we also evaluate the memory consumption of
RandLA-Net and the baselines. In particular, we not only
report the total parameters of each network, but also mea-
sure the maximum number of 3D points each network can
take as input in a single pass to infer per-point semantics.
Note that, all experiments are conducted on the same ma-
chine with an AMD 3700X @3.6GHz CPU and an NVIDIA
RTX2080Ti GPU.

Analysis. Table 1 quantitatively shows the total time
and memory consumption of different approaches. It can
be seen that, 1) SPG [23] has the lowest number of net-
work parameters, but takes the longest time to process the
point clouds due to the expensive geometrical partitioning
and super-graph construction steps; 2) PointNet++ [38] and
PointCNN [29] are also computationally expensive mainly
because of the FPS sampling operation; 3) PointNet [37]
and KPConv [48] are unable to take extremely large-scale
point clouds (e.g. 106 points) in a single pass due to their
memory inefficient operations. 4) Thanks to the simple ran-
dom sampling together with the efficient MLP based local
feature aggregator, our RandLA-Net takes the shortest time
(translating to 23 frames per second) to infer the semantic
labels for each large-scale point cloud (up to 106 points).

4.3. Semantic Segmentation on Benchmarks

In this section, we evaluate the semantic segmentation of
our RandLA-Net on three large-scale public datasets: the
Semantic3D [16], SemanticKITTI [3], and S3DIS [2].
(1) Evaluation on Semantic3D. The Semantic3D dataset
[16] consists of 15 point clouds for training and 15 for on-
line testing. Each point cloud has up to 108 points, covering
up to 160×240×30 meters in real-world 3D space. The raw
3D points belong to 8 classes and contain 3D coordinates,
RGB information, and intensity. We only use the 3D coor-
dinates and color information to train and test our RandLA-
Net. Mean Intersection of Union (mIoU) and Overall Ac-
curacy (OA) of all classes are used as the standard metrics.
For fair comparison, we only include the results of recently
published strong baselines [4, 46, 47, 40, 63, 50, 23] and the

mIoU (%) OA (%) man-made. natural. high veg. low veg. buildings hard scape scanning art. cars

SnapNet [4] 59.1 88.6 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4
SEGCloud [46] 61.3 88.1 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3
RF MSSF [47] 62.7 90.3 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6

MSDeepVoxNet [40] 65.3 88.4 83.0 67.2 83.8 36.7 92.4 31.3 50.0 78.2
ShellNet [63] 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2
GACNet [50] 70.8 91.9 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8

SPG [23] 73.2 94.0 97.4 92.6 87.9 44.0 83.2 31.0 63.5 76.2
KPConv [48] 74.6 92.9 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7

RandLA-Net (Ours) 76.0 94.4 96.5 92.0 85.1 50.3 95.0 41.1 68.2 79.4

Table 2. Quantitative results of different approaches on Semantic3D (reduced-8) [16]. Only the recent published approaches are compared.
Accessed on 15 November 2019.

Methods Size m
Io

U
(%

)

Pa
ra

m
s(

M
)

ro
ad

si
de

w
al

k

pa
rk

in
g

ot
he

r-
gr

ou
nd

bu
ild

in
g

ca
r

tr
uc

k

bi
cy

cl
e

m
ot

or
cy

cl
e

ot
he

r-
ve

hi
cl

e

ve
ge

ta
tio

n

tr
un

k

te
rr

ai
n

pe
rs

on

bi
cy

cl
is

t

m
ot

or
cy

cl
is

t

fe
nc

e

po
le

tr
af

fic
-s

ig
n

PointNet [37]

50K pts

14.6 3 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7
SPG [23] 17.4 0.25 45.0 28.5 0.6 0.6 64.3 49.3 0.1 0.2 0.2 0.8 48.9 27.2 24.6 0.3 2.7 0.1 20.8 15.9 0.8

SPLATNet [43] 18.4 0.8 64.6 39.1 0.4 0.0 58.3 58.2 0.0 0.0 0.0 0.0 71.1 9.9 19.3 0.0 0.0 0.0 23.1 5.6 0.0
PointNet++ [38] 20.1 6 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9

TangentConv [45] 40.9 0.4 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5

SqueezeSeg [52]
64*2048

pixels

29.5 1 85.4 54.3 26.9 4.5 57.4 68.8 3.3 16.0 4.1 3.6 60.0 24.3 53.7 12.9 13.1 0.9 29.0 17.5 24.5
SqueezeSegV2 [53] 39.7 1 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 36.3

DarkNet21Seg [3] 47.4 25 91.4 74.0 57.0 26.4 81.9 85.4 18.6 26.2 26.5 15.6 77.6 48.4 63.6 31.8 33.6 4.0 52.3 36.0 50.0
DarkNet53Seg [3] 49.9 50 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2

RandLA-Net (Ours) 50K pts 50.3 0.95 90.4 67.9 56.9 15.5 81.1 94.0 42.7 19.8 21.4 38.7 78.3 60.3 59.0 47.5 48.8 4.6 49.7 44.2 38.1

Table 3. Quantitative results of different approaches on SemanticKITTI [3]. Only the recent published methods are compared and all scores
are obtained from the online single scan evaluation track. Accessed on 15 November 2019.

car road parkingsidewalk building fencevegetation terrain

P
re

d
G

T

other-vehicle

Figure 6. Qualitative results of RandLA-Net on the validation set of SemanticKITTI [3]. Red circles show the failure cases.

current state-of-the-art approach KPConv [48].

Table 2 presents the quantitative results of different ap-
proaches. RandLA-Net clearly outperforms all existing
methods in terms of both mIoU and OA. Notably, RandLA-
Net also achieves superior performance on six of the eight
classes, except low vegetation and scanning artifact.

(2) Evaluation on SemanticKITTI. SemanticKITTI [3]
consists of 43552 densely annotated LIDAR scans belong-
ing to 21 sequences. Each scan is a large-scale point cloud
with ∼ 105 points and spanning up to 160×160×20 me-
ters in 3D space. Officially, the sequences 00∼07 and
09∼10 (19130 scans) are used for training, the sequence

08 (4071 scans) for validation, and the sequences 11∼21
(20351 scans) for online testing. The raw 3D points only
have 3D coordinates without color information. The mIoU
score over 19 categories is used as the standard metric.

Table 3 shows a quantitative comparison of our RandLA-
Net with two families of recent approaches, i.e. 1) point-
based methods [37, 23, 43, 38, 45] and 2) projection based
approaches [52, 53, 3], and Figure 6 shows some qualita-
tive results of RandLA-Net on the validation split. It can
be seen that our RandLA-Net surpasses all point based ap-
proaches [37, 23, 43, 38, 45] by a large margin. We also
outperform all projection based methods [52, 53, 3], but not

significantly, primarily because DarkNet [3] achieves much
better results on the small object category such as traffic-
sign. However, our RandLA-Net has far fewer network pa-
rameters than DarkNet [3] and is more computationally effi-
cient as it does not require the costly steps of pre- and post-
projection processing.
(3) Evaluation on S3DIS. The S3DIS dataset [2] con-
sists of 271 rooms belonging to 6 large areas. Each point
cloud is a medium-sized single room (∼ 20×15×5 meters)
with dense 3D points. To evaluate the semantic segmenta-
tion of our RandLA-Net, we use the standard 6-fold cross-
validation in our experiments. The mean IoU (mIoU), mean
class Accuracy (mAcc) and Overall Accuracy (OA) of the
total 13 classes are compared.

As shown in Table 4, our RandLA-Net achieves on-par
or better performance than state-of-the-art methods. Note
that, most of these baselines [38, 29, 64, 63, 51, 6] tend
to use sophisticated but expensive operations or samplings
to optimize the networks on small blocks (e.g., 1×1 me-
ter) of point clouds, and the relatively small rooms act in
their favours to be divided into tiny blocks. By contrast,
RandLA-Net takes the entire rooms as input and is able to
efficiently infer per-point semantics in a single pass.

OA(%) mAcc(%) mIoU(%)

PointNet [37] 78.6 66.2 47.6
PointNet++ [38] 81.0 67.1 54.5

DGCNN [51] 84.1 - 56.1
3P-RNN [61] 86.9 - 56.3

RSNet [19] - 66.5 56.5
SPG [23] 85.5 73.0 62.1

LSANet [6] 86.8 - 62.2
PointCNN [29] 88.1 75.6 65.4
PointWeb [64] 87.3 76.2 66.7
ShellNet [63] 87.1 - 66.8

HEPIN [20] 88.2 - 67.8
KPConv [48] - 79.1 70.6

RandLA-Net (Ours) 87.2 81.5 68.5

Table 4. Quantitative results of different approaches on S3DIS
dataset [2] (6-fold cross validation). Only the recent published
methods are included.

4.4. Ablation Study

Since the impact of random sampling is fully studied in
Section 4.1, we conduct the following ablation studies for
our local feature aggregation module. All ablated networks
are trained on sequences 00∼07 and 09∼10, and tested on
the sequence 08 of SemanticKITTI dataset [3].

(1) Removing local spatial encoding (LocSE). This
unit enables each 3D point to explicitly observe its local
geometry. After removing locSE, we directly feed the local
point features into the subsequent attentive pooling.

(2∼4) Replacing attentive pooling by max/mean/sum
pooling. The attentive pooling unit learns to automati-
cally combine all local point features. By comparison, the

widely used max/mean/sum poolings tend to hard select or
combine features, therefore their performance may be sub-
optimal.

(5) Simplifying the dilated residual block. The dilated
residual block stacks multiple LocSE units and attentive
poolings, substantially dilating the receptive field for each
3D point. By simplifying this block, we use only one LocSE
unit and attentive pooling per layer, i.e. we don’t chain mul-
tiple blocks as in our original RandLA-Net.

Table 5 compares the mIoU scores of all ablated net-
works. From this, we can see that: 1) The greatest impact
is caused by the removal of the chained spatial embedding
and attentive pooling blocks. This is highlighted in Figure
4, which shows how using two chained blocks allows in-
formation to be propagated from a wider neighbourhood,
i.e. approximately K2 points as opposed to just K. This is
especially critical with random sampling, which is not guar-
anteed to preserve a particular set of points. 2) The removal
of the local spatial encoding unit shows the next greatest im-
pact on performance, demonstrating that this module is nec-
essary to effectively learn local and relative geometry con-
text. 3) Removing the attention module diminishes perfor-
mance by not being able to effectively retain useful features.
From this ablation study, we can see how the proposed neu-
ral units complement each other to attain our state-of-the-art
performance.

mIoU(%)

(1) Remove local spatial encoding 45.1
(2) Replace with max-pooling 47.1
(3) Replace with mean-pooling 45.2
(4) Replace with sum-pooling 45.7
(5) Simplify dilated residual block 41.5
(6) The Full framework (RandLA-Net) 52.0

Table 5. The mean IoU scores of all ablated networks based on our
full RandLA-Net.

5. Conclusion
In this paper, we demonstrated that it is possible to ef-

ficiently and effectively segment large-scale point clouds
by using a lightweight network architecture. In contrast
to most current approaches, that rely on expensive sam-
pling strategies, we instead use random sampling in our
framework to significantly reduce the memory footprint and
computational cost. A local feature aggregation module is
also introduced to effectively preserve useful features from
a wide neighbourhood. Extensive experiments on multiple
benchmarks demonstrate the high efficiency and the state-
of-the-art performance of our approach. It would be inter-
esting to extend our framework for the end-to-end 3D in-
stance segmentation on large-scale point clouds by drawing
on the recent work [58] and also for the real-time dynamic
point cloud processing [31].

References
[1] Abubakar Abid, Muhammad Fatih Balin, and James Zou.

Concrete autoencoders for differentiable feature selection
and reconstruction. arXiv preprint arXiv:1901.09346, 2019.
3, 11

[2] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese.
Joint 2d-3d-semantic data for indoor scene understanding.
arXiv preprint arXiv:1702.01105, 2017. 6, 8, 12, 14

[3] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Juergen Gall. Se-
manticKITTI: A dataset for semantic scene understanding of
lidar sequences. In ICCV, 2019. 1, 2, 6, 7, 8, 12, 13, 15

[4] Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert.
Unstructured point cloud semantic labeling using deep seg-
mentation networks. 3DOR, 2017. 6, 7

[5] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng
Wang, and Liang Lin. ClusterNet: Deep hierarchical cluster
network with rigorously rotation-invariant representation for
point cloud analysis. In CVPR, 2019. 1, 3

[6] Lin-Zhuo Chen, Xuan-Yi Li, Deng-Ping Fan, Ming-Ming
Cheng, Kai Wang, and Shao-Ping Lu. LSANet: Feature
learning on point sets by local spatial attention. arXiv
preprint arXiv:1905.05442, 2019. 8, 11

[7] Siheng Chen, Sufeng Niu, Tian Lan, and Baoan Liu. PCT:
Large-scale 3D point cloud representations via graph incep-
tion networks with applications to autonomous driving. In
ICIP, 2019. 2, 3

[8] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3D object detection network for autonomous
driving. In CVPR, 2017. 2

[9] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast
point R-CNN. In ICCV, 2019. 2

[10] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
spatio-temporal convnets: Minkowski convolutional neural
networks. arXiv preprint arXiv:1904.08755, 2019. 2

[11] Chin Seng Chua and Ray Jarvis. Point signatures: A new
representation for 3D object recognition. IJCV. 2

[12] Oren Dovrat, Itai Lang, and Shai Avidan. Learning to sam-
ple. In CVPR, 2019. 3, 11

[13] Francis Engelmann, Theodora Kontogianni, and Bastian
Leibe. Dilated point convolutions: On the receptive field of
point convolutions. arXiv preprint arXiv:1907.12046, 2019.
5

[14] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3D semantic segmentation with submanifold sparse
convolutional networks. In CVPR, 2018. 2

[15] Fabian Groh, Patrick Wieschollek, and Hendrik P. A. Lensch.
Flex-convolution (million-scale point-cloud learning beyond
grid-worlds). In ACCV, 2018. 2, 3, 11

[16] Timo Hackel, N. Savinov, L. Ladicky, Jan D. Wegner, K.
Schindler, and M. Pollefeys. SEMANTIC3D.NET: A new
large-scale point cloud classification benchmark. In ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2017. 2, 6, 7, 12, 13

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5

[18] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-
wise convolutional neural networks. In CVPR, 2018. 1, 3

[19] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Recur-
rent slice networks for 3D segmentation of point clouds. In
CVPR, 2018. 1, 3, 8, 14

[20] Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-
Wing Fu, and Jiaya Jia. Hierarchical point-edge interaction
network for point cloud semantic segmentation. In ICCV,
2019. 1, 3, 8

[21] Artem Komarichev, Zichun Zhong, and Jing Hua. A-CNN:
Annularly convolutional neural networks on point clouds. In
CVPR, 2019. 1, 3

[22] Shiyi Lan, Ruichi Yu, Gang Yu, and Larry S Davis. Model-
ing local geometric structure of 3D point clouds using Geo-
CNN. arXiv preprint arXiv:1811.07782, 2018. 1, 3

[23] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. In
CVPR, 2018. 1, 2, 3, 6, 7, 8, 14

[24] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In CVPR, 2019. 2

[25] Truc Le and Ye Duan. Pointgrid: A deep network for 3D
shape understanding. In CVPR, 2018. 2

[26] Huan Lei, Naveed Akhtar, and Ajmal Mian. Octree guided
cnn with spherical kernels for 3D point clouds. In CVPR,
2019. 1, 3

[27] Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from
3D lidar using fully convolutional network. arXiv preprint
arXiv:1608.07916, 2016. 2

[28] Jiaxin Li, Ben M Chen, and Gim Hee Lee. SO-Net: Self-
organizing network for point cloud analysis. In CVPR, 2018.
1, 3

[29] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan
Di, and Baoquan Chen. PointCNN: Convolution on x-
transformed points. In NeurIPS, 2018. 2, 3, 5, 6, 8, 11,
14

[30] Jinxian Liu, Bingbing Ni, Caiyuan Li, Jiancheng Yang, and
Qi Tian. Dynamic points agglomeration for hierarchical
point sets learning. In ICCV, 2019. 1, 3

[31] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteor-
net: Deep learning on dynamic 3D point cloud sequences. In
ICCV, 2019. 8

[32] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In CVPR, 2019. 5, 6, 11

[33] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpo-
lated convolutional networks for 3D point cloud understand-
ing. In ICCV, 2019. 1, 3

[34] Hsien-Yu Meng, Lin Gao, Yu-Kun Lai, and Dinesh
Manocha. Vv-net: Voxel vae net with group convolutions
for point cloud segmentation. In ICCV, 2019. 2

[35] Andriy Mnih and Karol Gregor. Neural variational in-
ference and learning in belief networks. arXiv preprint
arXiv:1402.0030, 2014. 11

[36] Anshul Paigwar, Ozgur Erkent, Christian Wolf, and Christian
Laugier. Attentional pointnet for 3d-object detection in point
clouds. In CVPRW, 2019. 1, 3

[37] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. In CVPR, 2017. 1, 3, 6, 7, 8, 14

[38] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017. 1, 2, 3, 5, 6,
7, 8, 11

[39] Dario Rethage, Johanna Wald, Jurgen Sturm, Nassir Navab,
and Federico Tombari. Fully-convolutional point networks
for large-scale point clouds. In ECCV, 2018. 2, 3

[40] Xavier Roynard, Jean-Emmanuel Deschaud, and François
Goulette. Classification of point cloud scenes with multi-
scale voxel deep network. arXiv preprint arXiv:1804.03583,
2018. 6, 7

[41] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast
point feature histograms (fpfh) for 3D registration. In ICRA,
2009. 2

[42] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-
ing point cloud local structures by kernel correlation and
graph pooling. In CVPR, 2018. 1, 3

[43] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,
Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
SPLATNet: sparse lattice networks for point cloud process-
ing. In CVPR, 2018. 1, 3, 7

[44] Richard S Sutton, David A McAllester, Satinder P Singh, and
Yishay Mansour. Policy gradient methods for reinforcement
learning with function approximation. In NeurIPS, 2000. 11

[45] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-
Yi Zhou. Tangent convolutions for dense prediction in 3D.
In CVPR, 2018. 7

[46] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung
Gwak, and Silvio Savarese. Segcloud: Semantic segmen-
tation of 3D point clouds. In 3DV, 2017. 6, 7

[47] Hugues Thomas, François Goulette, Jean-Emmanuel De-
schaud, and Beatriz Marcotegui. Semantic classification of
3D point clouds with multiscale spherical neighborhoods. In
3DV, 2018. 6, 7

[48] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. arXiv preprint arXiv:1904.08889, 2019. 1, 3,
6, 7, 8, 14

[49] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-
tral graph convolution for point set feature learning. In
ECCV, 2018. 1, 3

[50] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and
Jie Shan. Graph attention convolution for point cloud seman-
tic segmentation. In CVPR, 2019. 1, 3, 6, 7

[51] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 2019. 1, 3, 8

[52] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer.
Squeezeseg: Convolutional neural nets with recurrent crf
for real-time road-object segmentation from 3D lidar point
cloud. In ICRA, 2018. 7

[53] Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and
Kurt Keutzer. Squeezesegv2: Improved model structure and
unsupervised domain adaptation for road-object segmenta-
tion from a lidar point cloud. In ICRA, 2019. 7

[54] Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep
convolutional networks on 3D point clouds. arXiv preprint
arXiv:1811.07246, 2018. 1, 2, 3, 6, 11

[55] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-
tentional shapecontextnet for point cloud recognition. In
CVPR, 2018. 1, 3

[56] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua
Bengio. Show, attend and tell: Neural image caption gen-
eration with visual attention. In ICML, 2015. 4

[57] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-
time 3D object detection from point clouds. In CVPR, 2018.
2

[58] Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen
Wang, Andrew Markham, and Niki Trigoni. Learning ob-
ject bounding boxes for 3D instance segmentation on point
clouds. arXiv preprint arXiv:1906.01140, 2019. 8

[59] Bo Yang, Sen Wang, Andrew Markham, and Niki Trigoni.
Robust attentional aggregation of deep feature sets for multi-
view 3D reconstruction. IJCV, 2019. 5

[60] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li,
Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point
clouds with self-attention and gumbel subset sampling. In
CVPR, 2019. 1, 3, 6, 11

[61] Xiaoqing Ye, Jiamao Li, Hexiao Huang, Liang Du, and Xi-
aolin Zhang. 3D recurrent neural networks with context fu-
sion for point cloud semantic segmentation. In ECCV, 2018.
8, 14

[62] Wenxiao Zhang and Chunxia Xiao. PCAN: 3D attention map
learning using contextual information for point cloud based
retrieval. In CVPR, 2019. 1, 3

[63] Zhiyuan Zhang, Binh-Son Hua, and Sai-Kit Yeung.
Shellnet: Efficient point cloud convolutional neural net-
works using concentric shells statistics. arXiv preprint
arXiv:1908.06295, 2019. 1, 3, 6, 7, 8, 14

[64] Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia.
Pointweb: Enhancing local neighborhood features for point
cloud processing. In CVPR, 2019. 1, 2, 3, 6, 8, 11, 14

Appendices
A. Details for the Evaluation of Sampling.

We provide the implementation details of different sam-
pling approaches evaluated in Section 4.1. To sample K
points (point features) from a large-scale point cloud P with
N points (point features):

1. Farthest Point Sampling (FPS): We follow the imple-
mentation 2 provided by PointNet++ [38], which is
also widely used in [29, 54, 32, 6, 64]. In particular,
FPS is implemented as an operator running on GPU.

2. Inverse Density Importance Sampling (IDIS): Given a
point pi, its density ρ is approximated by calculating
the summation of the distances between pi and its near-
est t points [15]. Formally:

ρ(pi) =

t∑
j=1

∣∣∣∣∣∣pi − pji ∣∣∣∣∣∣ , pji ∈ N (pi) (4)

where pji represents the coordinates (i.e. x-y-z) of the
jth point of the neighbour points set N (pi), t is set
to 16. All the points are ranked according to the in-
verse density 1

ρ of points. Finally, the top K points are
selected.

3. Random Sampling (RS): We implement random sam-
pling with the python numpy package. Specifically, we
first use the numpy function numpy.random.choice() to
generate K indices. We then gather the corresponding
spatial coordinates and per-point features from point
clouds by using these indices.

4. Generator based Sampling (GS): The implementation
follows the code3 provided by [12]. We first train a
ProgressiveNet [12] to transform the raw point clouds
into ordered point sets according to their relevance to
the task. After that, the first K points are kept, while
the rest discarded.

5. Continuous Relaxation based Sampling (CRS): CRS
is implemented with the self-attended gumbel-softmax
sampling [1][60]. Given a point cloud P ∈ RN×(d+3)

with 3D coordinates and per point features, we firstly
estimate a probability score vector s ∈ RN through
a score function parameterized by a MLP layer, i.e.,
s = softmax(MLP (P)), which learns a categorical
distribution. Then, with the Gumbel noise g ∈ RN
drawn from the distribution Gumbel(0, 1). Each sam-
pled point feature vector y ∈ Rd+3 is calculated as

2https://github.com/charlesq34/pointnet2
3https://github.com/orendv/learning_to_sample

follows:

y =

N∑
i=1

exp ((log(s(i)) + g(i))/τ)P (i)∑N
j=1 exp ((log(s

(j)) + g(j))/τ)
, (5)

where s(i) and g(i) indicate the ith element in the vec-
tor s and g respectively, P (i) represents the ith row
vector in the input matrix P . τ > 0 is the annealing
temperature. When τ → 0, Equation 5 approaches the
discrete distribution and samples each row vector in P
with the probability p(y = P (i)) = s(i).

6. Policy Gradients based Sampling (PGS): Given a point
feature set P ∈ RN×(d+3) with 3D coordinates and
per point features, we first predict a score s for each
point, which is learnt by a MLP function, i.e., s =
softmax(MLP (P)) + ε, where ε ∈ RN is a zero-
mean Gaussian noise with the variance Σ for random
exploration. After that, we sampleK vectors in P with
the top K scores. To properly update the score func-
tion, we apply REINFORCE algorithm [44] as the gra-
dient estimator. By modeling the entire sampling oper-
ation as a sequential Markov Decision Process (MDP),
we formulate the policy function π as:

ai ∼ π(a|P (i); θ,Σ) (6)

where ai is the binary decision of whether to sample
the ith vector in P , θ is the network parameter of the
MLP. Then we apply the segmentation accuracy R as
the reward value for the entire sampling process and
maximize our reward function J = R with the fol-
lowing estimated gradients:

∂J
∂θ
≈ 1

M

M∑
m=1

N∑
i=1

∂

∂θ
log π(ai|P (i); θ,Σ)×

(R− bc − b(P (i))),

(7)

where M is the batch size, bc and b(P (i)) are two con-
trol variates [35] for alleviating the high variance prob-
lem of policy gradients.

https://github.com/charlesq34/pointnet2
https://github.com/orendv/learning_to_sample

LFA FC

RS

FCUS

(N
/1

6
,1

2
8
)

(N
/6

4
,2

5
6
)

(N
/2

5
6
,5

1
2
)

(N
/4

,3
2
)

LFA

（
N

,8
）

LFA

RS RS

LFA

RS

MLP

MLP

US

MLP

US

MLP

FCFC

Input point clouds Output semantic labels

(N, din)

MLP

US

（
N

,8
）

(N
,6

4
)

(N
/2

5
6
,5

1
2
)

(N
/6

4
,2

5
6
)

(N
/1

6
,1

2
8
)

(N
/4

,3
2
)

（
N

,3
2
）

(N, nclass)

DP

RandLA-Net

Figure 7. The detailed architecture of our RandLA-Net. (N,D) represents the number of points and feature dimension respectively. FC:
Fully Connected layer, LFA: Local Feature Aggregation, RS: Random Sampling, MLP: shared Multi-Layer Perceptron, US: Up-sampling,
DP: Dropout.

B. Details of the Network Architecture
Figure 7 shows the detailed architecture of RandLA-

Net. The network follows the widely-used encoder-decoder
architecture with skip connections. The input point cloud is
first fed to a shared MLP layer to extract per-point features.
Four encoding and decoding layers are then used to learn
features for each point. At last, three fully-connected layers
and a dropout layer are used to predict the semantic label
of each point. The details of each part are as follows:

Network Input: The input is a large-scale point cloud
with a size of N × din (the batch dimension is dropped
for simplicity), where N is the number of points, din
is the feature dimension of each input point. For both
S3DIS [2] and Semantic3D [16] datasets, each point is
represented by its 3D coordinates and color information
(i.e., x-y-z-R-G-B), while each point of the SemanticKITTI
[3] dataset is only represented by 3D coordinates.

Encoding Layers: Four encoding layers are used in our
network to progressively reduce the size of the point
clouds and increase the per-point feature dimensions.
Each encoding layer consists of a local feature aggre-
gation module (Section 3.3) and a random sampling
operation (Section 3.2). The point cloud is downsam-
pled with a four-fold decimation ratio. In particular,
only 25% of the point features are retained after each
layer, i.e., (N → N

4 →
N
16 →

N
64 →

N
256). Mean-

while, the per-point feature dimension is gradually
increased each layer to preserve more information, i.e.,
(8→ 32→ 128→ 256→ 512).

Decoding Layers: Four decoding layers are used after the
above encoding layers. For each layer in the decoder, we
first use the KNN algorithm to find one nearest neighboring
point for each query point, the point feature set is then
upsampled through a nearest-neighbor interpolation. Next,
the upsampled feature maps are concatenated with the
intermediate feature maps produced by encoding layers
through skip connections, after which a shared MLP is

applied to the concatenated feature maps.

Final Semantic Prediction: The final semantic label of
each point is obtained through three shared fully-connected
layers (N, 64)→ (N, 32)→ (N, nclass) and a dropout layer.
The dropout ratio is 0.5.

Network Output: The output of RandLA-Net is the pre-
dicted semantics of all points, with a size of N × nclass,
where nclass is the number of classes.

C. Additional Ablation Studies on LocSE
In Section 3.3, we encode the relative point position

based on the following equation:

rki =MLP
(
pi ⊕ pki ⊕ (pi − pki)⊕ ||pi − pki ||

)
(8)

We further investigate the effects of different spatial in-
formation in our framework. Particularly, we conduct the
following more ablative experiments for LocSE:

• 1) Encoding the coordinates of the point pi only.

• 2) Encoding the coordinates of neighboring points pki
only.

• 3) Encoding the coordinates of the point pi and its
neighboring points pki .

• 4) Encoding the coordinates of the point pi, the neigh-
boring points pki , and Euclidean distance ||pi − pki ||.

• 5) Encoding the coordinates of the point pi, the neigh-
boring points pki , and the relative position pi − pki .

Table 6 compares the mIoU scores of all ablated net-
works. We can see that: 1) Explicitly encoding all spatial
information leads to the best mIoU performance. 2) The
relative position pi − pki plays an important role in this
component, primarily because the relative point position
enables the network to be aware of the local geometric
patterns. 3) Only encoding the point position pi or pki is

LocSE mIoU(%)

(1) (pi) 40.7
(2) (pki) 41.1
(3) (pi, pki) 42.5
(4) (pi, pki , ||pi − pki ||) 44.1
(5) (pi, pki , pi − pki) 48.8
(6) (pi, pki , pi − pki , ||pi − pki ||) (The Full Unit) 52.0

Table 6. The mIoU result of RandLA-Net by encoding different
kinds of spatial information.

unlikely to improve the performance, because the relative
local geometric patterns are not explicitly encoded.

D. Additional Ablation Studies on Dilated
Residual Block

In our RandLA-Net, we stack two LocSE and Attentive
Pooling units as the standard dilated residual block to gradu-
ally increase the receptive field. To further evaluate how the
number of aggregation units in the dilated residual block
impact the entire network, we conduct the following two
more groups of experiments.

• 1) We simplify the dilated residual block by using only
one LocSE unit and attentive pooling.

• 2) We add one more LocSE unit and attentive pooling,
i.e., there are three aggregation units chain together.

Dilated residual block mIoU(%)

(1) one aggregation unit 41.9
(2) three aggregation units 48.7
(3) two aggregation units (The Standard Block) 52.0

Table 7. The mIoU scores of RandLA-Net regarding different
number of aggregation units in a residual block.

Table 7 shows the mIoU scores of different ablated net-
works on the validation split of SemanticKITTI [3] dataset.
It can be seen that: 1) Only one aggregation unit in the di-
lated residual block leads to a significant drop in segmen-
tation performance, due to the limited receptive field. 2)
Three aggregation units in each block do not improve the
accuracy as expected. This is because the significantly in-
creased receptive fields and the large number of trainable
parameters tend to be overfitted.

E. Visualization of Attention Scores
To better understand the attentive pooling, it is desirable

to visualize the learned attention scores. However, since the
attentive pooling operates on a relatively small local point
set (i.e., K=16), it is hardly able to recognize meaningful

shapes from such small local regions. Alternatively, we vi-
sualize the learned attention weight matrix W defined in
Equation 2 in each layer. As shown in Figure 8, the attention
weights have large values in the first encoding layers, then
gradually become smooth and stable in subsequent layers.
This shows that the attentive pooling tends to choose promi-
nent or key point features at the beginning. After the point
cloud being significantly downsampled, the attentive pool-
ing layer tends to retain the majority of those point features.

Figure 8. Visualization of the learned attention matrix in differ-
ent layers. From top left to bottom right: 16×16 attention ma-
trix, 64×64 attention matrix, 128×128 attention matrix, 256×256
attention matrix. The yellow color represents higher attention
scores.

F. Additional Results on Semantic3D

More qualitative results of RandLA-Net on Semantic3D
[16] dataset (reduced-8) are shown in Figure 9.

G. Additional Results on SemanticKITTI

Figure 10 shows more qualitative results of our RandLA-
Net on the validation set of SemanticKITTI [3]. The red
boxes showcase the failure cases. It can be seen that, the
points belonging to other-vehicle are likely to be misclassi-
fied as car, mainly because the partial point clouds without
colors are extremely difficult to be distinguished between
the two similar classes. In addition, our approach tends to
fail in several minority classes such as bicycle, motorcycle,
bicyclist and motorcyclist, due to the extremely imbalanced
point distribution in the dataset. For example, the number
of points for vegetation is 7000 times more than that of mo-
torcyclist.

Figure 9. Qualitative results of RandLA-Net on reduced-8 split of Semantic3D. From left to right: full RGB colored point clouds, predicted
semantic labels of full point clouds, detailed view of colored point clouds, detailed view of predicted semantic labels. Note that the ground
truth of the test set is not publicly available.

OA(%) mAcc(%) mIoU(%) ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet [37] 78.6 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
RSNet [19] - 66.5 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0

3P-RNN [61] 86.9 - 56.3 92.9 93.8 73.1 42.5 25.9 47.6 59.2 60.4 66.7 24.8 57.0 36.7 51.6
SPG [23] 86.4 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN [29] 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.11 39.1 61.2 52.2 58.6
PointWeb [64] 87.3 76.2 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5
ShellNet [63] 87.1 - 66.8 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4
KPConv [48] - 79.1 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3

RandLA-Net(Ours) 87.1 81.5 68.5 92.7 95.6 79.2 61.7 47.0 63.1 67.7 68.9 74.2 55.3 63.4 63.0 58.7

Table 8. Quantitative results of different approaches on S3DIS [2] (6-fold cross-validation). Overall Accuracy (OA, %), mean class
Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are reported.

H. Additional Results on S3DIS
We report the detailed 6-fold cross validation results of

our RandLA-Net on S3DIS [2] in Table 8. Figure 11 shows
more qualitative results of our approach.

GroundTruth Prediction GroundTruth Prediction

car bicycle

motorcycletruck

other-vehicle motorcyclistperson bicyclist

road

parking

sidewalk other-groundbuilding

fence vegetation

trunkterrain

pole

traffic-sign

Figure 10. Qualitative results of RandLA-Net on the validation split of SemanticKITTI [3]. Red boxes show the failure cases.

Figure 11. Semantic segmentation results of our RandLA-Net on the complete point clouds of Areas 1-6 in S3DIS. Left: full RGB input
cloud; middle: predicted labels; right: ground truth.

