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Abstract
Categorical quantummechanics places finite-dimensional quantum
theory in the context of compact closed categories, with an empha-
sis on diagrammatic reasoning. In this framework, two equational
diagrammatic calculi have been proposed for pure-state qubit quan-
tum computing: the ZW calculus, developed by Coecke, Kissinger
and the first author for the purpose of qubit entanglement classi-
fication, and the ZX calculus, introduced by Coecke and Duncan
to give an abstract description of complementary observables. Nei-
ther calculus, however, provided a complete axiomatisation of their
model.

In this paper, we present extended versions of ZW and ZX, and
show their completeness for pure-state qubit theory, thus solving
two major open problems in categorical quantum mechanics. First,
we extend the original ZW calculus to represent states and linear
maps with coefficients in an arbitrary commutative ring, and prove
completeness by a strategy that rewrites all diagrams into a normal
form. We then extend the language and axioms of the original ZX
calculus, and show their completeness for pure-state qubit theory
through a translation between ZX and ZW specialised to the field
of complex numbers. This translation expands the one used by
Jeandel, Perdrix, and Vilmart to derive an axiomatisation of the
approximately universal Clifford+T fragment; restricting the field
of complex numbers to a suitable subring, we obtain an alternative
axiomatisation of the same theory.

CCS Concepts • Theory of computation → Quantum com-
putation theory;

Keywords Quantum Computation, String Diagrams, Monoidal
Categories, Categorical Quantum Mechanics

ACM Reference Format:
Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. 2018. Two
complete axiomatisations of pure-state qubit quantum computing. In LICS
’18: LICS ’18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9–12, 2018, Oxford, United Kingdom.ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3209108.3209128

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209128

1 Introduction
Categorical quantum mechanics, a research area initiated by [1],
studies finite-dimensional quantum theory, in particular the struc-
tures relevant to quantum computing, as an abstract process theory
whose model is a dagger compact closed category [10, 23]. Since
its inception, it has used the corresponding string-diagrammatic
language [24] both as a calculational tool, and as a heuristic for
determining algebraic structures that fit naturally in the framework
[12].

In [6], Coecke and Duncan proposed an axiomatisation of com-
plementary quantum observables in terms of a pair of special Frobe-
nius algebras whose monoid forms a bialgebra with the comonoid
of the other [4]. These structures, with the addition of phases [8],
seemed to capture enough interesting aspects of pure-state quan-
tum theory, such as non-locality [7], that the question arose whether
they could be the basis of a complete equational axiomatisation of
the relevant monoidal categories. The resulting partial diagram-
matic axiomatisations have been called ZX calculi.

Compared to matrix calculus, which has been compared to “pro-
gramming with bit strings” [11], string diagrams are a higher-level
language, allowing one to focus on the connections between gates
and on the flow of information. Complete axiomatisations of frag-
ments of quantum theory would provide quantum programmers
with the possibility of understanding the behaviour of a circuit
entirely within this language, without resorting to linear algebra.

Most attention has been devoted to qubit computing, and a ZX
calculus complete for the stabiliser fragment [14], and one complete
for single-qubit processes in the approximately universal Clifford+T
fragment have been presented by Backens [2, 3]. Completeness for
the whole of pure-state qubit theory has remained an open problem.

Observing that the components of the ZX calculus seemed ill-
suited to analysing finer properties of entangled qubits, such as their
separation in SLOCC classes [13], Coecke and Kissinger proposed a
variant where one Frobenius algebra is replaced with one satisfying
an “anti-specialness” equation [9]. In [15], the first author extended
this theory into a calculus modelled on ZX calculi, the ZW calculus,
and proved its completeness for maps of qubits that have only
integer coefficients. In [18], Jeandel, Perdrix, and Vilmart used a
non-trivial translation of the ZW calculus into the ZX calculus to
obtain a complete axiomatisation of the entire Clifford+T fragment.

In this paper, we bring both calculi to their intended limit, by
presenting inter-translatable versions of the ZW calculus and of
the ZX calculus that are complete for pure-state qubit theory. In
practice, this means that the equality of the interpretation of any
two circuits as linear maps of qubits can be decided by rewriting
string diagrams, possibly with the help of graph rewriting software
[20].

https://doi.org/10.1145/3209108.3209128
https://doi.org/10.1145/3209108.3209128
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While it may seem redundant to have two separate axiomatisa-
tions for the same theory, we believe that the two have different
advantages, which make them a natural choice in different settings:
while the ZX calculus has a strong connection with the Clifford+T
fragment, and the related circuit model, the ZW calculus has a deep
connection with fermionic quantum computing [5], which has re-
cently be developed into an independent calculus in [17]. Thus, the
availability of the translation between ZW and ZX gives a platform
for comparing different models.

After discussing the common technical framework in Section
2, in Section 3 we introduce versions ZWR of the ZW calculus
parametrised by a commutative ring R, and prove their complete-
ness for analogues of qubits with coefficents in R. Similarly to the
original ZW calculus, recovered in the case R = Z, this is achieved
by the introduction of a normal form for diagrams, and a normali-
sation strategy which rewrites any diagram in its normal form. The
quantum case is then obtained by the choice R = C.

Then, in Section 4, we describe twomutually inverse translations
of the generators of ZW into ZX, and vice versa, and show that the
axioms of one calculus are recoverable from the axioms of the other,
which proves that they define isomorphic categories. The transla-
tion from ZW to ZX, restricted to the parameter-free fragment, is
essentially the same as the one used by Jeandel, Perdrix, and Vil-
mart in [18]; the inverse translation is original, and demonstrates a
direct equivalence between the two calculi. Finally, by restricting
the field C to a sub-ring corresponding to the Clifford+T fragment,
we obtain an alternative axiomatisation of this fragment.

Future developments. Having settled the completeness prob-
lem for pure-state qubit computing, future directions include: im-
proved normalisation strategies, potentially tailored for specific
classes of circuits; their complexity analysis, and implementation
in Quantomatic [20]; versions of the calculi for qudits with d other
than 2 (a generalisation of the ZW generators to qudits is discussed
in [16, Section 5.3], while rules for a qutrit ZX calculus have been
proposed in [25]); and axiomatisations of mixed-state qubit comput-
ing, possibly in the style of the mixed quantum-classical calculus
of [10, Chapter 8].

2 Preliminary
The ambient category in which the graphical calculi live is the free
self-dual, compact closed PROP [21]. A products and permutations
category (PROP) is a symmetric strict monoidal category whose
objects are finitely iteratedmonoidal products of a single objectX . A
morphism in a PROP f : X ⊗m → X ⊗n is depicted diagrammatically
as a box labelled f withm inputs and n outputs:

m

n .

f

We will draw a diagram with lines of various shades; a darker
shade means that that portion of the diagram is the focus of the
discussion while a lighter shade means otherwise. A lighter shade
lines can also indicate a repeated pattern. Occasionally, we may
zoom in on the diagram while not showing the rest of it. It should
be clear from the context what the lighter shade of lines mean or
that we have zoomed in on the diagram while the rest remains the
same.

In this diagrammatic language, composing morphisms is “plug-
ging” the wires of the diagrams together and tensoring of mor-
phisms is placing the diagrams side by side. The monoidal unit

1
e
−→ 1 is an empty diagram, the identity morphism X

I
−→ X is a

straight wire, and the swap1 morphism X ⊗ X
σ
−→ X ⊗ X is two

intersecting wires satisfying

=

,

=

f
,

f

for all morphisms f .
A self-dual, compact closed PROP is a PROPwith twomorphisms,

X ⊗ X
ε
−→ 1 and 1

η
−→ X ⊗ X , depicted as

, ,

respectively, satisfying the rules

=

,

=

,

= =

.

The ZW and ZX calculi are self-dual compact closed PROPs, gen-
erated by a set of morphisms T , quotiented by an equivalence rela-
tion E on morphisms respecting the number of inputs and outputs.
Completeness of the calculi for a PROP C corresponds to showing
a monoidal equivalence between C and the PROP presented by
generators and relations.

Definition 1. The PROP Rbit is a PROP whose generating object
is X := R ⊕ R for a commutative ring R, the monoidal product is
the tensor product of R-modules, and the morphisms are R-module
homomorphisms. The PROP Qubit is Rbit for R := C, the ring of
complex numbers.

We will show that the ZWR calculus is complete for Rbit, and
the ZX calculus is complete for Qubit and the Clifford+T fragment
of Qubit.

We will use bra-ket notation, and denote the two generators
of R ⊕ R as | 0 ⟩ and | 1 ⟩. An element in R ⊕ R (a state) is written
as r | 0 ⟩ + s | 1 ⟩ for some r , s ∈ R; for tensor products, we write
| b1 . . .bn ⟩ B | b1 ⟩ ⊗ · · · ⊗ | bn ⟩ for bi ∈ {0, 1}. As for morphisms,
for instance, | 1 ⟩ 7→ | 01 ⟩ + | 10 ⟩ is written as | 01 ⟩⟨ 1 | + | 10 ⟩⟨ 1 |.

We interpret the basic generators of a self-dual, compact closed
PROP in Rbit as

7→ | 0 ⟩⟨ 0 | + | 1 ⟩⟨ 1 |, 7→ | 00 ⟩⟨ 00 | + | 01 ⟩⟨ 10 |
+ | 10 ⟩⟨ 01 | + | 11 ⟩⟨ 11 |,

7→ ⟨ 00 | + ⟨ 11 |, 7→ | 00 ⟩ + | 11 ⟩.

1The swap morphism in [15] is depicted as braided wires.
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3 The ZW Calculus
The ZW calculus has the following set TZW of generators and
interpretations in Rbit:

7→
| 00 ⟩⟨ 00 | + | 01 ⟩⟨ 10 |
+| 10 ⟩⟨ 01 | − | 11 ⟩⟨ 11 | ,

n

7→
∑n
k=1 | 0 . . . 0︸︷︷︸

k−1

1 0 . . . 0︸︷︷︸
n−k

⟩,

n

r

7→ | 0 . . . 0︸︷︷︸
n

⟩ + r | 1 . . . 1︸︷︷︸
n

⟩,

for some r ∈ R. In quantum theory, the n-ary black vertex corre-
sponds to the W-state, and the n-ary white vertex2 corresponds to
the GHZ-state (modulo normalisation).

The first generator is called the crossing. It can be thought of as a
fermionic swap [17], introducing a phase to the wavefunction of a
pair of fermions under exchange of particles, where the states | 0 ⟩
and | 1 ⟩ are seen as the vacuum and occupied states of a fermionic
oscillator. There is a fragment of the ZW calculus which captures
precisely the physical maps of fermionic quantum computing; see
[17] for the details.

Remark 2. The crossing is almost like a braiding: it fails to be
natural for somemaps of Rbit, for example, the map | 0 ⟩⟨ 1 |+ | 1 ⟩⟨ 0 |.
However, the crossing can be considered as a proper symmetric
braiding if we restrict to even morphisms, which are expressible as
linear combinations of terms with an even number of 1s. Similarly,
we speak of odd morphisms, and mixed parity morphisms which
are neither even nor odd. Calculi with two different braidings have
been studied in virtual knot theory [19].

Wewill now present a set EZW of axioms relating themorphisms
in the ZW calculus. We claim that the axioms are sound, meaning
that, through the interpretation, they express true equalities in
Rbit, so the interpretation defines a monoidal functor ZWR → Rbit,
where ZWR is the monoidal category presented by the generators
TZW and the relations EZW . This can be easily verified by calcula-
tion.

ZW Axioms
1. The following are the axioms for the crossings:

(a)
=

,

(b )
=

,

(c )
=

,

(d )
=

,

(e )
=

.

2. Defining

2This white vertex differs from the one in [15] by a phase.

B

k

n − k ,n − k

k

the following are the axioms for the black vertices:

(a)
=

,

(b )
=

,

(c )
=

,

(d )
=

,

(e )
=

(f )
=

,

(д)
=

,

(h)
=

n

m ,

n

m

for allm,n ∈ N.
3. Given a commutative ring R and defining

B

k

n − k

r

,n − k

kr

the following are the axioms for the white vertices:

(a)
=

r

s ,

r s (b )
=

,

(c )
=

,
(d )
=

n

m

r rr

,

n

m

r

(e )
=

(e )
=

,

1 (f )
=

r

,

(д)
=

,

(h)
=

,

(i )
=r s

,

r s
(j )
=

−1

,

(k )
=

r s

,

r + s

for r , s ∈ R,m,n ∈ N such that eitherm = n = 0 orm > 0.

Discussion of the ZW axioms
The axioms in group 1 say that the crossing behaves like a sym-
metric braiding, except that it fails to be natural for morphisms of
mixed parity.

The axioms in group 2 say that the black vertices are symmetric
with respect to the swap and crossing (2(e, f )). They fuse together
as long as there is a binary black vertex between them (2(d )), which
allows us to construct a monoid and a comonoid
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, ,

satisfying the bialgebra axiom (2(h)) (in fact they form a Hopf alge-
bra with the “self crossing” as the antipode). Morphisms with an
even number of black vertices are natural with respect to the cross-
ing (2(a)) while the binary black vertex (odd morphism) induces
a self-crossing when slid past a crossing (2(д)). The binary black
vertex is also an involution (2(c )).

The axioms in group 3 say that the R-labelled white vertices form
a special Frobenius algebra with the labels forming an abelian group
(3(a,b)). They are symmetric with respect to the swap (3(c )), and
they satisfy the bialgebra equation with the black vertices (3(d, f ))
(although they do not form a Hopf algebra). The self crossing is
a comodule homomorphism (3(д)) while the binary black vertex
is a comonoid homomorphism (3(h)) of the white vertices, and
composition and convolution by the blackHopf algebra corresponds
to the ring operations on the R-labels (3(e, j,k )). The rule 3(i ) is
used to eliminate crossings from the normal form, as we shall later
see. Due to the symmetry of the black and white vertices, except for
the crossing, we can see this as a calculus of undirected multigraphs,
and we are free to “pull” the wires as we please.

We have listed a set of axioms for the ZW calculus which we
claim is complete. We used a presentation with vertices of arbitrary
arity, but we note that there is an equivalent presentation whose
generators are binary and ternary black and white vertices only:

, , ,

r

.

Completeness of the ZW calculus
We state some useful equations that can be derived from the axioms.

Proposition 3. The following are derived rules:

(i )
=

n ,n

(ii )
=

n ,n

(iii )
=

r

n

,

(iv )
=

,

(v )
=

r1 rnr2

.

∑n
i=1 ri

(vi )
=

r

.

−r

for all n ∈ N in rules (i, ii,v ), n ≥ 2 in rule (iii ), and r , ri ∈ R in rule
(v,vi ).

The rule (iv ) is the Hopf equation mentioned in the discussion
of the ZW axioms. The rule (vi ) is a handy rule for expressing the
crossing in normal form, as we will later see.

We will start proving the completeness of the ZW calculus by
first proving its universality.

Theorem 3.1 (Universality of the ZW calculus). The interpretation
functor ZWR → Rbit is full.

Proof. Due to the presence of self-duality (known as the Choi-
Jamiołkowski isomorphism in quantum information theory), every

morphism in Rbit can be written as a partial transpose of a state.
Hence it suffices to prove that for every state in Rbit there exists a
corresponding ZW diagram.

Write an arbitrary n-partite state as
∑m
i=1 ri | bi1 . . .bin ⟩, where

ri , 0 and no two kets in the sum are the same. We claim that it is
the image of the diagram

,n

m

r1 rmr2

(1)

where the i-th white vertex has one connection to the j-th output
if and only if bi j = 1, for i = 1, . . .m, j = 1, . . .n. The claim can be
proved by a direct calculation. □

The proof of universality showed that any state is the image of
the diagram in (1). We will call this diagram the normal form. From
how the normal form is constructed, it is clear that it is unique
up to a permutation of the white vertices. It is possible to give an
ordering to the white vertices, but due to the symmetry of the black
vertex with respect to swap it does not matter what ordering we
take.

Allowing diagram (1) to have two white vertices with the same
connections, and ri to be 0 for some i , we obtain what we call a
diagram in pre-normal form. The pre-normal form can be reduced
to a normal form, as we will now show. Then, the structure of our
completeness proof is as follows:
• any composite of two diagrams in normal form can be rewrit-
ten to pre-normal form:
– the juxtaposition of diagrams in normal form can be rewrit-
ten to pre-normal form;

– the plugging of an output of a diagram in normal form
into another (self-plugging) can be rewritten to pre-normal
form;

– an arbitrary composition of two diagrams can be factored
as a juxtaposition, followed by a self-plugging;

• all generators can be rewritten to normal form.

Lemma 3.2. A ZW diagram in pre-normal form can be rewritten in
normal form.

Proof. Suppose a diagram is in pre-normal form. If two white ver-
tices have the same connections, then we can “sum” them by

3(a)
=

2(b )

r s

3(d )
=

r s r s

2(b )
=

3(k )

3(a)
=

r + s

.

r + s

If ri = 0 for some i , then we can eliminate that white vertex by
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3(a)
=
(v )

0

3(d )
=

,

and use axiom 2(b) to simplify the diagram. □

Lemma 3.3 (Negation). Given a diagram in pre-normal form, the
diagram obtained by composing an output with a binary black ver-
tex can be rewritten in pre-normal form, which complements the
connections of that output to the white vertices; that is, locally,

=
r1 r2 rn s1 s2 sm

.

r1 r2 rn s1 s2 sm

Proof. First isolate the firstnwhite vertices on the left hand diagram
using axioms 3(a) and 2(b), then proceed as follows:

3(d )
=

r1r2 rn

s1s2 sm 3(h)
=
2(c )

r1r2 rn

s1s2 sm

r1r2 rn

s1s2 sm

3(d )
=

3(a)
=

2(b )
r1r2 rn

s1s2 sm

.

r1r2 rn s1s2 sm

□

A nullary black vertex is interpreted as the 0 element of the ring.

Lemma 3.4 (Absorption). For all diagrams in pre-normal form, a
nullary black vertex eliminates all the white vertices; that is,

=

r1 rmr2

.

Proof. Use axiom 2(b) to expand the nullary black vertex and apply
the negation lemma:

=

r1 rmr2

.

r1 rmr2

Then apply axioms 2(h) and 3(d ), which eliminate all the white
vertices:

2(h)
=

r1 rmr2
3(d )
=

r1 rmr2

.

The final diagram can be simplified using axiom 2(b) which merges
the black vertices to get the desired result. □

Lemma 3.5 (Juxtaposition). The juxtaposition of two diagrams in
pre-normal form can be rewritten to pre-normal form.

Proof. Consider the following juxtaposition of diagrams,

.

r1 rmr2 sns2s1

Using the axiom 2(h), we can produce a pair of connected black
vertices, and using the negation lemma we can connect the pair of
black vertices to the diagrams:

.

r1 rmr2 sns2s1

Applying axiom 2(h) again on the pair of black vertices (after elimi-
nating the middle two black vertices using the 2(c ) axiom) gives the
following diagram (zooming in to the relevant part of the diagram):

.

r1 r2 rm s1 s2 sn

We can then push all the white vertices through the bottom black
vertices using axiom 3(d ), for instance,

3(d )
=

r

.
r

r

r

We would want to merge the white vertices, but they cannot pass
through the crossing. However, using 2(b) in the final diagram, the
higher black vertex merges with the top black vertex and the lower
black vertex merges with some outputs, for instance

.

r

r

r

The white vertices are all connected to either of the two top black
vertices and now we can eliminate all the crossings using 3(i ). After
merging white vertices pairwise, there is a white vertex with label
risj for each i = 1, . . . ,m, j = 1, . . . ,n

.

rmsn
ri sjr1s1
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Finally, one of the top black vertices can be eliminated with the
negation lemma

,

ri sjr1s1
rmsn

and the floating pair of black vertices is eliminated using 2(h). □

Lemma 3.6 (Trace). A self-plugging on a diagram in pre-normal
form can be rewritten in pre-normal form.

Proof. The proof involves some tactful use of the negation lemma.
Suppose that we have the following self-plugging diagram, only
zooming in to the white vertices and the pair of self-plugged out-
puts,

,

tprm u2s1 t1sn uqu1r2 s2r1 t2

where the r white vertices are not connected to either of the outputs,
the s white vertices are connected to the left output only, theu white
vertices are connected to the right output only, and the t white
vertices are connected to both outputs. From the interpretation
in Rbit, we expect the r and t labelled white vertices to survive
while the s and u labelled white vertices are eliminated. This can be
shown diagrammatically by first performing a negation to obtain
the following diagram:

.

tprm u2s1 t1sn uqu1r2 s2r1 t2

We can merge the black vertices using the axiom 2(b) and the s
labelled white vertices have two connections with the black vertex.
This means that we can apply 3( f ) to eliminate all the s labelled
white vertices:

.

tprm u2t1 uqu1r2r1 t2

We can apply negation lemma again to obtain

.

tprm u2t1 uqu1r2r1 t2

Finally, we can eliminate all the u labelled white vertices as in the
absorption lemma, which completes the proof. □

With the juxtaposition and trace lemma, we have proved the
following theorem:

Theorem 3.7. Any composition of two ZW diagrams in normal form
can be rewritten in pre-normal form.

Theorem 3.7 shows that the assignment Rbit→ ZWR defined by
the normal form is functorial: every morphism in Rbit is mapped to
a ZW normal form with some transposing of outputs, and compo-
sition of morphisms in Rbit (tensoring and vertical composition) is
composition of normal forms in ZW (juxtaposition and plugging),
which can be rewritten in normal form. This functor is a right in-
verse to the interpretation ZWR → Rbit. It remains to show that it
is a two-sided inverse.

Theorem 3.8 (Completeness of the ZW calculus). The interpreta-
tion ZWR → Rbit is an isomorphism of PROPs.

Proof. It suffices to show that every generator of ZW can be rewrit-
ten to normal form.

For the black vertices, the nullary vertex is already in normal
form while the n-ary vertices for n > 0 can be rewritten in normal
form as follows:

3(e )
=
2(c )

.

For the white vertices, the n-ary vertices for n > 0 can be rewrit-
ten in normal form as follows:

3(a)
=

r (ii )
=
2(c )

r

.

r

We can apply the same procedures to the nullary vertex, but it is
not in normal form yet. It requires a few more steps to rewrite it in
normal form:

3(c )
3(a)
=

2(b )

r 3(d )
=

r

3(a)
=

r

3(k )
=

3(a)
r

.

r + 1

as required. The self-duality morphisms are instances of a binary
white vertex (after applying axiom 3(e )).

We rewrite the crossing as follows:

= 2(a)
=

3(i )
=
(vi )

,

−1

where in the first step we have rewritten the juxtaposition of two
self-duality morphisms in normal form, as made possible by the
juxtaposition lemma.

Finally, the case for swap is similar to the case for crossing,
except that there are no crossings in the third diagram. Hence the
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normal form is simply:

=

. □

We have now proved the completeness of the ZW calculus for
Rbit. The calculus features ann-ary R-labelled white vertex for each
r ∈ R. Given a presentation of R, we could in fact have just a label
for each generator of R. The calculus remains largely the same; we
just have to add an axiom for each relation the generators satisfy,
and also a slight modification to some of the axioms involving the
ring operations on the white vertices. For instance the axiom 3(k )
can be slightly modified to suit the generators, and 3(a) can be
replaced with

=
r

s

m1 m2

n2n1 ,

s

r

m′1 m′2

n′2n′1

where r , s are some generators, m1,m2,n1,n2,m′1,m
′
2,n
′
1,n
′
2 are

natural numbers, andm1 +m2 =m′1 +m
′
2, n1 + n2 = n

′
1 + n

′
2.

The completeness proof also remains largely the same since any
composition of diagrams in pre-normal form can be rewritten in
pre-normal form. We can also modify the normal form by replacing
the R-labelled white vertices with

,

where the box is some fixed expression for the ring elements as
sums and products of generators, expressed by convolution with
black vertices and vertical composition.

We will look at some different commutative rings as examples.
If R is the free commutative ring on one generator Z, we recover

the result of [15]. We can express n ∈ Z as

,

n

,

−n

depending on whether n is positive or negative.
If R := Zn , then we just need to add one axiom for the relation

n = 0,

=n

.

In particular, for Z2bit, also called modal quantum theory in [22],
the crossing is equal to the swap and many of the axioms regarding
the crossing become redundant.

If we take R := C, the ring of complex numbers, we obtain
completeness for Qubit. It might be convenient to separate the
phase part and the length part and express each element in C as
ρeiϕ for ρ the positive reals and ϕ ∈ [0, 2π ). Then all we need to
modify is to have an n-ary white vertex for eiϕ , a binary white
vertex for ρ which we require is a (co)module homomorphism with
respect to the n-ary white vertices

=
ρ

eiϕ

,
ρ

eiϕ

and change the axiom 3(k ) to

=

ρ1

eiϕ1

ρ2

eiϕ2

.

ρ

eiϕ

where ρeiϕ = ρ1eiϕ1 + ρ2eiϕ2 . We will call this example the ZWC
calculus.

As a final example, we let R := Z
[
1
2 , e

iπ /4
]
. It is possible to have

an n-ary white vertex with label ei
π
4 and a binary white vertex

with label 12 , and some axioms for the generators. However, for con-
venience, we can use the same convention as in the complex case:
an n-ary white vertex with labels eiϕ for ϕ = k π

4 ,k = 0, 1, . . . , 7,
and a binary one with labels 0 < l ∈ Z

[
1
2
]
. Then an expression for

an arbitrary ring element is

7∑
k=0

lke
ki π4

for 0 < lk ∈ Z
[
1
2
]
, k = 0, 1, . . . , 7. The axiom 3(k ) is now

=l1 l2

,

l1 + l2

for 0 < l1, l2 ∈ Z
[
1
2
]
. TheZ

[
1
2 , e

i π4
]
bit corresponds to the Clifford

+ T fragment ofQubit as proved in [18]. We will call this example
the ZW π

4
calculus.

The last two examples, where R = C and R = Z
[
1
2 , e

i π4
]
, are

of great importance to the completeness of the ZX calculus for
Qubit and the Clifford+T fragment, respectively. The proof for the
completeness results is via a direct translation from ZX to ZW
calculus, which we will detail in the next section.

4 The ZX Calculus
The ZX calculus has the following set TZX of generators and inter-
pretations inQubit:

α

n

m

7→

| 0 . . . 0︸︷︷︸
m

⟩⟨ 0 . . . 0︸︷︷︸
n

|

+eiα | 1 . . . 1︸︷︷︸
m

⟩⟨ 1 . . . 1︸︷︷︸
n

|,

7→ | + ⟩⟨ 0 | + | − ⟩⟨ 1 |,

where α ∈ [0, 2π ), | + ⟩ B 1√
2
( | 0 ⟩+ | 1 ⟩) and | − ⟩ B 1√

2
( | 0 ⟩− | 1 ⟩).

In quantum theory, the green vertices correspond to GHZ states
(modulo normalisation and map-state duality) and phase gates for
the computational basis. The pair {| + ⟩, | − ⟩} is called the X basis,
and forms a mutually unbiased pair with the computational basis
{| 0 ⟩, | 1 ⟩}, also known as the Z basis. The yellow box is called the
Hadamard gate, and corresponds to a change of basis between Z
and X . Hence, we can define a GHZ-state in the X basis as:
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Bα

.

α

The main focus of the calculus is the interaction of GHZ states in
the two bases.

Although the ZX calculus is universal for Qubit as proved in
[6], it is convenient to extend the language and include two more
generators:

λ 7→ | 0 ⟩⟨ 0 | + λ | 1 ⟩⟨ 1 |, 7→ | 0 ⟩⟨ 0 | + | 0 ⟩⟨ 1 |
+ | 1 ⟩⟨ 1 |,

where 0 < λ ∈ R. The green box, labelled with the norm of a
complex number, is the counterpart to the circular green vertex,
labelled with the angle. The triangle is closely related to the Toffoli
gate in quantum circuits, as shown in Chapter 12 of [10]. We will
state a representation for the green box and the triangle in terms
of the red and green vertices.

Remark 4. Although technically the green box is also a vertex, we
will refer to it as the green box, while calling the circular green
vertex simply the green vertex.

In practice, it may be convenient to define a red box just like the
red vertex, but we will not use it in this paper.

A representation of the triangle has been given in [10, 18]. We
will state the one given by the former simply because it appeared
first:

.
− π4

π
4

− π4
π
4

To represent the green box, we first write λ = {λ} + [λ], where [λ]
is the integer part and {λ} the remainder of λ. Then, the green box
can be expressed as

,
{λ} [λ]

={λ}

,
α

−α =[λ]

,
[λ] − 1

where {λ} = eiα + e−iα , and [λ] is expanded recursively until we
reach 1. If there is no integer part, then the diagram is simply the
remainder diagram.

We will draw the triangle in various angles to make the diagrams
more readable. For example,

=

,

=

.

We will now present a set EZX of axioms relating the morphisms
in the ZX calculus. As with the ZW calculus, we claim that the
axioms are sound, and define a monoidal functor ZX → Qubit,
which can be verified by a direct calculation.

ZX Axioms
1. The following are the axioms for the basic generators of the

ZX calculus:

(a)
=

α

β ,

α + β (b )
=

,

(c )
=

0 (c )
=

,

(d )
=

,

(e )
=

,

(f )
=

,

π
2

π
2

− π2

(д)
=

,

(h)
=

,

(i )
=

π

α

,

π

−α

π

α
(j )
=

π
4

π

− π4 ,

for α , β ∈ [0, 2π ). The axioms also hold if flipped upside-
down. It is derivable that the axioms are also true for the
interchange of the red and green colours, and for simplicity
we will give them the same axiom labels.

2. The following are the axioms for the extended generators of
the ZX calculus:

(a)
=

λ

,

λ

(b )
=

1

,

(c )
=

λ1
λ2

,

λ1 .λ2 (d )
=

π (e )
=

π

,
π

(f )
=

,

(д)
=

π

,

(h)
=

π

,

π (i )
=

,

(j )
=

,

(k )
=

,
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(l )
=

,

π

π

(m)
=

,

(n)
=

λ
α

λ
α ,

λ
α

(o)
=

λ1
α1

λ2
α2 ,

α

λ

for 0 < λ, λ1, λ2 ∈ R, α ,α1,α2 ∈ [0, 2π ), and in (o), λeiα =
λ1eiα1 + λ2eiα2 .

Discussion of the ZX axioms
The axioms in group 1 say that the C-labelled green vertices form a
Frobenius algebra with the labels forming an abelian group (1(a,b)).
In fact, the derived rules shown in the next section show that it is
symmetric (ii ) and special. The Hadamard gate is an involution and
self-transpose (1(d, e )), and can be decomposed in terms of the red
and green vertices (1( f )). The red and green vertices form a bialge-
bra (1(д,h)) (in fact they form a Hopf algebra with the identity wire
as the antipode (iii )). Axiom 1(i ) shows how a green vertex moves
through a red π vertex, and 1(j ) is called the scalar axiom. There is
another scalar relation in (iv ). So far, there is no directionality of
the wires because of the special commutative Frobenius structure of
the green vertices, and the Hadamard gate is self-transpose (hence
this is true for red vertices too). Therefore we are free to deform
the diagrams as we like, as long as the connectivity of the vertices
is unchanged.

The axioms in group 2 say that the green box acts in the same
way as the green vertex. The rest of group 2 characterises the
triangle by axioms with a small number of nodes. Unlike the green
and red vertices and Hadamard gate, the triangle has an implicit
directionality, that is, it has a distinct input and output which cannot
be swapped around. We can still treat the diagrams as pseudo-
undirected; we just have to make sure that the input and output
of the triangle are connected to the right vertices. It is possible to
mitigate this as suggested by axiom 2(e ), but we will leave that out
for now.

The introduction of the triangle vertex and its axioms is inspired
by [18], in which the completeness of a version of ZX for the Clif-
ford+T fragment was proved via a translation from and into the
parameter-free ZW calculus, enriched with the scalar 1

2 [15]. We
have employed a similar translation from ZW to ZX; however, our
translation from the ZX calculus to the ZW calculus is different, and
the two are inverse to each other, which was not the case in [18].
Having recognised that the proof relies heavily on the interaction of
the triangle with other vertices, we chose to axiomatise the triangle
as a generator, instead of using it as a shorthand for a diagram of
red and green vertices. This is similar to the use of the crossing in
the ZW calculus. The specific decomposition of the triangle is not
crucial and different choices lead to different axiomatisations.

Completeness of the ZX calculus
The completeness of the ZX calculus forQubit relies on the com-
pleteness of the ZWC calculus. We will construct a direct transla-
tion of the diagrams between the two calculi which respects the
interpretation in Qubit, and under this translation show that all
diagrammatic equations in one of the calculi can be derived in the
other. This will imply the completeness of the ZX calculus.

Proposition 5. The following are derived rules:

(i )
=

π

,
π ππ

(ii )
=

,

(iii )
=

,

(iv )
=

,

(v )
=

1
2

.

(vi )
=

π

.

π

Lemma 4.1. Let t1, t2 be the following assignments of diagrams in
ZWC to the generators of ZX , and vice versa:

1. 7→α

,

eiα 7→λ

,

λ

7→

,

7→

,

e
π
4

e−
π
4

1
2

2. 7→eiα

,

α 7→λ

,

λ

7→

,

π 7→

,

π

7→

.

Then t1 and t2 respect the interpretations of diagrams inQubit, and
for all generators д of ZX, and д′ of ZWC, we have t2 (t1 (д)) = д, and
t1 (t2 (д′)) = д′.

Proof. It is easy to check that the assignments respect the interpre-
tations. Then, t1 (t2 (д′)) = д′ follows from completeness of ZW and
soundness of ZX.

The claim that t2 (t1 (д)) = д for all generators of ZX is trivial to
check for the green vertex and green box. Checking the triangle is
a simple application of 1(a) and 1(c ) to eliminate the red π vertex,
1(д) to open the loop, and finally 1(a) to simplify the diagram. For
the Hadamard gate, we will get

,

1
2π

π
4 π −

π
4

and after some simplifications using the derived rule (vi ), axiom
1(a) and 1(j ), we are left to show

=1
2

π

.
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This can be done by applying rule (v ) to replace the green box, then

1(a)
=

π
(i )
=

2(f )

π
(iv )
=

2(f )

. □

Theorem4.2 (Completeness of the ZX calculus). The functorZX →
Qubit is an isomorphism of PROPs.

Proof. We only need to show that extending t2, as defined in Lemma
4.1, to composite diagrams defines a monoidal functor; it will then
automatically be an isomorphism. For this, it suffices to check that
the translations of all axioms of ZWC can be derived from the ZX
axioms. The details are tedious and are left out of this paper. □

The Clifford+T ZX calculus
The Clifford+T fragment of quantum mechanics is traditionally
defined by restricting Z basis phases to integer multiples of π

4 . A
version of the ZX calculus complete for this fragment was first
produced in [18], but we can derive a different axiomatisation. As a
result of our design choices, our axiomatisation has a larger number
of axioms, which, on the other hand, involve a smaller number of
vertices. We do not know, at the moment, whether all our axioms
are mutually independent.

The generators of the ZX π
4
calculus are those of the ZX calculus,

where labels of green vertices are restricted to multiples of π
4 . We

can extend this calculus to include the triangle as it is expressible
in terms of the π

4 phases. From the derived rule (v ), it follows that
the green box can also be defined for 0 < λ ∈ Z

[
1
2
]
.

Lemma 4.3. The functor ZX π
4
→ Z

[
1
2 , e

i π4
]
bit is full.

Proof. It is clear from the interpretation of the generators that the
ZX π

4
calculus is interpreted in the subcategory Z

[
1√
2
, ei

π
4

]
bit =

Z
[
1
2 , e

i π4
]
bit ofQubit. Furthermore, restricting the functor defined

in Lemma 4.1 we obtain a full functor ZX π
4
→ ZW π

4
, which then

implies that ZX π
4
→ Z

[
1
2 , e

i π4
]
bit is full. □

The ZX π
4
calculus features the same axioms as the ZX calculus,

with restricted phases α = k π
4 , k = 0, 1, . . . 7, lengths 0 < λ ∈

Z
[
1
2
]
; moreover, the conditions of axiom 2(o) are changed to 0 <

λ, λ1, λ2 ∈ Z
[
1
2
]
, α ≡ α1 ≡ α2 (mod π ). The proof of completeness

goes through the ZW π
4
calculus in exactly the same way as the

unrestricted ZX calculus.

Theorem 4.4 (Completeness of the ZX π
4
calculus). The interpre-

tation ZX π
4
→ Z

[
1
2 , e

i π4
]
bit is an isomorphism of PROPs.
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