
IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2020 1

Deep Learning based Pedestrian Inertial Navigation:
Methods, Dataset and On-Device Inference

Changhao Chen, Peijun Zhao, Chris Xiaoxuan Lu, Wei Wang, Andrew Markham, Niki Trigoni

Abstract—Modern inertial measurements units (IMUs) are
small, cheap, energy efficient, and widely employed in smart
devices and mobile robots. Exploiting inertial data for accurate
and reliable pedestrian navigation supports is a key component
for emerging Internet-of-Things applications and services. Re-
cently, there has been a growing interest in applying deep neural
networks (DNNs) to motion sensing and location estimation.
However, the lack of sufficient labelled data for training and
evaluating architecture benchmarks has limited the adoption
of DNNs in IMU-based tasks. In this paper, we present and
release the Oxford Inertial Odometry Dataset (OxIOD), a first-of-
its-kind public dataset for deep learning based inertial naviga-
tion research, with fine-grained ground-truth on all sequences.
Furthermore, to enable more efficient inference at the edge, we
propose a novel lightweight framework to learn and reconstruct
pedestrian trajectories from raw IMU data. Extensive exper-
iments show the effectiveness of our dataset and methods in
achieving accurate data-driven pedestrian inertial navigation on
resource-constrained devices.

Index Terms—Pedestrian Inertial Navigation, Internet of
Things (IoT), Efficient Deep Learning

I. INTRODUCTION

Modern micro-electro-mechanical (MEMS) inertial mea-
surements units (IMUs) are small (a few mm2), cheap (several
dollars a piece), energy efficient and pervasive. As a low-
cost yet powerful sensing modality, they have received a
large amount of research effort and deeply weave into a wide
range of applications. For instance, today’s smart phones come
with embedded IMUs while users can use them for different
location-based services, e.g. indoor navigation, localisation
and outdoor trajectory analysis [1]. Moreover, emerging cyber
gadgets, such as wristbands and VR/AR headsets, also actively
utilise IMUs to provide continuous health monitoring [2], ac-
curate activity tagging [3] and immersive gaming experiences
[4]. On the side of robots and autonomous systems, IMUs are
a long-standing sensing solution to navigation and grasping
tasks [5].

The proliferation of IMUs in the aforementioned applica-
tions depends on a method called inertial navigation (aka.
intertial odometry). Inertial navigation produces orientation
and position of users based on the rotation and acceleration

*The authors are with the Department of Computer Science,
University of Oxford, Oxford, OX1 3QD, United Kingdom.
(Email: changhao.chen@cs.ox.ac.uk; peijun.zhao@cs.ox.ac.uk;
xiaoxuan.lu@cs.ox.ac.uk; wei.wang@cs.ox.ac.uk; an-
drew.markham@cs.ox.ac.uk; niki.trigoni@cs.ox.ac.uk)

*The first two authors contributed equally to this work.
*Corresponding author: Chris Xiaoxuan Lu
*This work was supported by EPSRC Program Grant Mobile Robotics:

Enabling a Pervasive Technology of the Future (GoW EP/M019918/1) and the
National Institute of Standards and Technology (NIST) via the grant Pervasive,
Accurate, and Reliable Location-based Services for Emergency Responders
(Federal Grant: 70NANB17H185).

OxIOD Dataset

Training & Predictions
TrajectoryVelocity Orientation

A

BN S

Activity

Deep Neural Networks

Human Moving with phone-based IMU

Accelerometer Gyroscope Magnetometer Groundtruth

Fig. 1: Deep learning based inertial odometry models can
learn and predict human motion from raw inertial data.

measurements of IMU sensors. Such a method is a pillar to
motion sensing, acting as a key enabler for many location
based services. Compared with GPS, vision, radio or other
navigation techniques [6], the inertial solution relies only on
self-contained sensor, requires few physical infrastructure, and
is insensitive to environmental dynamics. This unique property,
coupled with the proliferation of IMUs in smart devices,
allows the flexibility and reliability to deploy the location
service easily to IoT applications. Meanwhile, compared with
high-dimensional visual data, IMU data are 6-dim time series
that can be processed in real time even on resource-constrained
device. As such, user’s location/motion privacy is thus better
protected off the cloud.

To achieve long term inertial navigation, a major limitation
is the unbounded system error growth, caused by various
sensor errors and biases due to the use of low-cost IMUs
[7]. Most previous work has exploited human motion context
information to constrain the error drifts of the inertial systems.
One solution is to attach the IMU on a user’s foot to take

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2020 2

TABLE I: Comparison of datasets with IMU and ground truth

Dataset Year Environment Attachment IMU Type Sample Rate Groundtruth Accuracy Data Size
KITTI Odometry 2013 Outdoors Car OXTS RT3003 10 Hz GPS/IMU 10 cm 22 seqs, 39.2 km

EuRoC MAV 2016 Indoors MAV ADIS 16488 200 Hz Motion Capture 1 mm 11 seqs, 0.9 km
Oxford RobotCar 2016 Outdoors Car NovAte SPAN 50 Hz GPS/IMU Unknown 1010.46 km

TUM VI 2018 In/Outdoors Human BMI 160 200 Hz Motion Capture 1 mm 28 seqs, 20 km
ADVIO 2018 In/Outdoors Human InvenSense 20600 100 Hz Other Algorithms Unknown 23 seqs, 4.5 km

OxIOD (Ours) 2018 Indoors Human InvenSense 20600 100 Hz Motion Capture 0.5 mm 158 seqs, 42.587 km

advantage of zero-velocity update (ZUPT) for compensating
the system drift [8]. Pedestrian dead reckoning systems (PDRs)
[1] have been proposed to estimate trajectories by detecting
steps and estimating heading. However, these handcrafted
algorithms are hard to apply in everyday usage due to the
unrealistic assumptions of human motion: ZUPT requires the
inertial sensor to be firmly fixed on a user’s foot, preventing
this solution from being used on consumer devices; PDRs are
based on personal walking models, and constrained only to
work under periodic pedestrian motion.

Recently, deep learning based inertial navigation models,
e.g., IONet [9], are proved to be capable of estimating
motion and generating trajectories directly from raw inertial
data without any handcrafted engineering. Other data-driven
methods [10], [11] learn to predict velocities in order to con-
strain system error drift, and achieve competitive performance.
These learning based models have been shown to outperform
previous model-based approaches in terms of accuracy and
robustness [9], [10], [11]. There is a growing interest in
applying deep neural networks to learn motion from time-
series data, due to its potential for model-free generalisation.

However, to develop data-driven approaches, we are con-
fronted with the following three main challenges: 1) A sig-
nificant amount of sensor data with highly precise labels, i.e.
the ground-truth values of location, velocity and orientation
are required for training, validating and testing deep neural
network models. Existing datasets [12], [13], [14], [15] are
not suitable for training DNN models for human tracking,
as the sensor data are collected either from vehicles e.g.
cars, or fixed in specific position, which can not reflect the
IMU motion in everyday usage e.g. as would be sensed by
a smartphone. 2) Few works have considered the efficiency
of deep neural network models for inertial odometry when
deployed on low-end devices. It is important for machine
learning models to run at the edge close to where the sensor
data are collected, as this will improve the reliability and
latency of the inference, and protect the users’ privacy [16],
particularly in IoT applications. 3) There is a lack of common
evaluation benchmarks, whether for conventional PDRs or
learning based models, which precludes a fair and objective
comparison of different techniques.

In this paper, we present and release the Oxford Inertial
Odometry Dataset (OxIOD), with a large amount of pedes-
trian, multi-attachment sensor data (158 sequences, totalling
more than 42 km in distance), and high-precise labels, much
larger than prior inertial navigation datasets. In order to capture
human motion that accurately reflects everyday usage, the data
were collected with a high degree of diversity, across different

attachments, motion modes, users, types of device and places.
As illustrated in Figure 1, our proposed dataset is able to
be used to train robust and accurate deep learning models
for inertial navigation, and we evaluate both the classical
algorithms (PDRs) and data-driven models on OxIOD as a
common benchmark. To enhance the online efficiency of
DNN models on mobile devices, we propose Light Inertial
Odometry Neural Networks (L-IONet), a lightweight deep
neural network framework to learn inertial navigation from
raw data without any handcrafted engineering, which is much
more efficient at training and inference than previously pro-
posed models using LSTM (Long Short-Term Memory neural
network). Extensive experiments were conducted to evaluate
the proposed model and existing methods for a systematic
study into the performance of the data-driven inertial odometry
models in real-world applications and inference at the edge.

In summary, we have three main contributions:
• We present OxIOD1, a first-of-its-kind dataset for pedes-

trian inertial navigation research, to both boost the adop-
tion of data-driven methods and provide a common
benchmark for the task of pedestrian inertial navigation.

• We propose L-IONet, a lightweight deep neural network
framework to efficiently learn and infer inertial odometry
from raw IMU data.

• We conduct a systematic research into the computational
and runtime efficiency of deep neural network models
deployed on low-end mobile devices.

The rest of the paper is organised as follows. Section 2
surveys the related work on the existing datasets and models.
Section 3 introduces the Oxford Inertial Odometry Dataset.
In Section 4, we present a novel lightweight learning based
inertial odometry model. Section 5 provides comprehensive
evaluations and results.

II. RELATED WORK

A. Inertial Navigation Datasets

Table I shows representative datasets that include inertial
data for the purpose of navigation and localisation. In KITTI
[12], Oxford RobotCar [13] and EuRoC MAV datasets [17],
the sensors are rigidly fixed to the chassis of a car, which
is suitable for studying vehicle movements, but not directly
useful for studying human movement. The TUM VI dataset
[14] was collected to evaluate visual-inertial odometry (VIO),
with a pedestrian holding the device in front of them. The
ground truth in TUM VI is provided at the beginning and
ending of the sequences, while during most of the trajectories

1The OxIOD Dataset is available at: http://deepio.cs.ox.ac.uk

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2020 3

there is no ground truth. Similarly, in ADVIO [15], the dataset
is rather short (4.5 km) and only offers pseudo ground truth
generated by a handcrafted inertial odometry algorithm.

There are several datasets focusing on human gait and
activities, which are somewhat similar to our dataset, but do
not concentrate on localisation. Some of these datasets mea-
sure human activities, such as USC-HAD [18], CMU-MMAC
[19], and OPPORTUNITY [20]. Though these datasets have
inertial data with accurate poses as ground truth, they cannot
be used to train and test odometry/localisation, since the
participants did not move much during the experiments. Some
other datasets, such as MAREA [21], focus on human gait
recognition and collected inertial data while carriers were
walking or running. However, these datasets lack solid ground
truth and thus limit their usage in training and testing odometry
models.

As we can see from Table I, our OxIOD dataset has a huge
amount of data from 158 sequences, leading to a total distance
of 42.587km. The data size of OxIOD is larger than most
other inertial navigation datasets, and hence is suitable for
deep neural network methods, which require large amounts of
data and high accuracy labels. It should be noted that the total
length of the dataset even exceeds those collected by vehicles.
Meanwhile, our dataset can better represent human motion in
everyday conditions and thus has a greater diversity.

B. Inertial Navigation Using Low-cost IMUs

Due to high sensor noise and bias, it is impossible to use
conventional Strapdown Inertial Navigation Systems (SINS),
which directly integrate inertial measurements into orientation,
velocity and location, on low-cost MEMS IMU platforms. To
realise purely inertial pedestrian navigation, most of existing
methods exploit domain specific knowledge to constrain the
error drift of inertial systems. One solution is to attach inertial
sensor onto users’ foot to take advantage of stationary phases
during human walking to perform the zero-velocity update
(ZUPT). The ZUPT based method can be further enhanced
by known velocity update and double-foot position calibration
[22]. Another solution is Pedestrian Dead Reckoning (PDR),
very common in phone based pedestrian navigation. Under
the assumption that users exhibit periodic motion, PDRs
update locations by counting users’ steps and estimating their
stride length and heading [1]. Recent research focuses on
fusing other sensor modalities with the PDR models to further
improve the robustness and accuracy, such as wireless signals
[23], magnetic fields [24], [25] or UWB [26].

Recent emerging data-driven solutions are capable of learn-
ing a more general motion model from a large amount of
inertial data without hand-engineering effort. A good example
is IONet [9], which proposes to formulate inertial odometry as
a sequential learning problem and constructs a deep recurrent
neural network (RNN) framework to reconstruct trajecto-
ries directly from raw inertial data, outperforming traditional
model-based methods. Other methods learn to recover latent
velocities [10] [11], or detect more accurate zero-velocity
phase, in order to compensate the errors of inertial systems
[27]. However, few of the previous works considers the in-

In the Hand

In the bag

In the Pocket

On the Trolley

Vicon Room

Fig. 2: Inertial data are collected from a smartphone in
four different attachments: handheld (left above), pocket (right
above), handbag (left below), trolley (right below). The high-
precise motion labels are provided by the Vicon System.

ference efficiency of deep learning approaches when deployed
on low-end devices.

III. OXFORD INERTIAL ODOMETRY DATASET

This section introduces the Oxford Inertial Odometry
Dataset (OxIOD), a data collection of inertial measurements
for training and evaluating deep learning based inertial odom-
etry models. To reflect sensor readings under everyday usage,
the data were collected with IMUs with various attachments
(handheld, in the pocket, in the handbag and on a trol-
ley/stroller), motion modes (halting, walking slowly, walking
normally, and running), four types of off-the-shelf consumer
phones and five different users, as illustrated in Table II. Our
dataset has 158 sequences, and the total walking distance and
recording time are 42.5 km, and 14.72 h (53022 seconds).

TABLE II: Oxford Inertial Odometry Dataset

Type Seqs Time (s) Distance (km)

Attachments

Handheld 24 8821 7.193
Pocket 11 5622 4.231

(iPhone 7P/User 1) Handbag 8 4100 3.431
(Normally Walking) Trolley 13 4262 2.685

Motions
Slowly Walking 8 4150 2.421

Normally Walking - - -
Running 7 3732 4.356

Devices
iPhone 7P - - -
iPhone 6 9 1592 1.381
iPhone 5 9 1531 1.217
Nexus 5 8 4021 2.752

Users

User 1 - - -
User 2 9 2928 2.422
User 3 7 2100 1.743
User 4 9 3118 2.812
User 5 10 2884 2.488

Large Scale floor 1 10 1579 1.412
floor 2 16 2582 2.053

Total 158 53022 42.587

A. Sensor Setup

The data were collected by the on-board sensors of con-
sumer phones, recording accelerations and angular rates from

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2020 4

6-axis IMUs, and magnetic fields from 3-axis magnetometers.
The sensor types of IMUs and magnetometers employed
in our adopted mobile phones are listed in Table III. A
Vicon motion capture system [28] was deployed to produce
high-precise groundtruth values of the object motion, i.e. its
orientation, velocity and position. The large-scale collection
was conducted on two office floors, where we used a Google
Tango Tablet [29] as pseudo groundtruth.

TABLE III: Sensors

Mobile Phone IMU Magnetometer
iPhone 7 Plus InvenSense ICM-20600 Alps HSCDTD004A

iPhone 6 InvenSense MP67B AKM 8963
iPhone 5 STL3G4200DH AKM 8963
Nexus 5 InvenSense MPU-6515 Asahi Kasei AK8963

IMU: The majority of data were collected with an iPhone
7 Plus device. The IMU inside iPhone 7 Plus is InvenSense
ICM-20600, a 6-axis motion tracking sensor. It combines a
3-axis gyroscope and a 3-axis accelerometer. 16-bit ADCs are
integrated in both gyroscope and accelerometer. The sensitivity
error of the gyroscope is 1%, while the noise is 4mdps/

√
Hz.

The accelerometer noise is 100 µg/
√

Hz.
Magnetometer The Alps HSCDTD004A embedded in

iPhone 7 Plus is a 3-axis geomagnetic sensor, which is mainly
used for electronic compass. It has a measurement range of
±1.2mT and an output resolution of 0.3 µT/LSB.

Vicon System We deployed 10 Bonita B10 cameras in the
Vicon Motion Tracker system [28], encircling an area where
we conducted data collection experiments. Each Bonita B10
camera has a frame rate of 250 fps, and resolution of 1
megapixel (1024*1024). The lens operating range of Bonita
B10 can be up to 13 m. These features enable us to capture
motion data with a precision down to 0.5 mm, making the
ground truth very accurate and reliable. The software used in
the Vicon system is Vicon Tracker 2.2. We connected Vicon
Tracker to Robot Operating System (ROS) with vicon bridge,
and recorded the data stream with rostopic. The map size of
our experimental setup in Vicon Room is 5m× 8m.

Time Synchronisation The IMU and magnetometer are
integrated in the mobile phone, sharing the same time stamp.
Vicon data recorded with ROS is saved with UTC timestamp.
Before each experiment, we synchronised the time of iPhone
7 Plus and ROS with UTC, and thus all time stamps recorded
along with sensor data will be synchronised.

B. Data Collection

Attachments The phone based IMUs will experience dis-
tinct motions when attached in different places. In the context
of pedestrian navigation, a natural use of mobile phone leads to
an unconstrained placement of inertial sensors, and therefore
we selected four common situations to study, i.e. the device
is in the hand, in the pocket, in the handbag or on the trolley.
In our data collection, a pedestrian (named User 1) walked
naturally inside the Vicon room, carrying a phone in four
attachments. Figure 2 shows in which way the devices were
held during the experiments.

Motion Modes Humans move in different motion modes in
their everyday activities. We selected and collected data from
four typical motion models: halting, walking slowly, walking
normally and running. The experiments with different motion
modes were performed by User 1 with iPhone 7Plus in hand,
to reduce the influences from user walking habits or sensor
properties. The velocities of participants are around 0.5 m/s,
1 m/s, and 1.5 m/s during slow walking, normal walking and
running. Our experiments indicate that the user speeding can
be directly recovered from raw inertial data via deep neural
networks, even under a mixed of motion modes.

Devices and Users Both sensors properties and the walking
habits of users throw impacts on the performance of iner-
tial navigation systems. In order to ensure inertial odometry
invariant across devices and users, we collected data from
several types of devices and different users. Four off-the-shelf
smartphone were chosen as experimental devices: iPhone 7
Plus, iPhone 6, iPhone 5, and Nexus 5, listed in Table III. Five
participants were recruited to perform experiments with phone
in the hand, pocket and handbag respectively. The mixed data
from various devices and users can also be applied in the
identification of devices and users.

Large-scale localisation Besides the extensive data col-
lection inside the VICON Room, we also conducted large-
scale tracking in two environments. Without the help of Vicon
system, Google Tango device was chosen to provide pseudo
ground truth. Participant was instructed to walk freely in an
office building on two separate floors (about 1650 m2 and
2475 m2). The smartphones were placed in the hand, pocket
and handbag respectively, while the Tango device was attached
on the chest of the participant to capture precise trajectories.
Figure 7a and Figure 7b illustrate the floor maps and pseudo
ground truth trajectories captured by Google Tango.

IV. INERTIAL NAVIGATION MODELS

In this section, we selected and introduced two typical iner-
tial navigation models as our baselines: one is a model-based
method, Pedestrian Dead Reckoning (PDR) [1], [30], the other
one is a deep learning based method, Inertial Odometry Neural
Networks (IONet) [9]. PDR detects steps, estimates step
length and heading and updates locations per step, mitigating
exponential increasing drifts of SINS algorithm into linear
increasing drifts. IONet is able to learn self-motion directly
from raw data above large dataset, and solve more general
motion, with advantages of extracting high-level motion repre-
sentation without hand-engineering. A novel lightweight DNN
framework, the Light Inertial Odometry Neural Networks (L-
IONet), is proposed to enable more accurate and efficient
inference for inertial navigation from low-cost IMU data.
Figure 3 illustrates the frameworks of the PDR, IONet, and
L-IONet model.

A. Pedestrian Dead Reckoning

Pedestrian Dead Reckonings (PDRs) output pairs of [step
length, step heading] to construct 2D trajectories on a plane.
Instead of naively double integrating inertial measurements,
PDR algorithms detect steps and estimate step length from a

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2020 5

IMUs

Step
Detection

Heading
Estimation

Location Ln

Location Ln-1

Step
Detection

Heading
Estimation

Step Length
Estimation

Location Ln+1

Step Length
Estimation

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

IMUs IMUs IMUs IMUs IMUs

WaveNet WaveNet WaveNet WaveNet

IMUs IMUs IMUs IMUs

Pooling

FC

Pooling

FC

Pooling

FC

Pooling

FC

(a) PDR (b) IONet (c) L-IONet

Location Lt+2 Location Lt+2

Location Lt+1

Location Lt
Location Lt-1

Location Lt+1

Location Lt
Location Lt-1

Fig. 3: The framework illustration of three inertial navigation models: (a) Pedestrian Dead Reckoning (b) Inertial Odometry
Neural Network (IONet) (c) Lightweight Inertial Odometry Neural Network (L-IONet).

duration of classified inertial data using human walking model.
We implemented a basic PDR algorithm to quantitatively
evaluate its performance on the OxIOD dataset. Aided by the
common benchmark, extensions are easy to add on this basic
PDR to show the effectiveness of each module.

The PDR models mainly consist of four parts: step detec-
tion, step length estimation, heading estimation and location
update. In our PDR model, the step detection thresholds the
mean and variance of accelerations, which further classifies the
sensory reading into separate independent strides. A dynamical
step length estimation module uses the Weinberg’s empirical
equation [31] to produce the location displacement ∆l during
a pedestrian stride. Gyroscope signals are integrated into the
orientation of inertial sensor, but only the yaw angle is kept
as pedestrian heading ψ. The current location (Lx

k, L
y
k) can be

updated with the previous location (Lx
k−1, L

y
k−1) via:{

Lx
k = Lx

k−1 + ∆l cos(ψk)

Ly
k = Ly

k−1 + ∆l sin(ψk),
(1)

where ∆l and ψk are the step length and heading at k th step.
In real-world practice, it is not always easy for the hand-

built algorithms to classify inertial data correctly only based
on data patterns. Even if the step detection and classification
is accurate, the empirical human walking model to estimate
step length is highly correlated with user’s walking habits
and body properties, causing unavoidable accumulative errors
during long-term operating.

B. Inertial Odometry Neural Networks

Inertial Odometry Neural Networks (IONet) [9] are able to
learn user’s ego-motion directly from raw inertial data and
solve more general motions. For example, tracking a trolley
or other wheeled configurations is quite challenging for PDR
models, due to the fact that no walking step or periodicity
patterns can be detected in this case. In contrast, IONet can
regress the location transformation (the average speed) during

any fixed window of time, without the explicit components of
step detection and step length estimation as in PDRs.

We implemented and trained the IONet model on the
OxIOD dataset, to show the effectiveness of OxIOD for
data-driven approaches. The continuous inertial readings are
segmented into independent sequences of n frames IMU data
{(ai,wi)}ni=1, consisting of 3-dimensional accelerations ai ∈
R3 and 3-dimensional angular rates wi ∈ R3 at the time step i.
The 6-dimensional inertial data are preprocessed to normalise
the accelerations and angular rates into a same scale. The
generated sequences are further feed into the recurrent neural
networks (RNNs), e.g. LSTMs to extract effective features for
motion estimation. Specifically, Figure 4 (a) illustrates the
details of LSTM-based IONet. Each frame of inertial data
is used as a input for single LSTM cell: xi = (ai,wi). In
the recurrent model, a hidden state hi containing the history
information of inputs, is maintained and updated at each step
i by:

hi+1 = LSTM(hi,xi). (2)

This recurrent process compresses the high dimensional in-
ertial sequence to a high-level compact motion description
hi ∈ Rm. m is the number of hidden states. Finally, after
recurrently processing all the data, the last hidden feature hn

contains the compressed information of the entire sequence
for the motion transformation prediction.

In IONet model, the polar vector (∆l,∆ψ) ∈ R2 (the
displacement of location and heading), which proves to be
observable from a sequence of inertial data, is learned by
LSTMs. After LSTMs, a fully-connected layer then maps the
hidden features into the target polar vector:

(∆l,∆ψ) = FC(hn). (3)

Subsequently, in a sequence with timesteps between [0, n], the
location (Lx

n, L
y
n) at the n th step is updated by{
Lx
n = Lx

0 + ∆l cos(ψ0 + ∆ψ)

Ly
n = Ly

0 + ∆l sin(ψ0 + ∆ψ),
(4)

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2020 6

x1 x2 x3 xN

h1 h2 h3
FC

Polar Vector

x1 x2 x3 x4 x5 x6 x7 x8

Pooling

FC

LSTM
 Cell

LSTM
 Cell

LSTM
 Cell

LSTM
 Cell

LSTM
 Cell

LSTM
 Cell

LSTM
 Cell

LSTM
 Cell

xN

Polar Vector

(a) IONet (b) L-IONet

Fig. 4: A comparison of LSTM-based IONet and WaveNet-
based L-IONet

where (Lx
0 , L

y
0), and ψ0 are the beginning location and heading

of the sequence. .
Instead of building explicit model to describe human mo-

tion, such as Weinberg’s model [31], IONet is able to model
motion dynamics and temporal dependencies of sensor data
implicitly. Compared with PDR models, IONet is not restricted
to the empirical step model, but is capable of regressing
the average velocity anytime, i.e. the location transformation
during any fixed period of time.

C. Lightweight Inertial Odometry Neural Networks

To this end, we introduce the Lightweight Inertial Odometry
Neural Network (L-IONet), a lightweight framework to learn
inertial tracking, which is more efficient in resource and
computational consumption than the previous IONet approach.
The detailed structure of L-IONet can be found in Figure 4
(b).

Although deep learning solutions demonstrate great poten-
tial to solve sensing problems, e.g. IONet in inertial navigation,
their huge computational and memory requirement slows down
the deployment of DNN models onto low-end devices [32].
Compared with deploying machine learning models on the
cloud, computation at the edge reduces the bandwidth usage,
cloud workload and latency. Besides, it helps protect the
users’ privacy, as all sensor data hence remain at the users’
device rather than uploading to the cloud [16]. Therefore, it is
necessary to design an efficient and fast DNN model to enable
the inference of IONet on low-end devices, e.g. mobile phone,
smartwatch, Raspberry Pi.

The main bottleneck of IONet framework is the LSTM
module. During the backpropagation of model training, re-
current models confront the so-called gradients vanishing
problem [33], when processing long sequential data. This is
especially the case in our inertial tracking task, as the input
is a long sequence of 200 frames of inertial measurements,
causing the optimization of recurrent models to be hard and
unstable. Moreover, parallel training and inference is difficult
for recurrent models, due to the fact that recurrent models have
to exploit the sequential relation of the inputs and outputs.
This limitation requires a sequence of input to be feed into
recurrent models in order, consuming huge training time and

computational resources to converge. In addition, the inference
speed is a bottleneck for deploying RNN models on low-end
devices, such as IoT devices or mobile phones, because of
the complex operations inside recurrent networks. In contrast,
the feed-forward models, e.g. WaveNet are more lightweight,
and able to balance the trade-off between the accuracy and
inference speed [34].

We propose to replace the recurrent model with an autore-
gressive model to produce outputs using the recent frames of
a sequence. A good example is WaveNet, a generative causal
autoregressive model, widely applied in processing speech and
voice signals for synthesis tasks [34]. Inspired by WaveNet,
we propose an autoregressive model based L-IONet to process
the long continuous signals of inertial sensors to predict polar
vectors, which are further connected with previous states to
reconstruct trajectories. Because L-IONet has no recurrent
module and fewer complex nonlinear operations, this feed-
forward model is easier to train in parallel, and much faster
at state inference.

The basic module of our proposed framework is the causal
dilated convolution layer. It can be viewed as a convolutional
neural network (ConvNet) with a sliding window, but is
a specific type of ConvNet that works perfectly on long
sequential data. Compared with a regular ConvNet, the causal
convolution inside our model is a 1-dimensional filter that
convolves on the elements of current and previous timestep
from last layer, to prevent using future states, as shown in
Figure 4 (b). The stacked layers of dilated convolutions allow
the receptive area of convolution operation to be made very
large by using the convolution that skips input values with a
certain distance. And hence the model is able to capture a long
sequence of data without being too huge [35].

Each causal dilated convolution performs via a gated acti-
vation unit:

z = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x) (5)

where W denotes the weights of the convolutional filters, f
and g represent filters and gates, k is the layer index, ∗ is the
convolution operator, and � is an element-wise multiplication
operator. Meanwhile, residual and skip connection modules are
adopted to enable a deeper structure, and improve the model’s
non-linearity in regression.

In our L-IONet framework, several layers of dilated causal
convolutions are stacked to increase the receptive areas of the
inputs. They skip the inputs with a specified stride, and their
dilation doubled for every layer. In our case, an 8-layers model
with a dilation of 1, 2, 4, 8, 16, 32, 64, 128 for each layer
respectively, is enough to process a sequence of 200 frames
of inertial data.

The original WaveNet is designed for audio generation,
which quantizes the real data into possible values, and recon-
structs from the quantized data using the softmax function.
Instead of learning classification possibility, our framework
replaces the softmax function with a pooling layer and a fully-
connected layer to map the extracted features z into the 2-
dimensional polar vectors:

(∆l,∆ψ) = FC(Pool(z)). (6)

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2020 7

Similar to IONet model, the predicted polar vectors are further
connected with previous system states to produce current
locations via Equation 4.

Compared with IONet, the main advantages of our proposed
L-IONet can be summarized in two-folds - 1) Accuracy: the
WaveNet module inside our L-IONet is extremely suitable to
processing long continuous sensor signals, i.e. inertial data in
our case. Compared with recurrent models, WaveNet mainly
consists of dilated causal convolutions, which is easier to
optimize, converge and recover optimal parameters during
training, as no hidden states need to be updated and maintained
for a long sequence of input data. Besides, the residual mod-
ules inside WaveNet further improves the expressive capacity
of our model and thus provides more accurate polar vector
predictions. 2) Efficiency: L-IONet shows large improvement
of both training and inference speed over IONet, enabling
it to be deployed onto low-end devices easily, as illustrated
in the experiments of Section V. On one hand, WaveNet
allows parallel training. On the other hand, the convolutional
operations in our L-IONet are faster to perform than the
complex operations inside recurrent models [32]. The power
of feed-forward models (e.g. WaveNet or Transformers [36])
have already shown huge improvement in voice synthesis and
machine translation [37]. Recently, there is a trend to replace
the LSTM module with feed-forward models in sequence
modelling tasks. However, few work has explored the potential
applications of feed-forward models in processing continuous
sensor data, e.g. inertial data as inertial tracking in our case.

D. Sliding Window

In order to increase the output rate of neural network
predictions, we present a sliding window method. As Figure
3 (b) and (c) demonstrated, the inertial sensory readings are
segmented into independent sequences by using a fixed-size
sliding window. In our problem, we choose n the window size
of the sequence as 200 frames (2 seconds), with a stride for
sliding the window as 10. The polar vector is predicted by
the deep neural networks from each sequence, and connected
by a merging module to generate locations, as Equation (3)
described. Note that the current location is updated with the
location 200 frames before it rather than the previous states
10 frames before it. With the predictions from the overlapping
windows, the output rate is increased onto 10 Hz. Low pass
filters are further used upon the polar vectors and locations to
smooth the predictions for trajectory reconstruction.

V. EXPERIMENTS

In this section, we implemented and trained the IONet and
L-IONet models on the OxIOD dataset, and conducted exten-
sive experiments to evaluate their performance on the low-end
devices, velocity estimation, and localisation experiments.

A. Setup

Training and Testing: We split the dataset into the training
and testing set for each attachment scenario, i.e. handheld,
pocket, handbag and trolley. The detailed description can

be found in the dataset folder. All the data is split using
a window size of 200 and a stride of 10. Considering the
convenience of deploying on devices, our IONet and L-IONet
were implemented in the Keras framework with a Tensorflow
backend. By minimising the mean square error between the
estimated values and ground truth provided by our dataset,
the optimal parameters were trained via the ADAM optimiser
[38] with a learning rate of 1e−5. The batchsize is chosen
as 256. We trained each of the model configurations on one
NVIDIA TESLA K80.

Devices: To evaluate the performance of our proposed
models on low-end devices, we chose three levels off-the-shelf
consumer smartphones, i.e. Huawei Mate 8, Nexus 6, HTC
One M8, and one consumer smartwatch, i.e. Sony Smartwatch
2. Huawei Mate 8 is equipped with octa-core (4x2.3 GHz and
4x1.8 GHz) CPU and 4 GB RAM. Nexus 6 is equipped with
quad-core 2.7 GHz CPU and 3 GB RAM. HTC One M8 is
equipped with quad-core 2.5 GHz CPU and 2 GB RAM. Sony
Smartwatch 2 is equipped with 1 core 180 MHz CPU and 256
MB RAM. Our IONet and L-IONet models were first trained
with the Keras framework on GPUs, further converted into
Tensorflow Lite models, and then deployed on the low-end
devices to test their inference speed.

B. Model Performance at the edge

We conducted a systematic research into the inference
performance of DNNs models for inertial tracking at the
edge. The LSTM-based IONet is compared with our proposed
WaveNet style L-IONet, with different hyperparameters cho-
sen to demonstrate their impacts on the model performance,
which are the number of layers, whether LSTMs are bi-
directional or not, the number of hidden states for LSTMs, and
the number of convolutional filters for WaveNet. Moreover,
we replaced the LSTM module in IONet with GRUs and
Basic RNNs as baselines to show the trade-off between model
accuracy and efficiency.

Figure 5 compares different model configurations of IONet
(LSTM), IONet (GRU), IONet (Basic RNN) and L-IONet
(WaveNet), in terms of their number of parameters, training
speed and mean square error (MSE) of predicted polar vectors.
It is clear to see that the L-IONet with 32 filters i.e. WaveNet
(32), achieves the highest accuracy, with a prediction error
of 0.0069, even slightly lower than that of IONet with 1-
layer Bi LSTM (128), i.e. 1-layer Birectional LSTM with
128 hidden states. In contrast, the number of parameters in
the L-IONet with WaveNet (32) is only one quarter that of
the IONet with 1-layer Bi-LSTM (128). Meanwhile, L-IONet
with WaveNet (32) is around 10 times faster than IONet
with 1-layer Bi-LSTM when training on a Tesla K80 GPU.
This indicates that L-IONet shows competitive performance
in accuracy over IONet, while still superior in the speed and
resource consumption.

Table IV illustrates the execution time of different IONet
(LSTM, GRU, Basic RNN) and L-IONet (WaveNet) models
when deployed on Huawei Mate 8, Nexus 5, HTC One M8 and
Sony SW2 respectively. The execution time (milliseconds, ms)
is the average inference time of these models at the low-end

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2020 8

200962

51330

138754

69378

18306

5058

17538

4674 1314

52098

13762
3810

36994

9538

Pa
ra

m
et

er
s

N
um

be
r (

K)

0

50

100

150

200

2-la
ye

rs
LSTM (1

28)

2-la
ye

rs
LSTM (6

4)

1-la
ye

r B
i-L

STM (1
28)

1-la
ye

r L
STM (1

28)

1-la
ye

r L
STM (6

4)

1-la
ye

r L
STM (3

2)

1-la
ye

r B
asic

 RNN

1-la
ye

r B
asic

 RNN (6
4)

1-la
ye

r B
asic

 RNN (3
2)

1-la
ye

r G
RU (1

28)

1-la
ye

r G
RU (6

4)

1-la
ye

r G
RU (3

2)

Wave
net (3

2)

Wave
net (1

6)

(a) Parameters Number

3 3

4

1 1

0.75
0.59

0.46
0.26

2 2

0.84

0.37
0.26Tr

ai
ni

ng
 S

pe
ed

 (m
s/

st
ep

)

0

1

2

3

4

2-la
ye

rs
LSTM (1

28)

2-la
ye

rs
LSTM (6

4)

1-la
ye

r B
i-L

STM (1
28)

1-la
ye

r L
STM (1

28)

1-la
ye

r L
STM (6

4)

1-la
ye

r L
STM (3

2)

1-la
ye

r B
asic

 RNN

1-la
ye

r B
asic

 RNN (6
4)

1-la
ye

r B
asic

 RNN (3
2)

1-la
ye

r G
RU (1

28)

1-la
ye

r G
RU (6

4)

1-la
ye

r G
RU (3

2)

Wave
net (3

2)

Wave
net (1

6)

(b) Training Speed

0.0142 0.0181
0.0075

0.0274

0.0498

0.121

0.269

0.288
0.296

0.0186

0.0391

0.0626

0.0069 0.0128

M
ea

n
Sq

ua
re

 E
rr

or

0

0.1

0.2

0.3

2-la
ye

rs
LSTM (1

28)

2-la
ye

rs
LSTM (6

4)

1-la
ye

r B
i-L

STM (1
28)

1-la
ye

r L
STM (1

28)

1-la
ye

r L
STM (6

4)

1-la
ye

r L
STM (3

2)

1-la
ye

r B
asic

 RNN

1-la
ye

r B
asic

 RNN (6
4)

1-la
ye

r B
asic

 RNN (3
2)

1-la
ye

r G
RU (1

28)

1-la
ye

r G
RU (6

4)

1-la
ye

r G
RU (3

2)

Wave
net (3

2)

Wave
net (1

6)

(c) Mean square error

Fig. 5: A comparison of IONet and L-IONet models in terms of their (a) number of parameters, (b) training (convergence)
speed and (c) test accuracy. L-IONet shows competitive performance to IONet, but requires less memory and a quicker training
time.

TABLE IV: The execution time (ms) of the deep neural networks models on the low-end devices.

Models Huawei Mate 8 Nexus 5 HTC One M8 Sony SW2
2-layers LSTM (128) 38.13 38.65 88.13 342.61
2-layers LSTM (64) 11.42 14.74 33.62 109.41

1-layer Bi-LSTM (128) 27.23 31.08 71.02 261.08
1-layer LSTM (128) 12.7 16.15 37.38 130.85
1-layer LSTM (64) 4.65 7.08 16.69 48.9
1-layer LSTM (32) 1.32 2.25 3.49 18.7

1-layer Basic RNN (128) 2.4 3.13 4.63 31.2
1-layer Basic RNN (64) 0.86 1.7 2.69 14.06
1-layer Basic RNN (32) 0.46 1.13 1.94 8.78

1-layer GRU (128) 7.29 12.92 14.72 81.8
1-layer GRU (64) 3.02 6.21 8.00 35.03
1-layer GRU (32) 1.76 4.24 5.68 21.54

WaveNet (32) 3.7 6.47 13.74 56.78
WaveNet (16) 1.27 3.58 8.43 27

devices. The L-IONet models, i.e. WaveNet (32) and WaveNet
(16) performed faster inference than the LSTM-based IONet
models. Even at the swartwatch device equipped with very
limited CPU and memory, our proposed L-IONet is capable
of realising real-time inference, producing outputs within only
56.78 ms (WaveNet (32)) and 27 ms (WaveNet (16)) for
each step. The inference speed of IONet with 1-layer LSTM
(64) is similar to WaveNet (32), but its prediction error is
almost 8 times higher than WaveNet (32). We further compare
LSTM (32) with WaveNet (32) and find that the prediction
error of LSTM (32) increases to 17.5 times higher than
WaveNet (32), although LSTM (32) is with faster inference
speed. It is interesting to see that GRUs are more lightweight
compared with both LSTM and WaveNet models. However,
the prediction accuracy of GRU models are not satisfying with
larger prediction errors, i.e. 0.0186, 0.0391, and 0.0626 for
GRU(128), GRU(64) and GRU (32) respectively, around 3,
6, 9 times higher than WaveNet (32). The Basic RNNs (128)
(64) (32) have fewer parameters, and faster inference speed
on low-end devices than our WaveNet-based L-IONet, but
they almost learned nothing from inertial data with huge test
errors (i.e. 0.268, 0.288 and 0.296), nearly 40 times larger than
the WaveNet models. Therefore, our WaveNet based L-IONet
models show better trade-off between the prediction accuracy
and on-device inference efficiency. It is worth noticing that the

Wavenet-based L-IONet owns the advantages of faster training
speed over Basic RNNs, LSTMs, and GRUs, as shown in
Figure 5 (b). This is because feed-forward models are easier
to train and optimize than recurrent models.

C. Velocity and Heading Estimation

As a demonstration of training performance, the IONet and
L-IONet models were trained on the OxIOD dataset to predict
the average velocity and heading rate of pedestrian motion.
The average velocity v̄ and heading rate ψ̇ are defined as the
location displacement ∆l and heading change ∆ψ during a
window size of time n:

(v̄, ψ̇) = (∆l/n,∆ψ/n). (7)

In our experiment setup, the window size n was chosen
as 2 seconds, so a sequence of inertial data (200 frames)
({(ai,wi)}ni=1) is fed into IONet or L-IONet model to predict
the average velocity v̄ and heading rate ψ̇:

(v̄, ψ̇) = IONet or L-IONet({(ai,wi)}ni=1), (8)

where we used IONet with 1-layer 128-dimensional Bidi-
rectional LSTM, and L-IONet with 32-filters WaveNet for
training and prediction.

The training data are from the training sets of three mo-
tion modes categories: walking normally (handheld, 20 seqs),

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2020 9

0 500 1000 1500 2000 2500
0

0.5

1

A
ve

ra
g

e
 V

e
lo

ci
ty

(m
/s

)
Groundtruth IONet L-IONet

0 500 1000 1500 2000 2500

Time (0.1s)

-1

0

1

H
e

a
d

in
g

 R
a

te
 (

ra
d

/s
)

Groundtruth IONet L-IONet

(a) Walking Normally

0 500 1000 1500 2000 2500
0

0.5

1

A
ve

ra
g

e
 V

e
lo

ci
ty

 (
m

/s
)

Groundtruth IONet L-IONet

0 500 1000 1500 2000 2500
Time (0.1s)

-1

0

1

H
e

a
d

in
g

 R
a

te

(r
a

d
/s

)

Groundtruth IONet L-IONet

(b) Walking Slowly

0 500 1000 1500 2000 2500
0

0.5

1

1.5

A
ve

ra
g

e
 V

e
lo

ci
ty

 (
m

/s
)

Groundtruth IONet L-IONet

0 500 1000 1500 2000 2500
Time (0.1s)

-1

0

1

H
e

a
d

in
g

 R
a

te
(r

a
d

/s
)

Groundtruth IONet L-IONet

(c) Running

0 500 1000 1500 2000 2500
0

0.5

1

1.5

A
ve

ra
g

e
 V

e
lo

ci
ty

(m
/s

)

Groundtruth IONet L-IONet

0 500 1000 1500 2000 2500

Time (0.1s)

-1

0

1

H
e

a
d

in
g

 R
a

te

(r
a

d
/s

)

Groundtruth IONet L-IONet

Walking Slowly
Walking Normally Halting Running

(d) Mixed Activities

Fig. 6: The velocity and heading estimations for a) walking normally, b) walking slowly, c) running and d) mixed motion
modes. The ground truth was captured by Vicon System, while the values from IONet and L-IONet were predicted by the
learning model trained on our proposed dataset.

walking slowly (7 seqs) and running (6 seqs). To test its
generalisation ability, we performed randomly walking in the
Vicon Room, and used the trained neural network to predict the
values for selected three motion modes and a mix of activities
respectively. Fig. 6 indicates that both IONet and L-IONet
can model a variety of complex motions, and generalise well
to mixed activities. The more lightweight L-IONet does not
suffer an accuracy loss in this task.

D. Deep Learning based Pedestrian Inertial Navigation

We show how to solve the pedestrian inertial navigation
problem using deep neural networks with the aid of our
proposed OxIOD dataset. IONet and L-IONet models can
reconstruct trajectories from raw IMU data, and provide users
with their accurate locations. A 1-layer Bidirectional LSTM
with 128 dimensional hidden states was adopted for IONet,
while the WaveNet with 32 filters was used in L-IONet for the
evaluation. Both models were trained with the above detailed
split training sets from the four attachment categories, i.e. the
handheld (20 sequences), pocket (10 sequences), handbag (7
sequences) and trolley (12 sequences). Two sets of experiments
were conducted to evaluate our proposed models.

The first set of tests involved tracking a pedestrian with the
phone in different attachments. In this experiment, the par-
ticipant carrying the smartphone was asked to walk normally
inside the Vicon room. The IMU data 2 were collected and
feed into the IONet and L-IONet to predict the participant’s
motion. The installed motion capture systems can provide
highly precise trajectories as groundtruth. Note that these

2The test data can be found at the ’test’ fold of our dataset

walking trajectories are not present in the training dataset.
A basic PDR algorithm was implemented as a baseline, and
we show that our dataset can also be used as a benchmark
for conventional PDR algorithms. Figure 8 demonstrates the
trajectories generated from the groundtruth (blue line), PDR
(green line), IONet (orange line) and L-IONet (red line). It
indicates that the deep learning based methods outperformed
the model-based PDR when the phone was placed either in
the hand, pocket or handbag. The trolley tracking is a difficult
problem for PDR algorithms, as no step (periodicity pattern)
can be detected in this case, and hence a handcrafted model is
hard to build for this wheeled motion. In contrast, the learning
based approaches are still able to generalise to this general
motion, and reconstruct physically meaningful trajectories,
while the PDR algorithm fails in this task. The L-IONet model
produced results even closer to the groundtruth compared with
IONet, especially in the handheld and trolley domains. Figure
8b indicates that the IONet shows better performance when
mobile device is inside pocket. This is because inertial sensor
experiences less motion-dynamics inside pocket (pocket can
be viewed to constrain mobile device when users are moving),
so that LSTM based IONet is already good enough to capture
its self-motion from inertial data. In the other domains, the
WaveNet based L-IONet is more capable of representing the
free motion of sensor, due to the expressive capability of
WaveNet in processing long sequential data.

The other set of experiments is to perform large-scale
localisation on two floors of an office building. Although DNN
models were trained with inertial data collected inside the
Vicon room, we show that the models can be used to predict
the pedestrian motion outside the room directly. This is due

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2020 10

(a) Office Floor 1 (b) Office Floor 2

Fig. 7: The largescale localisation experiments were conducted on (a) Office Floor 1 and (b) Office Floor 2. The trajectories
were generated from the IONet, L-IONet and PDR. The pseudo ground truth was provided by Google Tango device.

-4 -2 0 2 4

East (m)

-2

0

2

4

6

N
o
rt

h
 (

m
)

GT PDR IONet L-IONet

(a) Handheld

-2 0 2 4

East (m)

-1

0

1

2

3

4

5

6

7

N
o
rt

h
 (

m
)

GT PDR IONet L-IONet

(b) In Pocket

-4 -2 0 2

East (m)

0

1

2

3

4

5

6

7

8

N
o
rt

h
 (

m
)

GT PDR IONet L-IONet

(c) In Handbag

-6 -4 -2 0

East (m)

-2

-1

0

1

2

3

4

5

N
o
rt

h
 (

m
)

GT IONet L-IONet

(d) On Trolley

Fig. 8: The trajectories reconstruction for pedestrian tracking with device in four attachments: a) in the hand, b) in the pocket,
c)in the handbag, and d) on the trolley respectively. The trajectories were generated from IONet, L-IONet and a basic PDR
algorithm. PDRs do not work when the device was placed on the trolley, as no step can be detected in this situation. The
ground truth values are provided by the Vicon System.

to the fact that inertial data are not sensible to environments,
and hence the proposed DNN models can generalize to new
environment easily. Figure 7 demonstrates that both IONet and
L-IONet models achieve good localisation results, although
the two models never saw any data outside the Vicon room.
This experiment shows the generalisation ability of the deep
learning based models towards new environments.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we propose L-IONet, a lightweight deep neural
networks framework to learn inertial tracking from raw IMU
data. L-IONet shows competitive performance over previous
deep inertial odometry models. Meanwhile, L-IONet is more
efficient in memory, inference and training. We conducted
a systematic research into the performance of deep learning
based inertial odometry models on low-end devices. Our L-
IONet is able to achieve real-time inference on different
levels smartphones, and even the smartwatch with very limited
computational resources. Moreover, we present and release

OxIOD, an inertial odometry dataset for training and eval-
uating inertial navigation models. With the release of this
large-scale diverse dataset, it is our hope that it will prove
valuable to the community and enable future research in long-
term ubiquitous ego-motion estimation.

Future work would include collecting data from more
challenging situations, for example, 3D tracking. We plan to
create on-line common benchmark and tools for the com-
parison of odometry models. We also hope to include more
IoT devices into our dataset, such as smartwatch, wristband,
smart earphones, to extend the potential applications of this
research. A further extension to current deep inertial odometry
models is to adopt knowledge distillation to compress the deep
neural networks, which can reduce the number of parameters
and enable faster training and on-device inference. Another
future research direction is to investigate how to formulate
dilated casual convolutional model (i.e. WaveNet style model)
as a generic framewor to process a variety of sensor data
e.g. temperature, pressure, light intensity, magnetic field, in
other potential IoT application domains, e.g. health/activity

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2020 11

monitoring, sport analysis, smart home and intelligent trans-
portation. Except the deep neural networks discussed above,
other machine learning models might also be applied into
data-driven IoT research domains, for example, Deep Belief
Network (DBN) or Broad Learning System (BLS).

REFERENCES

[1] R. Harle, “A Survey of Indoor Inertial Positioning Systems for Pedes-
trians,” IEEE Communications Surveys and Tutorials, vol. 15, no. 3, pp.
1281–1293, 2013.

[2] M. Gowda, A. Dhekne, S. Shen, R. R. Choudhury, X. Yang, L. Yang,
S. Golwalkar, and A. Essanian, “Bringing IoT to Sports Analytics,” in
NSDI, 2017.

[3] V. Bianchi, M. Bassoli, G. Lombardo, P. Fornacciari, and M. Mordonini,
“IoT Wearable Sensor and Deep Learning : an Integrated Approach for
Personalized Human Activity Recognition in a Smart Home Environ-
ment,” IEEE Internet of Things Journal, vol. PP, no. c, p. 1, 2019.

[4] E. Marchand, H. Uchiyama, F. Spindler, E. Marchand, H. Uchiyama,
and F. Spindler, “Pose Estimation for Augmented Reality : A Hands-on
Survey,” IEEE Transactions On Visualization and Computer Graphics,
vol. 22, no. 12, pp. 2633–2651, 2016.

[5] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visualinertial odometry using nonlinear optimization,”
The International Journal of Robotics Research, vol. 34, no. 3, pp. 314–
334, 2015.

[6] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and
A. Mouzakitis, “A survey of the state-of-the-art localization techniques
and their potentials for autonomous vehicle applications,” IEEE Internet
of Things Journal, vol. 5, no. 2, pp. 829–846, April 2018.

[7] E.-S. Naser, H. Haiying, and N. Xiaoji, “Analysis and Modeling of
Inertial Sensors Using Allan Variance,” IEEE Transactions on Instru-
mentation and Measurement, vol. 57, no. JANUARY, pp. 684–694, 2008.

[8] J. O. Nilsson, I. Skog, P. Händel, and K. V. S. Hari, “Foot-mounted INS
for everybody - An open-source embedded implementation,” in Record
- IEEE PLANS, Position Location and Navigation Symposium, 2012, pp.
140–145.

[9] C. Chen, X. Lu, A. Markham, and N. Trigoni, “Ionet: Learning to
cure the curse of drift in inertial odometry,” in Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans,
Louisiana, USA, February 2-7, 2018, 2018.

[10] H. Yan, Q. Shan, and Y. Furukawa, “RIDI: Robust IMU Double
Integration,” in ECCV, 2018, pp. 1–16.

[11] S. Cortés, A. Solin, and J. Kannala, “Deep Learning
Based Speed Estimation for Constraining Strapdown Inertial
Navigation on Smartphones,” in arXiv, 2018. [Online]. Available:
http://arxiv.org/abs/1808.03485

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[13] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km:
The Oxford RobotCar Dataset,” The International Journal of Robotics
Research (IJRR), vol. 36, no. 1, pp. 3–15, 2016.

[14] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, and D. Cre-
mers, “The TUM VI Benchmark for Evaluating Visual-Inertial Odome-
try,” in ICRA, 2018.

[15] S. Cortés, A. Solin, E. Rahtu, and J. Kannala, “ADVIO: An authentic
dataset for visual-inertial odometry,” in ECCV, 2018.

[16] F. Samie, L. Bauer, and J. Henkel, “From cloud down to things: An
overview of machine learning in internet of things,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4921–4934, 2019.

[17] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,”
International Journal of Robotics Research, vol. 35, no. 10, pp. 1157–
1163, 2016.

[18] M. Zhang and A. A. Sawchuk, “USC-HAD:A Daily Activity Dataset for
Ubiquitous Activity Recognition Using Wearable Sensors,” Proceedings
of the 2012 ACM Conference on Ubiquitous Computing - UbiComp ’12,
p. 1036, 2012.

[19] F. De La Torre, J. Hodgins, A. W. Bargteil, X. Martin, J. C. Macey,
A. Collado, and P. Beltran, “Guide to the Carnegie Mellon University
Multimodal Activity (CMU-MMAC) Database,” Tech. Rep. April, 2008.

[20] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster,
J. D. R. Millán, and D. Roggen, “The Opportunity challenge: A bench-
mark database for on-body sensor-based activity recognition,” Pattern
Recognition Letters, vol. 34, no. 15, pp. 2033–2042, 2013.

[21] K. Siddhartha and W. Nicholas, “Evaluation of the performance of
accelerometer-based gait event detection algorithms in different real-
world scenarios using the MAREA gait database,” Gait and Posture,
vol. 51, pp. 84–90, 2017.

[22] D. Chen, H. Cao, H. Chen, Z. Zhu, X. Qian, W. Xu, and M.-C. Huang,
“Smart Insole Based Indoor Localization System for Internet of Things
Applications,” IEEE Internet of Things Journal, vol. PP, no. 4, pp. 1–1,
2019.

[23] Y. Zhuang, J. Yang, L. Qi, Y. Li, Y. Cao, and N. El-sheimy, “A Pervasive
Integration Platform of Low-Cost MEMS Sensors and Wireless Signals
for Indoor Localization,” IEEE Internet of Things Journal, vol. 5, no. 6,
pp. 4616–4631, 2018.

[24] Y. Li, Z. He, Z. Gao, Y. Zhuang, C. Shi, and N. El-Sheimy, “Toward
robust crowdsourcing-based localization: A fingerprinting accuracy in-
dicator enhanced wireless/magnetic/inertial integration approach,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 3585–3600, 2019.

[25] S. Wang, H. Wen, R. Clark, and N. Trigoni, “Keyframe based Large-
Scale Indoor Localisation using Geomagnetic Field and Motion Pattern,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016, pp. 1910–1917.

[26] R. Liu, C. Yuen, T. Do, D. Jiao, X. Liu, and U. Tan, “Cooperative relative
positioning of mobile users by fusing IMU inertial and UWB ranging
information,” in 2017 IEEE International Conference on Robotics and
Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017,
2017, pp. 5623–5629.

[27] B. Wagstaff and J. Kelly, “LSTM-Based Zero-Velocity Detection for
Robust Inertial Navigation,” in IPIN, no. September, 2018, pp. 24–27.

[28] Vicon, “ViconMotion Capture Systems: Viconn,” 2017.
[29] Tango, “Google Tango Tablet,” 2014. [Online]. Available:

https://get.google.com/tango/
[30] Z. Xiao, H. Wen, A. Markham, and N. Trigoni, “Robust pedestrian dead

reckoning (R-PDR) for arbitrary mobile device placement,” in IPIN,
2014.

[31] H. Weinberg, “Using the ADXL202 in Pedometer and Personal Navi-
gation Applications,” Analog Devices, 2002.

[32] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher,
“FastDeepIoT: Towards Understanding and Optimizing Neural Network
Execution Time on Mobile and Embedded Devices,” in Sensys, 2018.

[33] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems, vol. 28, no. 10, pp. 2222–2232, 2016.

[34] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet:
A Generative Model for Raw Audio,” in Arxiv, 2016, pp. 1–15.

[35] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” ICLR, 2016.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[37] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[38] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in International Conference on Learning Representations (ICLR), 2015,
pp. 1–15.

