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Abstract. Sensors are embedded in security-critical applications from
medical devices to nuclear power plants, but their outputs can be spoofed
through signals transmitted by attackers at a distance. To address the
lack of a unifying framework for evaluating the effect of such transmis-
sions, we introduce a system and threat model for signal injection attacks.
We further define the concepts of existential, selective, and universal se-
curity, which address attacker goals from mere disruptions of the sensor
readings to precise waveform injections. We finally introduce an algo-
rithm which allows circuit designers to concretely calculate the security
level of real systems, and we apply our definitions and algorithm in prac-
tice using measurements of injections against a smartphone microphone.
Overall, our work highlights the importance of evaluating the suscepti-
bility of systems against signal injection attacks, and introduces both the
terminology and the methodology to do so.

1 Introduction

In our daily routine we interact with dozens of sensors: from motion detection
in home security systems and tire pressure monitors in cars, to accelerometers
in smartphones and heart rate monitors in smartwatches. The integrity of these
sensor outputs is crucial, as many security-critical decisions are taken in response
to the sensor values. However, specially-crafted adversarial signals can be used
to remotely induce waveforms into the outputs of sensors, thereby attacking
pacemakers [6], temperature sensors [2], smartphone microphones [5], and car-
braking mechanisms [16]. These attacks cause a system to report values which do
not match the true sensor measurements, and trick it into performing dangerous
actions such as raising false alarms, or even delivering defibrillation shocks.

The root cause of these vulnerabilities lies in the unintentional side-effects of
the physical components of a system. For example, the wires connecting sensors
to microcontrollers behave like low-power, low-gain antennas, and can thus pick
up high-frequency electromagnetic radiations. Although these radiations are con-
sidered “noise” from an electrical point of view, hardware imperfections in the
subsequent parts of the circuit can transform attacker injections into meaningful
waveforms. Specifically, these radiations are digitized along with the true sensor
outputs, which represent a physical property as an analog electrical quantity.
This digitization process is conducted by Analog-to-Digital Converters (ADCs),
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which, when used outside of their intended range, can cause high-frequency sig-
nals to be interpreted as meaningful low-frequency signals.

Despite the potential that signal injection attacks have to break security guar-
antees, there is no unifying framework for evaluating the effect of such adversarial
transmissions. Our work fills this gap through the following contributions:

1. We propose a system model which abstracts away from engineering concerns
associated with remote transmissions, such as antenna design (Section 2).

2. We define security against adversarial signal injection attacks. Our defini-
tions address effects ranging from mere disruptions of the sensor readings,
to precise waveform injections of attacker-chosen values (Section 3).

3. We introduce an algorithm to calculate the security level of a system under
our definitions and demonstrate it in practice by injecting “OK Google”
commands into a smartphone (Section 4).

4. We discuss how our model can be used to inform circuit design choices,
and how to interpret defense mechanisms and other types of signal injection
attacks in its context (Section 5).

Overall, our work highlights the importance of testing systems against signal
injection attacks, and proposes a methodology to test the security of real devices.

2 System and Adversary Model

Remote signal injection attacks pose new challenges from a threat-modeling
perspective, since the electrical properties of systems suggest that adversaries
cannot arbitrarily and precisely change any sensor reading. To create a threat
model and define security in its context, we need to first abstract away from spe-
cific circuit designs and engineering concerns related to remote transmissions. To
do so, we separate the behavior of a system into two different transfer functions.
The first function describes circuit-specific behavior, including how adversarial
signals enter the circuit (e.g., through PCB wires acting as antennas), while the
second one is ADC-specific, and dictates how the signals which have made it into
the circuit are digitized. We describe this model in greater detail in Section 2.1,
taking a necessary detour into electrical engineering to show why our proposal
makes for a good system model. We then explain some sources of measurement
errors even in the absence of an adversary in Section 2.2 and finish by detailing
the capabilities and limitations of the adversary in Section 2.3. Both sub-sections
are crucial in motivating the security definitions of Section 3.

2.1 Circuit Model

Analog-to-Digital Converters (ADCs) are central in the digitization process of
converting signals from the analog to the digital realm, and our circuit block di-
agram (Figure 1) reflects that. In the absence of an adversary, the ADC digitizes
the sensor signal s(t) as well as the environmental noise n(t), and transfers the
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Fig. 1: System model: an adversarial signal v(t) enters the circuit and is trans-
formed via HC . It is digitized along with the sensor signal s(t) and the noise
n(t) through an ADC-specific HA. In successful attacks, the digitized signal will
contain the demodulated version w(t) of the attacker signal v(t) = M(w(t)).

digital bits to a microcontroller. We model the ADC in two parts: an “ideal”
ADC which simply digitizes the signal, and a transfer function HA. This transfer
function describes the internal behavior of the ADC, which includes effects such
as filtering and amplification. The digitized version of the signal s̃f (t) depends
both on this transfer function, and the sampling frequency f of the ADC. An
adversarial signal can enter the system (e.g., through the wires connecting the
sensor to the ADC) and add to the sensor signal and the noise. This process can
be described by a second, circuit-specific transfer function HC , which transforms
the adversarial signal v(t) into ṽ(t). Note that components such as external filters
and amplifiers in the signal path between the point of injection and the ADC
can be included in either HA or HC . We include them in HA when they also
affect the sensor signal s(t), but in HC when they are specific to the coupling
effect. HC and HA are discussed in detail below.

Circuit Transfer Function HC . To capture the response of the circuit to
external signal injections, we introduce a transfer function HC . This transfer
function explains why the adversarial waveforms must be modulated, and why
it is helpful to try and reduce the number of remote experiments to perform.
For electromagnetic interference (EMI) attacks, the wires connecting the sensor
to the ADC pick up signals by acting as (unintentional) low-power and low-gain
antennas, which are resonant at specific frequencies related to the inverse of the
wire length [7]. Non-resonant frequencies are attenuated more, so for a successful
attack the adversary must transmit signals at frequencies with relatively low
attenuation. For short wires, these frequencies are in the GHz range [7], so the
low-frequency waveform w(t) that the adversary wants to inject into the output
of the ADC s̃f (t) may need to be modulated over a high-frequency carrier. We
denote this modulated version of the signal by v(t).

HC is also affected by passive and active components on the path to the
ADC, and can also be influenced by inductive and capacitive coupling for small
transmission distances, as it closely depends on the circuit components and their
placement. Specifically, it is possible for 2 circuits with “the same components,
circuit topology and placement area” to have different EMI behavior depending
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Fig. 2: The sample-and-hold mechanism of an ADC is an RC low-pass filter. Elec-
trostatic Discharge (ESD) protection diodes can also introduce non-linearities.

on the component placement on the board [8]. Despite the fact that it is hard to
mathematically model and predict the behavior of circuits in response to different
signal transmissions, HC can still be determined empirically using frequency
sweeps. It presents a useful abstraction, allowing us to separate the behavior of
the ADC (which need only be determined once, for instance by the manufacturer)
from circuit layout and transmission details.

Note, finally, that HC can also account for distance factors between the
adversary and the circuit under test: due to the Friis transmission formula, as
distance doubles, EMI transmission power needs to quadruple. This effect can be
captured by increasing the attenuation of HC by 6 dB, while defense mechanisms
such as shielding can be addressed similarly. This approach allows us to side-step
engineering issues of remote transmissions and reduce the number of parameters
used in the security definitions we propose in Section 3.

ADC Transfer Function HA. Every system with sensors contains one or more
ADCs, which may even be integrated into the sensor chip itself. ADCs are not
perfect, but contain components which may cause a mismatch between the “true”
value at the ADC input and the digitized output. In this section, we describe
how these components affect the digitization process.

Although there are many types of ADCs, every ADC contains three ba-
sic components: a “sample- or track-and-hold circuit where the sampling takes
place, the digital-to-analog converter and a level-comparison mechanism” [10].
The sample-and-hold component acts as a low-pass filter, and makes it harder
for an adversary to inject signals modulated at high frequencies. However, the
level-comparison mechanism is essentially an amplifier with non-linearities which
induces DC offsets, and allows low-frequency intermodulation products to pass
through. These ADC-specific transformations, modeled through HA, uninten-
tionally demodulate high-frequency signals which are not attenuated by HC .

Sample-And-Hold Filter Characteristics. A sample-and-hold (S/H) mech-
anism is an RC circuit connected to the analog input, with the resistor and the
capacitor connected in series (Figure 2). The transfer function of the voltage
across the capacitor is HS/H(jω) = 1

1+jωRC , and the magnitude of the gain is

GS/H = 1√
1+(ωRC)2

. As the angular frequency ω = 2πf increases, the gain is re-

duced: the S/H mechanism acts as a low-pass filter. The −3 dB cutoff frequency
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is thus fcut = 1
2πRC , which is often higher than the ADC sampling rate (Ap-

pendix A). Hence, “aliasing” occurs when signals beyond the Nyquist frequency
are digitized by the ADC: high-frequency signals become indistinguishable from
low-frequency signals which the ADC can sample accurately.

Amplifier Non-Linearities. Every ADC contains amplifiers: a comparator,
and possibly buffer and differential amplifiers. Many circuits also contain addi-
tional external amplifiers to make weak signals measurable. All these amplifiers
have harmonic and intermodulation non-linear distortions [12], which an adver-
sary can exploit. Harmonics are produced when an amplifier transforms an input
vin to an output vout =

∑∞
n=1 anv

n
in. In particular, if vin = v̂ · sin(ωt), then:

vout =

(
a2v̂

2

2
+

3a4v̂
4

8
+ · · ·

)
+(a1v̂ + · · ·) sin(ωt)−

(
a2v̂

2

2
+ · · ·

)
cos(2ωt)+ · · ·

This equation shows that “the frequency spectrum of the output contains a
spectral component at the original (fundamental) frequency, [and] at multiples
of the fundamental frequency (harmonic frequencies)” [12]. Moreover, the output
includes a DC component, which depends only on the even-order non-linearities
of the system. Besides harmonics, intermodulation products arise when the input
signal is a sum of two sinusoids (for instance when the injected signal sums with
the sensor signal): vin = v̂1 · sin(ω1t) + v̂2 · sin(ω2t). In that case, the output
signal contains frequencies of the form nω1 ±mω2 for integers n,m 6= 0. These
non-linearities demodulate attacker waveforms, even when they are modulated
on high-frequency carriers.

Diode Rectification. Figure 2 shows that the input to ADC can contain
reverse-biased diodes to ground and Vcc to protect the input from Electrostatic
Discharge (ESD). When the input to the ADC is negative, or when it exceeds
Vcc, the diodes clamp it, causing non-linear behavior. When the sensor signal
s(t) is positive, this behavior is also asymmetric, causing a DC shift [12], which
compounds with the amplifier non-linearities.

Conclusion. All ADCs contain the same basic building blocks, modeled through
HA. Although the sample-and-hold mechanism should attenuate high-frequency
signals beyond the maximum sampling rate of the ADC, non-linearities due to
ESD diodes and amplifiers in the ADC cause DC offsets and the demodula-
tion of signals through harmonics and intermodulation products. Appendix A
exemplifies these effects through experiments with different types of ADCs.

2.2 Sampling Errors in the Absence of an Adversary

The digitization process through ADCs entails errors due to quantization and
environmental noise. Quantization errors exist due to the inherent loss of accu-
racy in the sampling process. An ADC can only represent values within a range,
say between Vmin and Vmax volts, with a finite binary representation of N bits,
called the resolution of the ADC. In other words, every value between Vmin and
Vmax is mapped to one of the 2N values that can be represented using N bits.
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Fig. 3: Noise probability distribution p(x). The shaded area represents the prob-
ability ε = N(x) = Pr[|n(t)|≤ x].

As a result, there is a quantization error between the true sensor analog value s
and the digitized value s̃. The maximum value of this error is

Q =
Vmax − Vmin

2N+1
≥ |s− s̃| (1)

The second source of error comes from environmental noise, which may affect
measurements. We assume that this noise, denoted by n(t), is independent of
the signal being measured, and that it comes from a zero-mean distribution, i.e.,
that the noise is white. The security definitions we introduce in Section 3 require
an estimate of the level of noise in the system, so we introduce some relevant
notation here. We assume that n(t) follows a probability distribution function
(PDF) p(x), and define N(x) as the probability that the noise is between −x
and x, as shown in Figure 3, i.e.,

N(x) = Pr [|n(t)|≤ x] =

∫ x

−x
p(u)du

Note that typically the noise is assumed to come from a normal distribution,
but this assumption is not necessary in our models and definitions.

We are also interested in the inverse of this function, where given a probability
0 ≤ ε < 1, we want to find x ≥ 0 such that N(x) = ε. For this x, the probability
that the noise magnitude falls within [−x, x] is ε, as also shown in Figure 3.
Because for some distributions there might be multiple x for which N(x) = ε,
we use the smallest such value:

N−1(ε) = inf{x ≥ 0 : N(x) = ε} (2)

Since N(x) is an increasing function, so is N−1(ε).

To account for repeated measurements, we introduce a short-hand for sam-
pling errors, which we denote by Es(t). The sampling errors depend on the sensor
input into the ADC s(t), the sampling rate f , the discrete output of the ADC
s̃f (t) as well as the conversion delay τ , representing the time the ADC takes for
complete a conversion:

Es(t) =

{
|s̃f (t+ τ)− s(t)| if a conversion starts at t

0 otherwise
(3)
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2.3 Adversary Model

Our threat model and definitions can capture a range of attacker goals, from
attackers who merely want to disrupt sensor outputs, to those who wish to
inject precise waveforms into a system. We define these notions precisely in
Section 3, but here we describe the attacker capabilities based on our model of
Figure 1. Specifically, in our model, the adversary can only alter the transmitted
adversarial signal v(t). He/she cannot directly influence the sensor signal s(t), the
(residual) noise n(t), or the transfer functions HA and HC . The adversary knows
HA, HC , and the distribution of the noise n(t), although the true sensor signal
s(t) might be hidden from the adversary (see Section 3.2). The only constraint
placed on the adversarial signal is that the attacker is only allowed to transmit
signals v(t) whose peak voltage level is bounded by some constant V AdvPK , i.e.,
|v(t)|≤ V AdvPK for all t. We call this adversary a V AdvPK -bound adversary, and all
security definitions are against such bounded adversaries.

We choose to restrict voltage rather than restricting power or distance, as
it makes for a more powerful adversarial model. Our model gives the adversary
access to any physical equipment necessary (such as powerful amplifiers and
highly-directional antennas), while reducing the number of parameters needed
for our security definitions of Section 3. Distance/power effects can be compen-
sated directly through altering V AdvPK , or indirectly by integrating them into HC ,
as discussed in Section 2.1.

3 Security Definitions

Using the model of Figure 1, we can define security in the presence of signal in-
jection attacks. The V AdvPK -bound adversary is allowed to transmit any waveform
v(t), provided that |v(t)|≤ V AdvPK for all t: the adversary is only constrained by
power budget requirements. Whether or not the adversary succeeds in injecting
the target waveform w(t) into the output of the system depends on the transfer
functions HC and HA. For a given system described by HA and HC , there are
three outcomes against an adversary whose only restriction is power:

1. The adversary can disturb the sensor readings, but cannot precisely control
the measurement outputs, an attack we call existential injection. The lack
of existential injections can be considered universal security.

2. The adversary can inject a target waveform w(t) into the ADC outputs with
high fidelity, performing a selective injection. If the adversary is unable to
succeed, the system is selectively secure against w(t).

3. The adversary can universally inject any waveform w(t). If there is any non-
trivial waveform for which he/she fails, the system is existentially secure.

This section sets out to precisely define the above security notions by account-
ing for noise and quantization error (Equation (1)). Our definitions capture the
intuition that systems are secure when there are no adversarial transmissions,
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and are “monotonic” in power, i.e., systems are more vulnerable against ad-
versaries with access to higher-powered transmitters. Our definitions are also
monotonic in noise. In other words, in environments with low noise, even a small
disturbance of the output is sufficient to break the security of a system. Sec-
tion 3.1 evaluates whether an adversary can disturb the ADC output away from
its correct value sufficiently. Section 3.2 then formalizes the notion of selective
security against target waveforms w(t). Finally, Section 3.3 introduces universal
injections by defining what a non-trivial waveform is.

3.1 Existential Injection, Universal Security

The most primitive attack is a simple disruption of the sensor readings. There are
two axes in which this notion can be evaluated: adversarial power and probability
of success.1 For a fixed probability of success, we want to determine the least
amount of power for which an attack is successful. For a fixed power, we want
to find the probability of a successful attack. Alternatively, if we fix both power
and probability of success, we want to determine if a system is secure against
disruptive signal injection attacks.

The definition for universal security is a formalization of the above intuition,
calling a system secure when, even in the presence of injections (bounded by
adversarial power), the true analog sensor value and the ADC digital output do
not deviate by more than the quantization error and the noise, with sufficiently
high probability. Mathematically:

Definition 1 (Universal Security, Existential Injection). For 0 ≤ ε < 1,
and V AdvPK ≥ 0, we call a system universally (ε, V AdvPK )-secure if

Pr

[
Es(t) ≥ Q+N−1

(
ε+ 1

2

)]
≤ ε+ 1

2
(4)

for every adversarial waveform v(t), with |v(t)|≤ V AdvPK for all t. Q is the quan-
tization error of the system, N−1 is the noise distribution inverse defined in
Equation (2), and Es is the sampling error as defined by Equation (3). The
probability is taken over the duration of the attack, i.e., at each sampling point
within the interval tstart ≤ t ≤ tend. We call a successful attack an existential
injection, and simply call a system universally ε-secure, when V AdvPK is implied.

We first show that in the absence of injections, the system is universally ε-
secure for all 0 ≤ ε < 1. Indeed, let x = N−1

(
ε+1
2

)
, so that Pr [|n(t)|≤ x] = ε+1

2 .
Then, in the absence of injections,

Pr

[
Es(t) ≥ Q+N−1

(
ε+ 1

2

)]
= Pr [|n(t)|≥ x] =

= 1− ε+ 1

2
=

1− ε
2
≤ ε+ 1

2

1 Success is probabilistic, as noise is a random variable.
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which holds for all 0 ≤ ε < 1, as desired. This proof is precisely the reason for
requiring a noise level and probability of at least 50% in the definition: the proof
no longer works if (1 + ε)/2 is replaced by just ε. In other words, mere noise
would be classified as an attack by the modified definition.

Power. We now show that a higher adversarial power budget can only make
the system more vulnerable. Indeed, if a system is universally (ε, V1)-secure,
then it is universally (ε, V2)-secure for V2 ≤ V1. For this, it suffices to prove the
contrapositive, i.e., that if a system is not universally (ε, V2)-secure, then it is not
universally (ε, V1)-secure. For the proof, let v(t) be an adversarial waveform with
|v(t)|≤ V2 such that Equation (4) does not hold, which exists by the assumption
that the system is not universally (ε, V2)-secure. Then, by the transitive property,
|v(t)|≤ V1, making v(t) a valid counterexample for universal (ε, V1) security.

Probability. The third property we show is probability monotonicity, allowing
us to define a “critical threshold” for ε, above which a system is universally secure
(for a fixed V AdvPK ), and below which a system is not universally secure. Indeed,
for fixed V AdvPK , if a system is universally (ε, V AdvPK )-secure, then it is universally
(ε+ δ, V AdvPK )-secure for 0 ≤ δ < 1− ε, as

Pr

[
Es(t) ≥ Q+N−1

(
ε+ δ + 1

2

)]
≤

Pr

[
Es(t) ≥ Q+N−1

(
ε+ 1

2

)]
≤ ε+ 1

2
≤ ε+ δ + 1

2

because N−1 is increasing. The contrapositive is, of course, also true: if a system
is not universally secure for a given ε, it is also not universally secure for ε − δ
with 0 ≤ δ ≤ ε.
Thresholds. For a given security level ε, then, we can talk about the maximum
(if any) V AdvPK such that a system is universally (ε, V AdvPK )-secure, or conversely the
minimum (if any) V AdvPK such that a system is not universally (ε, V AdvPK )-secure.
This is the critical universal voltage level Vc for the given ε. Moreover, for
any V AdvPK , there is a unique critical universal security threshold εc such
that the system is universally (ε, V AdvPK )-secure for εc < ε < 1 and not universally
(ε, V AdvPK )-secure for 0 ≤ ε < εc. By convention we take εc = 0 if the system is
secure for all ε, and εc = 1 if there is no ε for which the system is secure. This
critical threshold indicates the security level of a system: the lower εc is, the
better a system is protected against signal injection attacks.

3.2 Selective Injection and Security

The second definition captures the notion of security against specific target wave-
forms w(t): we wish to find the probability that a V AdvPK -bounded adversary can
make w(t) appear in the output of the ADC. Conversely, to define security in
this context, we must make sure that the digitized signal s̃f (t) differs from the
waveform s(t) + w(t) with high probability, even if plenty of noise is allowed.
There are two crucial points to notice about the waveform w(t). First, w(t) is not



10 Ilias Giechaskiel, Youqian Zhang, and Kasper B. Rasmussen

the raw signal v(t) the adversary is transmitting, as this signal undergoes two
transformations via HC and HA. Instead, w(t) is the signal that the adversary
wants the ADC to think that it is seeing, and is usually a demodulated version
of v(t) (see Figure 1). Second, w(t) does not necessarily cancel out or overpower
s(t), because that would require predictive modeling of the sensor signal s(t).
However, if the adversary can predict s(t) (e.g., by monitoring the output of
the ADC, or by using identical sensors), we can then ask about security against
the waveform w′(t) = w(t) − s(t) instead. Given this intuition, we can define
selective security as follows:

Definition 2 (Selective Security, Selective Injection). For 0 ≤ ε < 1, and
V AdvPK ≥ 0, a system is called selectively (ε, w(t), V AdvPK )-secure if

Pr

[
Es+w(t) ≥ Q+N−1

(
(1− ε) + 1

2

)]
>

2− ε
2

(5)

for every adversarial waveform v(t), with |v(t)|≤ V AdvPK for all t, where the prob-
ability is taken over the duration of the attack. Q is the quantization error of
the system, N−1 is the noise distribution inverse defined in Equation (2), and
Es+w(t) = |s̃f (t+ τ)− s(t)− w(t)| during sampling periods, and 0 otherwise.
We call a successful attack a selective injection, and simply call a system
selectively ε-secure, when V AdvPK and w(t) are clear from context.

This definition is monotonic in adversarial power, and the probability of suc-
cess, allowing us to talk about “the” probability of success for a given waveform:

Power. The same argument as above shows that increasing V AdvPK can only make
a secure system insecure, but not vice versa, i.e., that if a system is selectively
(ε, w(t), V1)-secure, then it is selectively (ε, w(t), V2)-secure for V2 ≤ V1. We can
thus define the critical selective voltage level V wc for a given ε and w(t).

Probability. If a system is selectively ε-secure (against a target waveform and
power budget), then it is selectively (ε+ δ)-secure for 0 ≤ δ < 1− ε, because

P = Pr

[
Es+w(t) ≥ Q+N−1

(
1− (ε+ δ) + 1

2

)]
≥ Pr

[
Es+w(t) ≥ Q+N−1

(
1− ε+ 1

2

)]
>

2− ε
2
≥ 2− (ε+ δ)

2

If the system is not selectively ε-secure, then it is not selectively (ε− δ)-secure.

Given the above, for a given waveform w(t) and fixed V AdvPK , we can define
a waveform-specific critical selective security threshold εwc such that the
system is vulnerable for all εw with 0 ≤ εw < εwc and secure for all εw with
εwc < εw < 1. By convention we take εwc = 0 if there is no ε for which the system
is vulnerable, and εwc = 1 if there is no ε for which the system is secure.
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Threshold Relationship. The critical universal threshold of a system εc is
related to the critical selective threshold ε0c against the zero waveform w(t) =
0 through the equation ε0c = 1 − εc. Indeed, if a system is not universally ε-

secure, then P = Pr
[
Es(t) ≥ Q+N−1

(
ε+1
2

) ]
> ε+1

2 , so 2−(1−ε)
2 = ε+1

2 < P =

Pr
[
Es+0(t) ≥ Q+N−1

(
(1−(1−ε))+1

2

)]
, making the system is selectively (1−ε)-

secure for the zero waveform. Conversely, if a system is selectively (1− ε)-secure
for the zero waveform, then it is not universally ε-secure. The fact that a low
critical universal threshold results in a high critical selective threshold for the
zero threshold is not surprising: it is easy for an adversary to inject a zero signal
by simply not transmitting anything.

3.3 Universal Injection, Existential Security

The final notion of security is a weak one, which requires that the adversary
cannot inject at least one “representable” waveform into the system, i.e., one
which is within the ADC limits. We can express this more precisely as follows:

Definition 3 (Representable Waveform). A waveform w(t) is called rep-
resentable if it is within the ADC voltage levels, and has a maximum fre-
quency component bounded by the Nyquist frequency of the ADC. Mathemati-
cally, Vmin ≤ w(t) ≤ Vmax and fmax ≤ fs/2.

Using this, we can define security against at least one representable waveform:

Definition 4 (Existential Security, Universal Injection). For 0 ≤ ε < 1,
and V AdvPK ≥ 0, a system is called existentially (ε, V AdvPK )-secure if there exists
a representable waveform w(t) for which the system is selectively (ε, w(t), V AdvPK )-
secure. We call a system existentially ε-secure when V AdvPK is clear. If there is no
such w(t), we say that the adversary can perform any universal injection.

As above, power and probability are monotonic in the opposite direction.

Power. If a system is existentially (ε, V1)-secure, then it is (ε, V2)-secure for
V2 ≤ V1. By assumption, there is a representable w(t) such that the system is se-
lectively (ε, w(t), V1)-secure. By the previous section, this system is (ε, w(t), V2)-
secure, concluding the proof.

Probability. If a system is existentially (ε1, V )-secure, then it is (ε2, V )-secure
for ε1 ≤ ε2. By assumption, there is a representable w(t) such that the system
is selectively (ε1, w(t), V )-secure. By the previous section, the system is also
(ε2, w(t), V )-secure, as desired.

Thresholds. Extending the definitions of the previous sections, for fixed ε we
can define a critical existential voltage level V existc below which a system
is existentially ε-secure, and above which the system is existentially ε-insecure.
Similarly, for a fixed adversarial voltage we can define the critical existential
security threshold εexistc , above which the system is existentially secure, and
below which the system is insecure.
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Table 1: The adversary can easily disturb the smartphone output (existential
injection), and inject human speech (universal injection). Selective injections of
sines are less precise than exponentials of the same frequency.

Injection Resulting Signal Crit. Thres.

Existential w(t) 6= 0 0.892

Selective w(t) = esin(2πfmt) 0.747
Selective w(t) = sin(2πfmt) 0.562
Universal “OK Google” commands ≤ 0.562

In some cases, security designers may wish to adjust the definitions to restrict
target waveforms (and hence existential security counterexamples) even further.
For instance, we might wish to check whether an adversary can inject all wave-
forms which are sufficiently bounded away from 0, periodic waveforms, or wave-
forms of a specific frequency. The proofs for power and probability monotonicity
still hold, allowing us to talk about universal security against S-representable
waveforms: waveforms which are representable and also in a set S.

4 Security Evaluation of a Smartphone Microphone

In this section, we illustrate how our security definitions can be used to determine
the security level of a commercial, off-the-shelf smartphone microphone. We
first introduce an algorithm to calculate the critical selective security threshold
εwc against a target waveform w(t) in Section 4.1. We then use the algorithm
to calculate the critical thresholds of a smartphone in Section 4.2. Finally, we
comment on universal security in Section 4.3, where we show that we are able to
inject complex “OK Google” commands. We summarize our results in Table 1.

4.1 Algorithm for Selective Security Thresholds

In this section, we introduce an algorithm to calculate the critical selective se-
curity threshold εwc of a system against a target waveform w(t), using a trans-
mitted signal v(t). The first step in calculating the security level is determining
the noise distribution. To that end, we collect N measurements of the system
output s̃f (t) during the injection and pick one as the reference signal. We then
pick 1 ≤ k ≤ N −2 of them to calculate the noise (estimation signals), while the
remaining are used to verify our calculations (validation signals).

Our algorithm first removes any DC offset and re-scales the measurements
so that the root-mean-square (RMS) voltages of the signals are the same. The
repeated measurements are then phase-aligned, and we calculate the distance
between the reference signal and the estimation signals. The average of this
distance should be very close to 0, as the signals are generated in the same
way. However, the standard deviation σ is non-zero, so we can model noise
as following a zero-mean normal distribution n(t) ∼ N(0, σ2). We can then find
the critical threshold between the reference signal and any target ideal waveform
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Fig. 4: Clean (4a) and Distorted (4b) waveforms injected into the smartphone,
with ideal sine and exponential sine functions for comparison.

w(t) as follows: we first detrend, scale, and align the ideal signal to the reference
waveform, as with the estimation signals. Then, we calculate the errors (distance)
between the ideal and the reference signal. Finally, we perform a binary search
for different values of ε, in order to find the largest ε for which Equation (5) does
not hold: this is the critical threshold. To calculate the inverse of the noise, we
use the percentile point function ppf(ε), which is the inverse of the cumulative
distribution function, and satisfies N−1(ε) = ppf((1 + ε)/2). Note that since the
critical universal threshold εc is related to the selective critical threshold of the
zero waveform ε0c through εc = 1 − ε0c (Section 3.2), the same algorithm can be
used to calculate εc.

4.2 Existential and Selective Injections into a Smartphone

We demonstrate how our algorithm can be used in a realistic setup using a
Motorola XT1541 Moto G3 smartphone. We directly inject modulated fm =
1 kHz signals, collecting N = 10 measurements of 215 sample points per run,
and record the data at a frequency of fs = 44.1 kHz. We first modulate fm over
fc = 200 MHz using an output level of V AdvRMS = V AdvPK /

√
2 = 0.2 V. This injection

is demodulated well by the smartphone and has a similarity (as indicated by the
Pearson Correlation Coefficient) of over 0.98 compared to a pure 1 kHz tone. We
call this example the “clean” waveform. The second injection, which we call the
“distorted” waveform, uses fc = 25 MHz, V AdvRMS = 0.9 V, and has a similarity
of less than 0.55 to the ideal tone. Example measurements of these signals and
“ideal” signals (see below) are shown in Figure 4.

The algorithm first calculates the noise level using the reference signals. As
expected, the error average is very close to 0 (usually less than 10−6), while the
standard deviation σ is noticeable at around 0.0015. Taking the reference signals
as the target signal w(t), the critical selective thresholds are close to 1. In other
words, even if the injected waveforms do not correspond to “pure” signals, the
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Table 2: Mean and std. deviation (µ, σ) of critical selective thresholds εwc for
different target signals w(t). Injections using the clean waveform are always more
successful than with the distorted waveform. Validation signals are injected with
high fidelity, and are better modeled by an exponential rather than a pure sine.

Waveform Validation Ideal Sine eIdeal Sine w(t) 6= 0

Clean (0.98, 0.03) (0.56, 0.04) (0.75, 0.06) (0.89, 0.01)
Distorted (0.95, 0.09) (0.31, 0.05) (0.34, 0.05) (0.71, 0.04)

adversary can inject them with high fidelity: the system is not selectively secure
against them with high probability.

We also tried two signals as the signal w(t) that the adversary is trying to
inject: a pure 1 kHz sine wave, and an exponential of the same sine wave. The
averages and standard deviations for the calculated thresholds over all combi-
nations of k and reference signals are shown in Table 2. As we would expect,
the thresholds for the distorted waveform are much lower than the values for
the clean waveform: the signal is distorted, so it is hard to inject an ideal signal.
We also find that the exponential function is a better fit for the signal we are
seeing, and can better explain the harmonics. Table 2 also includes the critical
universal injection threshold based on the two waveform injections. This thresh-
old is much higher for both waveforms, as injections disturb the ADC output
sufficiently, even when the demodulated signal is not ideal.

4.3 Universal Injections on a Smartphone

In this section, we demonstrate that the smartphone is vulnerable to the injec-
tion of arbitrary commands, which cause the smartphone to behave as if the
user initiated an action. We first inject a modulated recording of “OK Google,
turn on the flashlight” into the microphone port, checking both whether the
voice command service was activated in response to “OK Google”, and whether
the desired action was executed. We repeat measurements 10 times, each time
amplitude-modulating the command at a depth ofm = 100% with V AdvRMS = 0.6 V
on 26 carrier frequencies fc: 25 MHz, 50 MHz, and 100− 2400 MHz at a step of
100 MHz. The voice-activation feature (“OK Google”) worked with 100% suc-
cess rate (10/10 repetitions) for all frequencies, while the full command was suc-
cessfully executed for 23 of the 26 frequencies we tested (all frequencies except
fc ∈ {1.3, 2.0, 2.4GHz}). Increasing the output level to V AdvRMS = 0.9 V, increased
success rate to 25/26 frequencies. Only fc = 2.4 GHz did not result in a full
command injection, possibly because the Wi-Fi disconnected in the process.

We repeated the above injections, testing 5 further commands to (1) call a
contact; (2) text a contact; (3) set a timer; (4) mute the volume; and (5) turn
on airplane mode. The results remained identical, regardless of the actual com-
mand to be executed. As a result, all carrier frequencies which are not severely
attenuated by HC (e.g., when coupling to the user’s headphones) are vulnerable
to injections of complex waveforms such as human speech.
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5 Discussion

We now discuss how our work can inform design choices. To start, choosing
the right ADC directly impacts the susceptibility to signal injection attacks. As
shown in Appendix A, some ADCs distort the demodulated output, and are thus
more resilient to clean sinusoidal injections. Moreover, other ADCs require fine-
grained control over the carrier frequency of injection. As the adversarial signal
is transformed through the circuit-specific transfer function HC , the adversary
may not have such control, resulting in a more secure system.

Having chosen the appropriate ADC based on cost, performance, security, or
other considerations, a designer needs to assess the impact of HC . Prior work
has shown that even small layout or component changes affect the EMI behavior
of a circuit [3,8,19]. Since the ADC behavior can be independently determined
through direct power injections, fewer experiments with remote transmissions are
required to evaluate the full circuit behavior, and how changes in the circuit’s
topology influence the system’s security.

Our selective security definition and algorithm address how to determine the
vulnerability of a system against specific waveforms. Universal security, on the
other hand, allows us to directly compare the security of two systems for a fixed
adversarial power budget through their critical universal security thresholds.
Moreover, given a probability/threshold ε, we can calculate the critical universal
voltage level, which is the maximum output level for which a system is still
universally ε-secure.

Our smartphone case study showed that our framework can be used in prac-
tice with real systems, while our “OK Google” experiments demonstrated that
less-than-perfect injections of adversarial waveforms can have the same effect as
perfect injections. This is because there is a mismatch between the true noise-
level of a system and the worst-case noise-level that the system expects. In other
words, injections worked at all carrier frequencies, even when the demodulated
output was noisy or distorted. This is a deliberate, permissive design decision,
which allows the adversary to succeed with a range of different and noisy wave-
forms w(t), despite small amplitudes and DC offsets.

Although not heavily discussed in this paper, our model and definitions are
general enough to capture alternative signal injection techniques. For instance,
electro-mechanical sensors have resonant frequencies which allow acoustic in-
jection attacks [18,21]. HC can account for such imperfections in the sensors
themselves, attenuating injection frequencies which are not close to the resonant
frequencies. Our system model also makes it easy to evaluate countermeasures
and defense mechanisms in its context. For example, shielding increases the
attenuation factor of HC , thereby increasing the power requirements for the
adversary (Section 2.1). Alternatively, a low-pass filter (LPF) before the ADC
and/or amplifier changes HA, and attenuates the high-frequency components
which would induce non-linearities. Note, however, that even moving the pre-
amplifier, LPF and ADC into the same IC package does not fully eliminate the
vulnerability to signal injection attacks (Section 6) as the channel between the
analog sensor and the ADC cannot be fundamentally authenticated.
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6 Related Work

Although no frameworks and security definitions have been previously pro-
posed for signal injection attacks, there is extensive literature on attacking
sensors/components using electromagnetic (EM), acoustic, and optical injec-
tions [4], including EM attacks on IMDs to deliver defibrillation shocks and
inject audio signals into webcams and bluetooth headsets [6]. More recently, [14]
attacked GPIO pins on microcontrollers, also proposing an analytical model of
the magnetic field in EM induction attacks.

Shoukry et al. [16] presented an attack against Anti-Lock Braking Systems
(ABS) by generating a magnetic field that replaces the real signal, by a mali-
cious one. The same researchers later presented an authentication system called
PyCRA for active sensors [17], which depends on non-spoofable physical and
computational delay limits, although [15] suggests that PyCRA would require
high computational overhead in practice.

[5] used EM transmissions to trigger voice commands in smartphones by emit-
ting AM-modulated signals that get picked up by the user’s hands-free headset.
Other researchers have injected voice commands through modulating signals on
ultrasound frequencies [23], or by playing two tones at different ultrasound fre-
quencies, and exploiting non-linearities in components [13].

Acoustic attacks which transmit sound waves at the resonant frequencies of
gyroscopes can incapacitate [18] or precisely control [20] drones, with attackers
who account for sampling rate drifts being able to control the outputs of ac-
celerometers for longer periods of time [21]. Finally, optical attacks can be used
to spoof medical infusion pump measurements [9], and cause autonomous cars
and unmanned aerial vehicles (UAVs) to drift or fail [1,11,22].

7 Conclusion

Sensors guide many of our choices, and we often blindly trust their values. How-
ever, it is possible to spoof their outputs through electromagnetic or other signal
injection attacks. To address the lack of a unifying framework describing the sus-
ceptibility of devices to such attacks, we defined a system and adversary model
for signal injections. Our model is the first to abstract away from specific envi-
ronments and circuit designs and presents a strong adversary who is only limited
by transmission power. It also makes it easy to discuss and evaluate countermea-
sures in its context and covers different types of signal injection attacks.

Within our model, we defined existential, selective, and universal security,
capturing effects ranging from mere disruptions of the ADC outputs to precise
injections of all waveforms. We showed in practice that our definitions can be
used to evaluate the security level of an off-the-shelf smartphone, and we intro-
duced a novel algorithm to calculate “critical” thresholds, which express how
close an injected signal is to the ideal signal. In response to the emerging signal
injection threat, our work paves the way towards a future where security can be
quantified and compared through our methodology and security definitions.
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Table 3: The ADCs used in our experiments cover a range of different properties.

ADC Manufacturer Package Type Bits Max fs fcut

TLC549 Texas Instruments DIP SAR 8 40 kHz 2.7 MHz
ATmega328P Atmel Integrated SAR 10 76.9 kHz 0.1-11.4 MHz
Artix7 Xilinx Integrated SAR 12 1 MHz 5.3 MHz
AD7276 Analog Devices TSOT SAR 12 3 MHz 66.3 MHz
AD7783 Analog Devices TSSOP ∆Σ 24 19.79 Hz [50,60 Hz]
AD7822 Analog Devices DIP Flash 8 2 MHz 128.4 MHz

Appendix A ADC Response HA to Malicious Signals

As explained in Section 2, an adversary trying to inject signals remotely into a
system typically needs to transmit modulated signals over high-frequency carri-
ers. As HC is unique to each circuit and needs to be re-calculated even for minor
changes to its components and layout [3], the first step to determine the system
vulnerability is to understand the behavior HA of the ADC used.

To do so, we inject signals generated via a Rohde & Schwarz SMC100A/B103
signal generator directly into 6 ADCs and determine their demodulation char-
acteristics. The ADCs come from 4 manufacturers in different packages and are
controlled via different protocols. The maximum sampling rate fs of the ADCs
ranges from a few Hz to several MHz, while the resolution ranges from 8 to 24
bits. The ADC types include Delta-Sigma (∆Σ), half-flash, and successive ap-
proximation (SAR). Table 3 shows these properties along with the −3 dB cutoff
frequency fcut, calculated using the R,C parameters in the ADCs’ datasheets.

We inject sinusoidal signals of different frequencies fm, which have been
amplitude modulated (AM) on different carrier carrier frequencies fc. In other
words, we consider the intended signal to be w(t) = sin(2πfmt), the sensor signal
to be absent (s(t) = 0), and evaluate how “close” w(t) is to the ADC output
s̃f (t). Due to space restrictions, we only describe typical results for each ADC.

ATmega328P. Figure 5 presents two example measurements of outputs of the
ATmega328P, both in the time domain and in the frequency domain. The input
to the ADC is a fm = 1 Hz signal modulated over different high-frequency car-
riers. As shown in the frequency domain (bottom of Figure 5), the fundamental
frequency fm dominates all other frequencies, so the attacker is able to inject a
signal of the intended frequency into the output of the ADC. However, the out-
put at both carrier frequencies has strong harmonics at 2fm, 3fm, . . .Hz, which
indicates that the resulting signal is not pure. Moreover, there is a residual high-
frequency component, which is attenuated as the carrier frequency fc increases.
Finally, there is a frequency-dependent DC offset caused, in part, by the ESD
diodes, while the peak-to-peak amplitude of the measured signal decreases as
the carrier frequency increases. This is due to the low-pass filtering behavior of
the sample-and-hold mechanism, which also explains why we are only able to
demodulate signals for carrier frequencies until approximately 150 MHz.

TLC549. The TLC549 (Figure 6a) also demodulates the injected signal, but
still contains harmonics and a small high-frequency component.
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Fig. 5: Example ATmega328P output for power P = 0 dBm, signal frequency
fm = 1 Hz, and modulation depth m = 50%. The signal exhibits the correct
fundamental frequency, but also contains strong harmonics and a high-frequency
component, which is attenuated as the carrier frequency fc increases.
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Fig. 6: Example TLC549 (6a) and AD7783 (6b) outputs for a transmission power
of P = 5 dBm. Both ADCs demodulate the injected signal, but present harmon-
ics and some high-frequency components. The AD7783 signal is aliased.

AD7783. As the AD7783 (Figure 6b) only has a sampling frequency of fs =
19.79 Hz, aliasing occurs when the baseband signal exceeds the Nyquist frequency
fs/2. For example, when the baseband frequency is fm = 10 Hz, the fundamental
frequency dominating the measurements is of frequency 2fm−fs = 20−19.79 =
0.21 Hz, with a high-frequency component of fs − fm = 9.79 Hz.

AD7822, AD7276, Artix7. The three remaining ADCs contain strong high-
frequency components which dominate the low-frequency signal. Their outputs
appear to be AM-modulated, but at a carrier frequency which is below the
ADC’s Nyquist frequency. However, with manual tuning of the carrier frequency,
it is possible to remove this high frequency component, causing the ADC to
demodulate the input. This is shown for the Flash ADC AD7822 in Figure 7,
where we change the carrier frequency fc in steps of 100 Hz.
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Fig. 7: Example AD7822 output for power P = −5 dBm, signal frequency fm =
5 Hz, and depth m = 50%. Signal demodulation requires a fine-tuned fc.

Conclusion. The results of our experiments lead to the following observations:

1. Generality – All 6 ADCs tested are vulnerable to signal injections at multi-
ple carrier frequencies, as they demodulate signals, matching the theoretical
expectations of Section 2.1. As the ADCs are of all major types and with
a range of different resolutions and sampling frequencies, the conclusions
drawn should be valid for other ADC chips.

2. Low-Pass Filter – Although all ADCs exhibited low-pass filtering charac-
teristics, the maximum vulnerable carrier frequency for a given power level
was multiple times the cut-off frequency of the RC circuit at the input of
the ADC. This extended the frequency range that an attacker could use for
transmissions to attack the system.

3. Power – The adversary needs to select the power level of transmissions
carefully: too much power in the input of the ADC can cause saturation
and/or clipping of the measured signal. Too little power, on the other hand,
results in output that looks like noise or a zero signal.

4. Carrier Frequency – Some ADCs were vulnerable at any carrier frequency
that is not severely attenuated by the sample-and-hold mechanism. For oth-
ers, high-frequency components dominated the intended baseband signal of
frequency fm in the ADC output for most frequencies. Even then, carefully-
chosen carrier frequencies resulted in a demodulated ADC output.
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