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milliMap: Robust Indoor Mapping with Low-cost mmWave Radar
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Abstract— Single-chip Millimetre wave (mmWave) radar is
emerging as an affordable, low-power range sensor in automo-
tive and mobile applications. It can operate well in low visibility
conditions, such as in the presence of smoke and debris, fitting
the payloads of resource-constrained robotic platforms. Due
to the nature of the sensor, however, distance measurements
are very sparse and affected by multi-path reflections and
scattering. Indoor grid mapping with mmWave radars has not
been yet explored. To this extent we propose milliMap, a self-
supervised architecture for creating dense occupancy grid maps
of indoor environments from sparse, noisy mmWave measure-
ments. To deal with the ill-constrained sparse-to-dense recon-
struction problem, we leverage the Manhattan world structure
typical of indoor environments to introduce an auxiliary loss
that encourages generation of straight lines. With experiments
in different indoor environments and under different conditions,
we show the ability of milliMap to generalise to previously
unseen environments. We also show how the reconstructed grid
maps can be used in subsequent navigation tasks.

I. INTRODUCTION

The continued growth and evolution of mobile robotics
applications demand increasing levels of autonomy and per-
ception. In turn, advances in capability are also leading to
the creation of novel human/robot systems, ranging from
the niche (e.g. fire rescue) to the mundane (e.g. domestic
service robots). For all these applications, navigation is a
key capability and requirement.

State-of-the-art navigation and path planning approaches
are often based on an occupancy map representation of the
environment [5]. These maps are commonly built using laser
range scanners (lidar), RGB-D cameras or stereo cameras.
Although lidars provide high resolution point clouds, they
are often impractical for low-cost, low-power applications.
Camera-based sensors, on the other hand, whilst being
relatively inexpensive, raise privacy concerns, particularly
on consumer robotic platforms for domestic or commercial
environments [23]. Meanwhile, use cases of vision sensors
are also restricted by adverse illumination conditions, e.g.,
darkness, dimness and glare [6].

Recently, single-chip millimetre wave (mmWave) radar
has emerged as an innovative low-cost, low-power sensor
modality in the automotive industry. A key advantage of
mmWave radar is its robustness to adverse environmental
conditions, such as smoke, fog and dust. This unique ca-
pability makes it particularly useful in search and rescue
scenarios, where teams of mobile robots operate in dark
environments, full of airborne particulates. In the specific
case of fire response, mmWave radars can see through smoke
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Fig. 1: An illustration of milliMap. A neural network
generator takes as input the stitched patches from mmWave
scans and produces denser and cleaner patches. Generated
patches are then merged, yielding a dense grid map.

and help firefighters understand smoke-filled environments
where many other sensors (e.g., RGB camera, depth cam-
era and lidar) fail. Moreover, thanks to the use of beam-
forming antennas rather than mechanical rotation, single-
chip mmWave radar solutions are physically small and light.
Compared with the cumbersome lidar or mechanical radar
(e.g., CTS350-X), new mmWave radars are more able to
fit the payloads of many micro robots and form factors of
mobile or wearable devices.

Despite these advantages, mmWave-based mapping in
indoor environments is still under-explored. The main issues
lie in the strong indoor multi-path reflections as well as
the sparse measurements returned by single chip radars.
In extreme cases, we observe outliers due to multi-path
reflections over 75%, along with an order of magnitude lower
point density than a lidar counterpart.

To this extent, we propose milliMap, an approach for
performing both denoising and a sparse-to-dense reconstruc-
tion of mmWave occupancy maps (see Fig. 1). Supervision
labels can be provided as ground truth from a dense range
sensor such as lidar. The system is then able to generalize to
previously unseen environments. We show that, in order to
learn an effective mapping, it is useful to introduce priors on
the geometric appearance of indoor spaces, which are mostly
composed of rectilinear features, such as walls and floors.

To summarize, the contributions of this work are:

e The first work using single-chip mmWave radars for

dense grid mapping in indoor environments.

e A customized sparse-to-dense loss that embeds the

geometric characteristics of indoor spaces.

o A systematic study of the impacts of input representa-

tions and network models on the map generation.

o Extensive experiments in various real-world settings,

with dataset and code released to the community.
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Fig. 2: Comparison of lidar', mechanical radar’ and our
single-chip radar®. In each category, the features of a rep-
resentative model are listed. Notably, compared with a lidar
and a mechanical radar used in [30], our beamforming radar
is much cheaper and lighter, but only provides few points.

II. RELATED WORK

RF Imaging and Tracking. Signal reflection of RF waves
has been leveraged to perform object imaging in both WiFi
and millimeter wave bands. In the WiFi bands, researchers
have used commodity WiFi chips [3], [10] or specialized
FMCW hardware [1], [32] to image static objects, or measure
human body dynamics as well as pose estimation. However,
due to the relatively narrow bandwidth and OFDM modula-
tion, the performance of WiFi imaging methods is limited in
the wild [10]. In contrast, because of the wide bandwidth in
GHz and modulation specially designed for ranging rather
than communications (e.g., FMCW), millimeter wave radars
have been used for object imaging [2], [22]. However,
these attempts all use a heavy mechanical radar in outdoor
scenarios, where multi-path noise is insignificant. Imaging
the indoor environments using single-chip mmWave radars
is an important, yet unexplored area.
Sparse-to-Dense Generative Networks. Works that exploit
sparsity have been proposed mainly for the problem of depth
estimation from sparse depth measurements [9], [15], [17],
[16], [29]. [9] exploits the sparsity of stereo disparity maps
in the Wavelet domain. In [15], the authors leverage the
regularities of indoor environments to infer dense depth from
sparse measurements, based on compressive sensing. Other
works focused on multi-modal inputs. [29] proposes to use
a fully-connected conditional random fields model for depth
inpainting from RGB and sparse (i.e., SLAM-derived or lidar
measurements) or incomplete (Kinect-based) depth images.
Completion of incomplete depth maps from structured light
sensors is usually referred to as depth inpainting, or when
the objective is also to remove measurement noise, depth
enhancehment [14]. [17] proposes a deep generative network
for multi-modal depth prediction from RGB images and
sparse depth measurements. In [16] the authors propose
a self-supervised method for dense depth prediction from
sequences of RGB and sparse depth images, based on
photometric loss.

The most closely related work to our approach is [30], in

which the authors recently proposed a variational architecture
for creating probabilistic occupancy grid maps from raw
automotive scanning radar data. The difference lies in the
distinct radars. Unlike [30], milliMap does not use a
customized mechanical radar, but instead considers a cheap,
lightweight beamforming radar commercial off-the-shelf (see
Fig. 2). As stated in Section IV-A, the mmWave data in our
case are much sparser. Moreover, [30] is designed for outdoor
scenarios that do not suffer from the substantial multi-path
present in indoor environments. We quantitatively compare
our method with [30] in Tab. II.

III. PRINCIPLES OF MMWAVE RADAR

Range Measurement mmWave radar is based on the tech-
nique of frequency modulated continuous wave (FMCW)
radar [26], and has the ability to simultaneously measure both
the range and relative radial speed of the target. In FMCW, a
radar uses a linear ‘chirp’ or swept frequency transmission.
When receiving the signal reflected by an obstacle, the radar
front-end computes the frequency difference between the
transmitted reference signal and the received signal, which
produces an Intermediate Frequency (IF) signal. Based on
this IF signal, the distance d between the object and the
radar can be calculated as:

frrc
2S5

where c represents the light speed 3 x 108m/ s, frr is the
frequency of the IF signal, and S is the frequency slope of
the chirp. In the presence of multiple obstacles at different
ranges, a fast Fourier transform (FFT) is performed on the
IF signal, where each peak after FFT represents an obstacle
at the corresponding distance.

Angle Measurement A mmWave radar estimates the obsta-
cle angle by using multiple on-board antennas. It works by
emitting chirps with the same initial phase, and then simul-
taneous sampling from multiple receiver antennas. Based on
the differences in phase of the received signals, the Angle of
Arrival (AoA) for the reflected signal can be estimated [20].
Formally, the AoA estimated from any two receiver antennas
can be calculated as:

d:

)

. w
0 = sin (27rd) (2)
where w denotes the phase difference and A is the wave
length. When multiple pairs of receiver antennas are avail-
able, the final AoA is the average result from different pairs.
At this point, the position of a reflecting obstacle can be
jointly determined by AoA and ranging estimation.

IV. PROPOSED APPROACH

In this section, we describe the technical details of
milliMap. In Sec. IV-A, we introduce our technical chal-
lenges. The reconstruction methods, including the neural

'https://www.amtechs/product /VLP-16-Puck.pdf

’https://navtechradar.atlassian.net/wiki/spaces/
PROD/pages/12353572/CTS350-X+Radar+Specifications

3http://www.ti.com/lit/ds/symlink/awrl443.pdf
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Fig. 3: Multi-path Noise. The black lines in (3b) are walls
and there are non-negligible noise artefacts (in green) behind
walls that are the result of multi-path reflection.

network architecture and learning fashion, are described in
Sec. IV-B. Sec. IV-C discusses the network input represen-
tation and Sec. IV-D finally details a customized loss term
and our objective function.

A. Challenges: Sparsity and Noise Issues

A mmWave radar detects ambient objects based on signal
reflection. After several on-board pre-processing steps (e.g.,
interference mitigation), the range and orientation of reflect-
ing points can be estimated and these points collectively
form a point cloud in the field of view. However, unlike
the dense point clouds generated by lidars or depth cameras,
the mmWave point cloud in indoor environment has two
fundamental issues: i) multi-path noise and ii) sparsity.

1) Multi-path Noise: Similar to any radio frequency tech-
nology, the signal propagation of mmWave in indoor envi-
ronments is subject to multi-path [31] due to beam spreading
and reflection from the surrounding objects (see Fig. 3a). As
a consequence, reflected signals arriving at a receiver antenna
are normally from two or more paths, leading to smearing
and jitter. Multi-path is the primary contributor to the non-
negligible proportion of pertinent noise artefacts or ‘ghost
points’ in a mmWave point cloud. We empirically found
that, in extremely severe multi-path scenarios, e.g., corridor
corners, ghost points can account for > 75% points of a
frame, which severely impacts grid mapping steps. Fig. 3b
shows examples of noisy point clouds, where we can see
many ghost points behind walls.

2) Sparsity: As shown in Fig. 2, the point cloud given by a
single-chip mmWave radar is approximately ~ 100 reflective
points per scan, which is over 10x sparser than a lidar and
~ 5Xx sparser than a mechanical radar [16]. Such sparsity
results from three factors in commercially available mmWave
radars: (i) few antennas, (ii) point aggregation mechanism
and iii) restricted sensing range. Unlike massive array radar
technology, due to cost and size constraints, the mmWave
radar in our use only has 6 antennas, which fundamentally
limits its resolution. In addition, unlike a mechanically
rotating/scanning radar, the beamforming radar used in this
work is static with limited field of view. Moreover, in order
to lower bandwidth burden and improve signal-to-noise ratio,
commercial mmWave radars usually apply algorithms such
as CFAR (Constant False Alarm Rate) [28] on raw mmWave
streams and only provide aggregated point cloud, further
reducing density. The third factor resulting in sparsity is

specific to indoor mapping tasks and a consequence of multi-
path noise. mmWave point clouds contain a non-negligible
portion of ‘ghost points’, which can mislead map densifi-
cation. In order to suppress these ‘ghost points’, we discard
points outside of a sensing radius of 3m, as multi-path effects
generally incur false-positive points at longer distances [31].
However, this restriction inevitably decreases the density of
point clouds further.

B. Reconstruction Method

With knowledge of the properties of mmWave data,
milliMap aims to combat the above issues and convert the
raw mmWave point cloud to a grid map of occupancy. Al-
though traditional Inverse Sensor Models (ISM) techniques
work well on high-fidelity sensors such as lidar, these ISM
methods struggle to model challenging radar noises and
often impose strict assumptions on the noise distribution
[30]. In fact, the complex interaction of noise and sparsity
issues introduces huge challenges. As we will see soon in
experiments, the map cannot be accurately reconstructed
when the classic line-fitting approach [19] designed for
lidar is used. In contrast, using deep learning methods, as
originally advocated by [25], allows occupancy grids to be
learned from raw data.

Reconstruction Neural Network. For these reasons, we
adopt a deep learning method to reconstruct grid maps in
this work. Our network architecture is constructed based on
pix2pixHD [27], a proven encoder-decoder framework for
general image-to-image translation. pix2pixHD is essentially
a conditional generative adversarial network (GAN) [18]
that comprises a generator G and a discriminator D. In
our context, the goal of the generator G is to transform
sparse and noisy patches to dense and clean images, while
the discriminator D aims to distinguish real images (i.e.,
partial environment maps) from the transformed ones. As in
many other generative networks, U-Net [21] is adopted as
the backbone in our generator. To allow a large receptive
field without large memory overhead, this network also uses
multi-scale discriminators and downsamples the real and
synthesized images by different factors to create an image
pyramid of various scales. The discriminators are trained to
distinguish real and generated images at various scales.

Self-Supervision by Co-location: Training the above neural
network requires a large number of labelled images, which
are costly to annotate by humans. To make mil1liMap scal-
able and reduce labelling effort, we adopt a self-supervised
learning fashion by using only partial labels (i.e., lidar
patches) generated from a co-located lidar, allowing a robot
to learn about the occupancy of the indoor environment
by simply traversing an environment. After the co-located
learning phase, the mmWave radar on the robot is able to gain
mapping skills from past experience and becomes capable of
generating a lidar-like map independently. Fig. 4 illustrates
this learning approach.
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Fig. 4: Training the generator network with self-supervision.

C. Network Input Representation

Given the above neural network, it is not immediately
clear what representation of the inputs is best suited. Similar
to most networks for image-to-image translation, our net-
work expects image-like inputs, with a fixed, relatively low,
number of channels and spatial correlations between neigh-
bouring pixels, which is not met by the inherent irregularity
of point clouds. We thus need to firstly convert the point
cloud to an image-like representation and then use existing
networks to process it.

Perhaps the most straightforward representation is a virtual
2D laser scan obtained from the 3D point cloud. After
projecting each scan to a planar 2D image via raytracing,
generative convolution neural networks are able to take it
as an input and generate a denser and denoised image.
The dense images can then be converted back to angular
distance measurements via raytracing and used for mapping.
However, as the mmWave point cloud is very sparse, the
converted scan image from each frame contains few spatial
correlations between neighboring pixels. Directly feeding
such non-informative images to a network often incurs
overfitting and hard to generalize in new environments [24].

For these reasons, in this work we chose to work directly
on map patches. In particular, we assume access to a reason-
ably accurate odometry (e.g., from fusion of wheel odom-
etry and inertial measurements) and we directly generate a
map from mmWave scans, using off-the-shelf Bayesian grid
mapping. We then feed patches of the generated map along
with the past robot trajectory to our network for denoising
and densification. The advantage is that map patches contain
more information about the structure of the environment;
at the same time, mapping can be performed in real time,
while the more expensive map densification process can run
in background. Hereafter, we denote the real map patches
as x and the converted mmWave patches as s. The pivotal
goal of milliMap is to translate mmWave patches to real
map patches through a deep neural network. Then given the
generated dense patches, we stitch them together to produce
a full grid map.

D. Objective Function

The objective function of our network comprises of losses
from four sources: (1) conditional GAN, (2) intermediate

feature matching, (3) perceptual loss and (4) map prior. In
particular, the map-prior loss is our proposed term that en-
forces indoor geometric consistency in the generated patches.
Reconstruction Likelihood. We use conditional GANs to
model the conditional distribution of real map patches x
given the input mmWave map patches s, which are converted
from the sparse point cloud. The conditional GAN loss can
be expressed as:

Leaan (G, Dy) =E(s x)[log D(s, x)]
+Eg[log(1 — D (s, G(8))]

where G tries to minimize this objective function against
an adversary network Dj that tries to maximize it [18]. In
particular, as our network uses multi-scale discriminators,
Dy, here is the specific discriminator for k-th scale. In
the meantime, to stabilize training and generate meaningful
statistics at multiple scales, we follow [4], [27] and introduce
the feature matching loss Lpp (G, Dy) in our objective
function:
T ' '
EFM(G, Dk) = E(s,x) Z FHD](;)(S’X) _D]({Z)(S, G(S))Hl
i=1""

where T is the total number of layers, Dl(;) produces the
features of ¢-th layer and V; denotes the number of nodes in
that layer. milliMap computes this feature matching loss
on multiple discriminators which is in line with our multi-
scale architecture. Lastly, to compare high level differences
and stabilize GAN training [13], we also introduce a percep-
tual loss in the objective function:

J
Lvaa(G) = Ewx Y [[FV(G(s) = FO ()|
Jj=1
where F' is a pre-trained loss network used for image
classification that helps to quantify the perceptual differences
of the content between images. In this work, we follow [13]
and adopt the VGG network as F'. Each layer j in the VGG
network measures different levels of perception.
Map Prior. The above losses only consider the efficacy of re-
construction in the latent space of high-level appearance but
ignore the important low-level geometrics. Recent research
found that the latent spaces of appearance and geometry are
not strongly correlated. Standard neural network generators
can learn appearance transformation, however, lack the abil-
ity to embed complex geometry cues for effective image-to-
image translation [8], [33]. Nevertheless, 2D indoor maps in
modern buildings often have strong geometric structures that
follow certain patterns, e.g. following rectilinear outlines for
ease of construction. As this geometric information is fairly
ubiquitous [7], one can leverage it as a prior to bootstrap the
patch generation process and enhance the quality of the final
stitched map. Formally, given a generated patch G(s) and its
corresponding real patch x, we define a map-prior loss as
follows:
M
Lap(G) =Egx »_ W9+ G(s) —hW xx]l;  (3)

Jj=1
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Fig. 5: Effectiveness of map prior loss on a straight corridor
patch. A line detector is used in this case to construct the
map-prior loss and the produced ‘corridor’ is straighter and
more complete. lidar is used as pseudo-ground truth.

where * represents the convolution operator and h®) is one
of M convolution kernels with fixed weights, determined
by the types of convolution. For example, h() can be a
line or edge detection mask, capturing different geometric
properties of images. Through a detector mask, this map-
prior loss encourages the consistency between source and
target patches corresponding to a certain geometric prior.
For example, many objects (e.g., walls and doors) on indoor
floor plans are line based [7]. Therefore, when using line
detectors to embed such a prior in the loss, we can achieve
better reconstruction performances in corridors, as shown in
Fig. 5. Choices of convolution masks are flexible, mainly
depending on the noise level of inputs as well as a particular
map/building type. We will discuss impacts of different types
of detectors in Sec. VI-C.

Finally, our full objective combines reconstruction likeli-
hood and map prior as:

Y Lecan(G,Dy)+ M\ Len(G, Dy)
k=12,.. K 4

+X2Lyvee(G) + A3Lyp(G)

where A1, A2 and \3 are hyper-parameters for regularization.
K denotes the number of distinct scales for discriminators.

‘Ctotal =

V. IMPLEMENTATION

For the purpose of reproducing our approach, we release a
novel dataset for indoor mapping with mmWave radars and
the source code for milliMap *.

A. Dataset

A Turtlebot 2 platform endowed with multiple sensors
is used as data collection platform. This dataset contains
synchronized mmWave point cloud data from a TI AWR 1443
board, lidar data from a Velodyne VLP-16 and wheel odome-
try. In addition, we provide RGB images from a front-facing
monocular camera. The mmWave sensor, lidar and camera
are coaxially located on the robot along the vertical axis. Two
buildings are surveyed at the time of writing. The Wolfson
building has a size of ~ 1,100m? and contains four floors,
mostly composed of corridors and atriums; the Robert Hooke
building (RHB) has a size of ~ 150m? and contains one floor
with a combination of corridors and rooms. The Wolfson

4 https://github.com/ChristopherLu/milliMap

TABLE I: Densification Before and After Mapping.

Wolfson RHB
Method LT | ToU | LI | IoU
Scan Pix2Pix [11] 2.776 | 0.186 | 3.602 | 0.150
(before) | Pix2PixHD [27] | 2.309 | 0.226 | 2.722 | 0.152
Patch Pix2Pix [11] 2214 | 0.319 | 3.200 | 0.173
(after) Pix2PixHD [27] | 2.096 | 0.380 | 2.752 | 0.239

dataset presents a combination of walls, doors and large
glass handrails; the RHB dataset presents walls, doors, glass
panes and clutter. For each floor of the Wolfson building, we
provide two runs along same corridors in opposite directions.

B. Training Details

Concerning network training, three loss weights A1, Ao
and A3 are set to 10, 10 and 5 respectively. We adopt a line
detector as the convolution kernel in Eq. (3), M is set to 4,
corresponding to 4 line directions in 0°, 45°, 90° and 135°.
The training batch size is set to 16 and we use the Adam
optimizer at a learning rate of 2¢~3.

VI. EXPERIMENTAL EVALUATION
A. Evaluation Protocol

We now comprehensively evaluate mi11iMap through a
set of experiments. Throughout this section, two metrics are
consistently adopted to quantify map reconstruction perfor-
mances: mean absolute error (Lq) and mean intersection-
over-union (loU), both of which are widely used [30]. We
will omit “mean” hereafter for presentation ease. We perform
cross-floor and cross-building tests to best examine the
generalization ability and effectiveness of the trained model.
Our data collection (see Sec. V-A) is divided into training
and testing sets. In particular, the training set contains 12, 000
augmented patch images extracted from maps of the 1st, 2nd
and 3rd floors in Wolfson building. The data augmentation
strategy we adopt here is the standard rotation and translation
transformations on original patches to mitigate overfitting.
Our test set comprises 49 patch images extracted from maps
of the 4th floor in Wolfson building and 12 patches extracted
from the 2nd floor of Robert Hooke building. All training
and testing patch images have size 64 x 64.

B. Impact of Densification Before and After Mapping

We first investigate the effect of two input representations
(Section IV-C): (i) we perform densification of each scan and
then aggregate them using grid mapping (denoted as scan
representation) and (ii) we first aggregate scans using grid
mapping and then perform densification on image patches
(denoted as patch representation). As Tab. I shows, the recon-
struction results of patch representation are significantly bet-
ter than scan for both networks, implying the effectiveness of
patch representation. Given the best-performing Pix2PixHD
network, the L, errors of scan are 20% inferior to patch, with
over 35% inferior IoU scores on both datasets. The reason
is that the single scan densification easily overfits to straight
lines, which is consistent to our discussion in Sec. IV-C.
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Fig. 6: Qualitative reconstruction results. mil1liMap achieves a comparable performance to the lidar counterpart.
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Fig. 7: Incorrect lidar supervision due to presence of glass
objects in training data.

C. Network Architecture Validation

1) Comparison: After understanding the effective pro-
cessing order, we adopt the patch representation for sub-
sequent experiments and continue to validate different archi-
tectures of reconstruction networks. As milliMap is the
first indoor mapping work dealing with very sparse inputs
of such low-cost mmWave radar, we can only compare the
following commonly used generative networks: Conditional
Variational Autoencoder (CVAE) [30], BicycleGAN [34],
Pix2Pix [11] and Pix2PixHD [27]. Notably, CVAE is the
network architecture adopted by [30], though their goal is not
sparse-to-dense due to the use of a customized mechanical
radar. Beside these deep learning methods, we also compare
with lineFitting [19], a classic reconstruction method for line-
based indoor floor plans.

2) Results: Tab. II shows the performance comparison
of different reconstruction methods. Despite its success on
lidar map reconstruction, the classic line fitting method
obviously struggles on both datasets and provides < 50%
IoU than our approach, attributed to the substantial sparsity
in raw mmWave maps. On the side of DNN methods, we
did not find the advantages of using variational methods,
implying that random sampling from a learnt distribution
actually counteracts the benefits of uncertainty modelling and
tends to output blurred reconstructions. We hypothesize that
the performance gain can be also attributed to the strong
regularity within indoor maps, which favours deterministic
learning methods. Lastly, despite their close correlation, we

TABLE II: Reconstruction method comparison.

Wolfson RHB
Method LT [ IoU | LI [ ToU
TincFittng [19] | 3.180 | 0.167 | 4.114 | 0.103
CVAE [30] 3.408 | 0323 | 3.082 | 0221
BicycleGAN [34] | 2538 | 0.303 | 3.393 | 0.195
Pix2Pix [11] | 2214 [ 0319 | 3200 | 0.173
Pix2PixHD [27] | 2.096 | 0.380 | 2.752 | 0.239
Ours 1.031 | 0.398 | 2.589 | 0.238

found that Pix2PixHD outperforms Pix2Pix on both datasets,
thanks to the use of multi-scale discriminators and more
losses. By introducing the map-prior loss, our method can
further gain 9.6% L1 accuracy than Pix2PixHD, and better
IoU performance overall on both datasets. Interestingly, in
the last column of Fig. 6, there are ‘ghost’ areas on the
generated maps, where part of a wall (black) is incorrectly
marked as free regions (white). Recall that we adopt a self-
supervision learning framework that uses lidar patches as
supervision labels. These labels, however, can be error-prone
when encountering glass objects (see the second column
in Fig. 6), which is a commonly-known limitation of lidar.
Although glass is opaque to mmWave, considering the high
appearance similarity (see Fig. 7), we hypothesize the ‘ghost
area’ of our generated Wolfson grid map can be attributed
to the misleading lidar patches of glass in training. ‘Ghost’
areas do not appear with scan inputs, due to its overfitting
to straight corridors.

D. Ablation Study

In order to examine the effect of different components in
milliMap, we conduct an ablation study using different
variants of our model. Our ablation study is dedicated to
understand the impacts of two components: i) loss functions
and ii) multi-scale discriminators.

1) Loss Functions: We modify the objective function of
Eq. 4, by alternating different loss terms for reconstruction
likelihood as well as alternating variants of our proposed
map-prior term. Tab. III shows that the perceptual loss (i.e.,
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Fig. 8: Qualitative testing in smoke-filled environments.

TABLE III: Ablation study on losses and number of scales.

Wolfson RHB
L1 ToU L1 ToU
w.0. FM 2408 | 0.323 | 3.082 | 0.221
Losses | w.o. VGG | 2.538 | 0.303 | 3.393 | 0.195
Edge Loss | 2.214 | 0.319 | 3.200 | 0.173
# of 1 2.024 | 0.394 | 2.633 | 0.250
Scales 2.022 | 0.387 | 2.863 | 0.219
Ours 1.931 | 0.398 | 2.589 | 0.238

VGG loss) plays a vital role, and removing it incurs the
largest performance decline (~ 30%) on both datasets. Fea-
ture matching loss is also necessary as it brings 16% — 24%
gain in L;. These experiments indicate that, although grid
maps are more about geometrics, these appearance losses are
still important for stabilising generator training and improv-
ing realism. Interestingly, when we implement the map prior
loss as edge detectors, its efficacy is not as helpful as the
line detectors. This is because edges are a broad concept for
any images and cannot effectively incorporate the geometrics
of line-based maps. Moreover, as our supervision signals
are from the imperfect lidar patches, the edge detectors are
sensitive to the noises of lidar. In contrast, line detectors
focus on low-frequency components of images and thus can
be more robust to noise.

2) Number of Scales: Next we examine the impact of
multi-scale discriminators. Recall that mi11iMap uses a 2-
scale discriminator while our ablation study further examines
the cases of 1- and 3-scales. As shown in Tab. III, the overall
impact of multi-scale discriminators is not substantial (~
5%) when varying the number of scales. This is as expected
because the multi-scale discriminators were originally de-
signed for high-resolution images while our input patches are
not. We observed a marginal improvement from single-scale
to 2-scale discriminators as more diverse feature matching
is introduced in different scales. However, such increase of
scales soon counteracts the benefits when the 3-scale network
becomes oversized and overfits. This overfitting issue is more
obvious on RHB dataset due to cross-building testing.

E. Mapping in challenging conditions

We now move on to the robustness analysis of map
reconstruction by examining two challenging scenarios in

real world: (i) smoke-filled scenarios and (ii) noisy odometry.

1) Smoke-filled Scenarios: In this experiment we examine
the potential use of milliMap in fire-fighting situations
where other sensors fail (e.g., RGB cameras, depth cameras
and lidars) due to smoke. To this end, we use a smoke
machine to create different smoke densities in a corridor
(12 x 1.5m?). Various sensor data were collected in both
buildings, including lidar, depth cameras and mmWave radar.
Fig. 8 shows the reconstructed map in 3 different smoke-
filled scenarios. As we can see, lidar gives very inaccurate
map results even with low levels of smoke. Due to the
occlusion and reflection effects of smoke particles, lidar
generates many non-existent obstacles and/or misses a lot
of real ones. Depth cameras also face the same problem. In
contrast, the mmWave radar is able to see through smoke
and milliMap reconstructs the corridor accurately in all 3
smoke-filled scenarios. These results confirm the robustness
of milliMap and we believe there are many promising use
cases of it in search-and-rescue situations.

2) Noisy-Odometry Scenario: In this experiment, our
goal is to test milliMap’s potential on hand-held de-
vices, e.g., smartphones and tablets. Note that, for hand-
held devices, their odometry is usually inferred from em-
bedded microelectromechanical-inertial measurement unit by
pedestrian dead reckoning (PDR) methods [12]. However,
compared to wheel odometry, PDR odometry drifts more
and has a lower sampling rate due to step discretization.
As a consequence, the raw patch images of PDR are of
lower fidelity. Furthermore, due to different viewpoints (e.g.,
different heights of robots and pedestrians), the mmWave
observations have obvious differences from the training sam-
ples. Despite many compromising factors, as we can see in
Fig. 9, mi11iMap still provides a reasonable reconstruction.
Although such prediction is not accurate enough for robot
navigation, it could potentially support some use cases for
augmented reality on hand-held devices.

FE. Downstream Navigation Tasks

We now test whether the produced maps, despite their
imperfections, can still be used for autonomous navigation.
In particular, we investigate if a robot is able to localize in
the predicted map with comparable accuracy to that of a lidar
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Fig. 9: Qualitative result for hand-held cases.
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Fig. 10: Error CDFs for the downstream localization tasks.

map. We run Monte Carlo localization using mmWave raw
measurements on the aforementioned reconstructed maps us-
ing the standard amcl ROS package with default parameters.
Each time the robot starts at a random location. The pseudo-
ground truth is derived by localization with lidar on a lidar
map of the same floor. Fig. 10 shows the cumulative error
distribution for 50 Montecarlo runs. For the reconstructed
Wolfson map, our robot achieved a mean translation accuracy
of 0.285m and orientation accuracy of 0.142 rad; on the
reconstructed RHB map, the mean translation and orientation
accuracy are 0.178m and 0.140 rad respectively. Given the
size of the two buildings, these results show that the map
produced by milliMap can be used for higher-level tasks
with excellent performance.

VII. CONCLUSIONS

We presented milliMap, a learning-based inductive
method for obtaining dense occupancy grid maps from low-
cost mmWave radar sensors, using self-supervision from
partial labels from a lidar. By leveraging the structure of
indoor scenarios, the model is able to reconstruct the shape
of novel environments and, to some extent, cope with noisy
odometry and smoke-filled scenarios. The limitation of the
approach lies in the potential inaccuracy of labels (e.g., in
presence of glass and reflective materials for lidar). Future
work will be devoted to automatically detect such materials
from the raw mmWave measurements, that are robust to
presence of glass and metal.
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