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Abstract— Heart rate monitoring at home is a useful metric
for assessing health e.g. of the elderly or patients in post-
operative recovery. Although non-contact heart rate monitor-
ing has been widely explored, typically using a static, wall-
mounted device, measurements are limited to a single room
and sensitive to user orientation and position. In this work, we
propose mBeats, a robot mounted millimeter wave (mmWave)
radar system that provide periodic heart rate measurements
under different user poses, without interfering in a users
daily activities. mBeats contains a mmWave servoing module
that adaptively adjusts the sensor angle to the best reflection
profile. Furthermore, mBeats features a deep neural network
predictor, which can estimate heart rate from the lower leg and
additionally provides estimation uncertainty. Through extensive
experiments, we demonstrate accurate and robust operation of
mBeats in a range of scenarios. We believe by integrating
mobility and adaptability, mBeats can empower many down-
stream healthcare applications at home, such as palliative care,
post-operative rehabilitation and telemedicine.

I. INTRODUCTION

Heart rate monitoring is a key indicator for assessing
health, stress and fitness. In particular, periodic (e.g. hourly)
monitoring of elderly patients, those in palliative care, or
patients undergoing post-operative rehabilitation provides a
quantifiable metric of whether intervention from a health
professional is required or not [1]. This is increasingly
important as there is an increasing shift towards caring for
patients within their homes, rather than in hospitals, as it is
more cost-effective [2].

Significant strides have been made in ambulatory heart rate
monitoring e.g. with wearable devices operating either with
electrocardiogram (ECG) or photoplethysmography (PPG)
sensors. In particular, smart-watches and fitness bands pro-
vide a ‘wear and forget’ capability and have made continuous
heart rate monitoring inexpensive and wide-spread. Although
wearables are an excellent solution for the general public,
for the aforementioned problems they suffer from ‘forget
to wear’ and ‘forget to charge’ issues. This leads to low
compliance, making them unsuitable for monitoring patients
with physical or mental health issues. Alternatives include
sensor-equipped beds [3] but these are limited to monitoring
patients in a single location.

These limitations have lead to the development of non-
contact heart rate monitoring solutions, including those based
on imaging and radio-frequency (RF) techniques. With re-
spect to the former, a camera (either in the visible or infrared
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Fig. 1: mBeats is a robot mounted mmWave radar system. It
is able to provide periodic heart rate measurements of a user,
without interfering in a user’s daily activities, and without
being constrained to only operate at a certain location.

spectrum) is used to detect subtle variations in blood vessel
dilation in the face [4]. These require a direct line-of-sight
to the patient, and do not work with occlusions e.g. clothing.
They also raise issues about privacy, due to the use of
cameras. RF based techniques operate by inferring the micro-
displacement of the heart through subtle changes in the
reflected radio signal. Most work to date has considered
using a static device e.g. placed on a wall, to obtain these
measurements [5], [6]. However, these types of sensors are
very sensitive to the orientation and position of a user [7].

An ideal system, as shown in Fig. 1, would be able to
provide periodic heart rate measurements of a user, without
requiring anything to be worn, and without being constrained
to only operate at a certain location. Motivated by the
increasing adoption of domestic service robots e.g. robotic
vacuum cleaners, we posit a scenario where these could
serve a dual purpose as mobile heart rate scanners. We in
particular exploit recent developments in the miniaturization
of single-chip, low-cost (<$100) mmWave radar which is
capable of accurately measuring micron-level displacements.
We believe it is quite likely that low-cost robotic platforms of
the future will be equipped with mmWave radar for obstacle
avoidance [8]. In this way, a domestic service robot could
periodically scan a patient’s heart rate before continuing with
its normal operation.

In this paper, we present mBeats, a novel approach
towards providing non-contact heart rate measurements
throughout the home, without requiring any fixed infrastruc-
ture or compliance with charging and wearing a device. A
particular challenge is that service robots are typically low
in height and close to the floor and thus unable to sense
the heart itself. Instead, we demonstrate that it is possible,
by using mmWave radar, to measure the heart rate in a
user’s lower leg, operating through clothing. This is a diffi-
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Fig. 2: mBeats consists of three modules operating in a pipelined manner. (i) user tracking module actively tracks a target
with the mmWave radar and instructs the mobile robot to move towards the user’s proximity; (ii) mmWave servoing module
adaptively rotates the mmWave radar that optimises the sensor angle for best heart rate observation; and (iii) heart rate
estimation module senses the micro displacement of user’s skin and estimates his heart rate with a confidence interval.

cult signal processing challenge as the radar return is very
small. To solve it we rely on advances in deep learning to
extract accurate heart rate measurements. Unlike competing
approaches, not only do we provide a measurement, we also
provide a metric of uncertainty. This is critical for providing
trustworthy measurements without creating false alarms, or
worse, not reflecting an emergency condition.

The main contributions of this work are:
• To the best of our knowledge, this is the first work

to implement robot based heart rate measurement with
mmWave Radar.

• We propose a feedback control approach to actively
steer the mmWave radar for optimal signal detection.

• We use a deep neural network to process the radar
displacement measurements to accurately measure the
heart rate in the lower leg. This network can provide
estimation uncertainty proportional to prediction errors.

• We release the implementation of mBeats to the com-
munity, including code and datasets.

II. RELATED WORK

In this section, we review non-contact based heart rate
monitoring techniques.

A. Electrocardiogram-based Techniques

Non-contact Electrocardiogram measuring uses capacitive
electrodes instead of the conventional adhesive electrodes,
and thus do not have be in contact with the user’s skin
directly. These kind of sensors have been embedded in a
range of different objects, e.g. a bed [9], wheelchair [10],
driver’s seats [11], etc. Although far less instrusive than
conventional electrode-based ECG, it requires the user to be
very close (a few cm) to the sensor, limiting its applicability.

B. Vision-based Techniques

Vision-based Heart Rate Measuring has been widely re-
searched. In most of these methods, a Region of Interest is
first detected and tracked, over various parts of the body [4],
[12], [13]. As the heart beats, blood flow causes subtle color

changes on human skin and this information can be captured
with an RGB camera. Infrared cameras have also been used
for heart rate detection [12], [14], [15], and can even ex-
tract heart beat information from pupillary fluctuations [16].
Vision-based techniques can work well for tasks like sleep
monitoring [17], or telemedicine with a webcam [18], and
puts least burden on the user. However, they can only work
under line-of-sight conditions and raise privacy issues. RGB
based systems also are typically restricted to well illuminated
conditions.

C. RF-based Techniques

RF-based heart rate measuring techniques are primarily
based on Radar and WiFi. Various types of radar like UWB
Impulse Doppler Radar [19], Continuous Wave Radar [20],
and Frequency-Modulated Continuous Wave Radar [5], with
different operating frequencies and output powers have been
used for this scenario. These techniques measure the micro-
displacement of a user’s skin. Radar signals can penetrate
many kinds of materials so can perform non-line-of-sight
measuring of vital signs. However, signal strength impacts
the operation range, with consequent trade-off between trans-
mitter power and measurement distance [21].

WiFi-based techniques are widely used for RF-based
heart rate measuring, as most of these techniques can be
implemented with commercial-off-the-shelf WiFi devices,
like routers and laptops. Micro-displacement of the user’s
skin is estimated by capturing the channel state information
(CSI) [22], [23]. However, the accuracy of WiFi-based tech-
niques is greatly affected by the user’s location and body
orientation [7].

The aforementioned techniques are mainly based on con-
ventional signal processing algorithms, like Fast-Fourier
Transform, Auto-correlation, etc. These algorithms have long
been used to extract periodic information from time series
signals.

Our approach broadly falls into this category of RF based
monitoring, however, has three prominent advantages over
other methods. The first is that by mounting the system
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Fig. 3: Impact of observation angles on heart rate estimation.
We place the robot approximately 0.5m away from a user’s
lower leg and rotate the sensor from 75°to 105°at a stride of
5°and each angle for approximately 40 seconds. The error is
obtained from a fixed estimation method [26]. PTA: Peak-
to-Average ratio.

on a low-height mobile robot, our approach is location
independent. Secondly, we are able to measure the heart rate
in the lower leg, by using the high displacement sensitivity of
mmWave radar, making the system non-intrusive i.e. it does
not need to be at chest height. Lastly, as our experimental
results show, compared to the conventional methods based
on signal processing algorithms and heuristics, our system
reaches the highest accuracy.

III. PROPOSED SYSTEM

mBeats comprises of a robotic platform equipped with a
mechanically steerable mmWave radar module. Without loss
of generality, in our work we use a TI IWR6843 single chip
mmWave radar, which operates by sending out a frequency
modulated continuous wave (FMCW) chirp over a 4 GHz
bandwidth, centred on 62 GHz. By measuring the time for
the signal to return to a colocated antenna and correlating
with the transmitted signal, it is possible to measure the
range to reflective objects with high accuracy (cm level). By
computing the phase difference between successive scans, it
is then possible to measure relative displacements with near
micron-level accuracy [24].

The three modules in our active sensing and signal pro-
cessing pipeline are shown in Fig. 2, including (i) user track-
ing, (ii) mmWave servoing and (iii) heart rate estimation.

A. User Tracking Module

The user tracking module is largely based on [25] that
utilizes the mmWave point cloud to pinpoint the user in the
field of view. Given the estimated user’s location, a robot then
approaches the user at a certain measurement distance (0.5m
in this work), and performs subsequent sensing actions.
As this is not our primary contribution, we assume in the
remainder of the paper that the robot can localize and
approach a person to be scanned.

B. mmWave Servoing Module

Unlike a planar surface, directly facing the user does not
guarantee the best reflection signal, as the tibula and fibula
bones in the calf block the signal. Furthermore, due to multi-
path effects caused by surrounding objects, a small deviation
from the optimal direction may lead to a significantly de-
graded performance. As such, given a good measurement
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Fig. 4: Heart Rate Estimation. A bandpass filter is used
to extract heartbeat waveforms (circled in orange) from
phase variation signals. A convolutional neural network takes
inputs as the extracted waveforms and predicts both a heart
rate value and a confidence interval.

distance, the heart rate estimation accuracy of a mmWave
radar still largely depends on observation angles (see Fig. 3).

The goal of this module is therefore to optimise the sensor
angle for peak signal reflection from the patient’s lower
leg/calf. Although it would be possible to rotate the robot
itself, depending on the capabilities of current service robots,
this is cumbersome and would be imprecise to reach the
optimal angle. Hence we control the orientation of sensor
with a servo motor directly according to the characteristics
of the reflected mmWave signal.

Formally, we take the desired change of the measurement
angle ∆θ as the control variable ut at time t. Next, based on
the Peak To Average (PTA) value vt provided from the sensor
which indicates the reflected signal strength, we define the
observation variable as

yt = −sgn(ut−1)(vt − vt−1), (1)

where sgn(x) =
|x|
x

if x 6= 0 else sgn(x) = 0 and u0 =

1°. This observation function uses the direction of the prior
control variable ut−1 and the change of the received signal
strength as the feedback for our control system. Then, given
a zero reference rt = 0, the error variable is obtained as:

et = rt − yt = sgn(ut−1)(vt − vt−1), (2)

with the intuition that we vary the orientation of the sensor
towards the prior direction when observing an increased
signal strength and vice-versa. We use a simple Proportional-
Derivative (PD) controller with the following feedback con-
trol function:

ut = ut−1 +Kp · et +Kd · (et − et−1) (3)

where Kp and Kd are empirically set to 3.6 and 1.8.
As the heart rate measurement requires a static measuring
environment, we disable the PD controller when the error
variable et has settled.



C. Heart Rate Estimation Module

1) Heartbeat Waveform Extraction: After rotating the
sensor to the optimal orientation, the mmWave radar starts to
sense the micro displacement of the user’s skin by measuring
the phase variation respective to the range profile peak.
Nevertheless, in addition to heartbeat waveforms, the phase
variation also contains signals caused by other body move-
ments that may lead to erroneous estimation. Considering
the fact that heartbeat frequency lies in the band between
0.8 ∼ 4Hz [5], we leverage a biquad cascade IIR filter [27]
in this module to extract heartbeat waveforms. The extracted
waveforms are then used as inputs for next module.

2) DNN Predictor: Unlike prior work where the sensor
is facing a user’s chest, our mmWave radar collects signals
from lower legs. For each heart beat, the chest usually has a
vibration amplitude of 400 micron, while the displacement
of the skin on lower leg only has an amplitude of around 80
micron. Consequently, the collected signals are much weaker
and our extracted heartbeat waveforms have much less clear
patterns than prior art. Directly using these waveforms to
predict heart rate e.g. through peak extraction is difficult and
error-prone. Deep neural networks have recently emerged as
a powerful data-driven technique, effective at learning latent
features in data. We therefore formulate heart rate estimation
as a regression problem, and use a convolution neural net-
work as the predictor. Although RNN networks, e.g., Long-
Short Term Memory networks (LSTM), are widely used for
modeling temporal signals, such as reconstructing pedestrian
trajectories from IMU data [28], their recursive computation
incurs substantial latency [29] that cannot provide timely
predictions on our resource-constrained platforms. Given this
real-time consideration, our network adopts three lightweight
1-D convolutional layers, followed by two fully connected
layers to produce heart rate and uncertainty respectively. In
particular, the number of kernels, kernel sizes and strides of
all convolution layers are set to 64, 5 and 1 respectively.
By taking inputs as the heartbeat waveforms with a window
size of 10 seconds (200 frames), the predictor is able to
provide both rate value and confidence interval (in the form
of uncertainty). Fig. 4 illustrates this process.

DNN Predictor transforms the signal input x ∈ R200∗1

(heartbeat waveform) into predicted heart rate ŷ = fW(x) ∈
R1 with model parameters W (i.e. weights, bias in neural
networks). Typically, the optimal parameters are recovered
by minimizing the mean square error (MSE) loss between
the prediction and ground truth y:

loss(x) = ‖y − ŷ‖2, (4)

The output ŷ only reflects the mean value of prediction given
input data with corresponding labels. We will show how to
extend this framework to a Bayesian model to capture output
uncertainty in next subsection.

3) Uncertainty Estimation: Although heart rate regression
with a DNN is relatively straightforward, uncertainty esti-
mation is non-trivial. The uncertainty reflects to what extent
the predicted heart rates can be trusted. This is extremely

critical to health-related problems, as wrong values will lead
to serious consequences, e.g., misdiagnosis. Intuitively, the
uncertainties in our problem are originated from inaccurate
mmWave measurements, due to sensor biases and noises, en-
vironmental dynamics, multipath reflection and non-optimal
reflection plane. We hence quantify the uncertainty of our
model based on the aleatoric uncertainty which is widely
used to capture inherent sensor observation noise [30], [31].

In order to estimate the uncertainty of predicted heart rates,
we reformulate Equation 4 into a Baysian model by defining
the likelihood between the prediction fW(x) and ground
truth y as a conditional probability following a Gaussian
distribution:

p(y|fW(x)) =
1√

2πσ2
exp

(
− (y − fW(x))2

2σ2

)
, (5)

where σ2 denotes the prediction variance. To maximize the
likelihood p(y|fW(x)), we need to determine an optimal set
of parameters W∗, which can be achieved by minimizing the
negative logarithm likelihood log p(y|fW(x)):

W∗ = arg max
W

p(y|fW(x))

= arg min
W

− log p(y|fW(x))

= arg min
W

1

2σ2
‖y − fW(x)‖2 +

1

2
logσ2.

(6)

Thus, we can define the loss function of the model as

loss(x) =
‖y − ŷ‖2

2σ2
+

1

2
logσ2 (7)

where the model predicts a mean ŷ and variance σ2. From
this loss function, we can see that poor predictions will
encourage the network to decrease the residual term, by
increasing uncertainty σ2. On the contrary, the term logσ2

acts to prevent the unbounded growth of the uncertainty
term. In practice, we aim to learn s = logσ2 as it is more
numerically stable [32] in this way:

loss(x) =
‖y − ŷ‖2
2 exp (s)

+
1

2
s. (8)

IV. IMPLEMENTATION

For the purpose of reproducing our approach, we release
a novel dataset of mmWave heart rate measurement and our
source code of neural networks: https://github.com/
zhaoymn/mbeats.

A. Data Collection

1) Collection System: We installed the mmWave radar
sensor on a Turtlebot 2 [33]. A commercial servo motor
is installed on the robot platform as well and we use it to
precisely control the radar rotation in 1°. The servo control
unit is implemented by Arduino Uno [34]. Concerning the
mmWave radar, we adopt the IWR6843 ISK [35], which is
an emerging low-cost single-chip sensor. Both mmWave data
and timestamps are logged. Polar H10, an accurate heart rate
monitor chest strap is used in our experiment for ground
truth labelling. An Android application is developed to record

https://github.com/zhaoymn/mbeats
https://github.com/zhaoymn/mbeats
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Fig. 5: The 8 different poses used in test and evaluation.

Polar H10 heart rate data and timestamps via Bluetooth. We
will release this Android Application for community use.
The data from the radar and the data from the Polar H10
device are synchronized to the same NTP time.

2) Selected Poses: According to the American Time Use
Survey realeased in June, 2019 [36], people spend 12.61
hours on average either sitting or lying down/sleeping at
home each day, accounting for over 50% of time in a day
and over 80% of time at home. We thus select four different
sitting poses and different lying poses at home in our data
collection (see Fig. 5). We collect ∼ 180 minutes of data
from two subjects in these poses.

B. Network Training

To train the proposed network, we set the window size to
10s, which consists of 200 frames as the input data. The
uncertainty component in our network is initialized with
zeros, while the remaining parts are randomly initialized. The
network is implemented with PyTorch, applying the ADAM
optimizer with a constant learning rate of 1 × 10−5. The
network is trained on a NVIDIA Titan X GPU with a mini-
batch size of 512 and a dropout rate probability of 0.2.

V. EVALUATION

In this section, we systematically evaluate mBeats. We
start with the introduction of experiment setup and then
compare our DNN predictor with established baselines for
heart rate estimation. Uncertainty estimation is examined,
followed by studying the impacts of the servoing module.

A. Setup

1) Competing Approaches: In this section, three common
signal processing approaches are used as the baseline ap-
proaches: Fast Fourier Transform (FFT) [26], Peak Count
(PK) [37] and Auto-correlation (XCORR) [38].

2) Pre-processing: After obtaining the raw data stream,
frames in the first 40 seconds and in the last 20 seconds
are discarded due to system calibration. Additionally, data
frames collected while the mmWave servoing module is
dynamically searching for best orientation are also discarded.
We take samples with a sliding window with a size of 200
and stride of 1.
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Fig. 6: Overall performance comparison in different test
categories. The 90% accuracy line is indicated for reference.

TABLE I: Holistic Evaluation Results.

FFT [26] PK [37] XCORR [38] DNN (Ours)
Pose 1 77.02 65.84 91.95 97.89
Pose 2 89.94 65.88 88.49 96.11
Pose 3 52.43 75.70 48.27 93.76
Pose 4 83.18 73.41 92.67 96.97
Pose 5 93.46 64.31 94.10 94.85
Pose 6 74.59 67.81 85.89 94.75
Pose 7 64.35 64.22 91.06 91.08
Pose 8 74.57 70.60 87.24 96.64
Overall 76.19 68.47 84.96 95.26

3) Evaluation Protocol: Similar to [5], we use accuracy
as the evaluation metric throughout our experiments. It is
worth mentioning that, for clinical validity [39], a usable
heart rate estimator should have at least 90% accuracy.
For training our DNN predictor, we split our data into
training, validation and test sets. The three sets are prepared
differently according to the experiment requirements, which
will be detailed in subsequent sections.

B. Performance Comparison

To validate the heart rate estimation accuracy and robust-
ness of our DNN predictor, three experiments are carried
out, including (i) holistic evaluation on all poses, (ii) cross
pose evaluation, and (iii) cross subject evaluation. Fig. 6
summarizes the overall comparison results.

1) Holistic Comparison: In this experiment, all data
streams are equally divided into 5 continuous segments
where segments 1,3,5 are for as training whilst segment 4 and
segment 2 are used for validation and testing respectively.

As shown Tab. I, although the competing methods have
previously been shown to be effective for chest-sensing
scenario, they struggle to accurately estimate heart rate when
it comes to lower-leg sensing. Because the sensed micro
skin displacement is very weak from the calf, the competing
approaches cannot reliably estimate the heart rate and be
consistently accurate across different poses. For instance, as
the best-performing baseline, XCORR achieves a 94.10%
accuracy on Pose 5, but its accuracy on Pose 3 is as low as
48.27%. The low robustness of XCORR makes it unsuitable
to real domestic scenarios where diverse daily poses are
common. When considering the 90% accuracy standard to
measure method efficacy, our proposed DNN estimator is
the only approach that meets this under all 8 poses, with a
5.26% safety margin overall. In contrast, FFT method only



TABLE II: Cross Pose Test Result

FFT [26] PK [37] XCORR [38] DNN (Ours)
Pose 2 91.90 63.69 91.30 96.08
Pose 6 72.61 69.36 88.87 93.94

TABLE III: Cross Subject Test Result

FFT [26] PK [37] XCORR [38] DNN (Ours)
Subject 1 75.38 72.99 83.61 93.85
Subject 2 75.13 65.73 90.36 93.03

Fig. 7: Uncertainty Estimation. The estimated uncertainty is
informative that increases with prediction errors.

attains this accuracy in one pose, while PK fails to achieve
this standard under all poses.

2) Cross Pose Evaluation: We next evaluate the gen-
eralization ability of our DNN estimator across different
poses. To this end, we split the dataset into 8 segments
corresponding to the different poses. The data with Pose
1,3,5,7 are used as the training data, Pose 4 and 8 for model
validation purpose, and Pose 2 and 6 as testing data.

As we can see in Tab. II, our DNN approach has a
strong generalization ability w.r.t. different user poses, giving
96.08% and 93.94% accuracy on the unseen data from
Pose 2 and 6. The accuracy drop from holistic testing to
cross pose is only 0.25%, indicating the feasibility for real
world deployment. Notably, FFT, PK and XCORR are signal
processing based methods and in principle insensitive to
cross poses. However, their accuracy is still inferior to our
DNN estimator.

3) Cross Subject Evaluation: We further evaluate our
method on cross subject testing, where the DNN estimator is
tested on the data collected from a new subject outside the
training set.

Although different people have different heartbeat pat-
terns [40], [41], as we can see in Tab. III, our DNN estimator
still yields a testing accuracy of 93.85% and 93.03% on two
different subjects respectively. Such high accuracy signifi-
cantly outperforms competing approaches by ∼ 7%. This
generalisation ability is of paramount importance for real
world deployment, as a crowd-sourcing approach can be used
to train the DNN predictor before shipping to customers.

C. Uncertainty Evaluation

As described in Sec. III-C.3, our method has a prominent
advantage in that is capable of providing a confidence

TABLE IV: The overall performance with and without the
mmWave servoing module.

FFT [26] PK [37] XCORR [38] DNN (Ours)
w.o. Servoing 78.71 75.90 62.43 90.71(PTA=2.11)
w. Servoing 80.74 88.77 87.61 92.20(PTA=3.27)

estimation alongside the heart rate prediction. This is impor-
tant for avoiding false alarms during healthcare monitoring
where predictions with high uncertainty can be filtered out.
Besides, it also acts as a clue towards improving the network
by learning with more samples in undertrained situations,
important for life-long learning.

Fig. 7 demonstrates an example of uncertainty estima-
tion in the cross pose experiment. We can see a positive
correlation between the uncertainty, i.e. the variation, and
the prediction error. More specifically, we observed small
variation (< 0.5) when the error is below 3 BPM, while the
variation can reach 1.2 at peak error.

D. Impact of the mmWave Servoing Module
In the prior experiments, we used heartbeat waveforms

collected with the optimal observing view. In the last ex-
periment, we investigate the importance of incorporating the
mmWave servoing module into the system loop, which is
responsible for searching the optimal observing view.

We collected a 3-minute data stream twice with the same
user pose and robot position. The only difference is whether
the servo module is used or not. Note that the initial
measuring view of the mmWave radar is manually set to
deg 75, deviating from the optimal angle. To have a fair
comparison, we fix this initialization setup for all baseline
testing. From the experimental results in Tab. IV, we can see
that with the mmWave Servoing module turned on, the PTA
metric is improved from an average of 2.11 to an average of
3.27. This in turn enhances the overall measuring accuracy of
all methods. This is consistent with our hypothesis that PTA
is vital to measurement accuracy and consequently proves
the necessity of utilising a mmWave servoing module for
direction optimization before measurements.

Moreover, our method, once again, shows superior perfor-
mance on the task. Even if the mmWave Servoing module is
disabled, our method is still the only method that produces
a satisfactory accuracy of over 90%, demonstrating a strong
generalisation ability in unseen scenarios.

VI. CONCLUSION

In this work, we proposed mBeats, a robot mounted
mmWave radar system that provides periodic heart rate
measurements under diverse poses without intruding on a
users daily activities. mBeats demonstrated, through the
use of a novel deep-learning approach, how accurate heart
rate measurements could be obtained from the lower-leg,
with corresponding uncertainty estimates. Future work will
consider how to measure heart rate from a moving subject, a
current limitation of our technique where locomotion signals
swamp the weak heart rate signals, and to train with a larger
number of participants.
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