160 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 49, NO. 2, APRIL 2019

Semantic Place Understanding for Human—Robot
Coexistence—Toward Intelligent Workplaces

Stefano Rosa

Abstract—Recent introductions of robots to everyday scenarios
have revealed unprecedented opportunities for collaboration and
social interaction between robots and people. However, to date,
such interactions are hampered by a significant challenge: hav-
ing a semantic understanding of their environment. Even simple
requirements, such as ‘“a robot should always be in the kitchen
when a person is there,” are difficult to implement without prior
training. In this paper, we advocate that robot—people coexistence
can be leveraged to enhance the semantic understanding of the
shared environment and improve situation awareness. We pro-
pose a probabilistic framework that combines human activity sen-
sor data generated by smart wearables with low-level localization
data generated by robots. Based on this low-level information and
leveraging colocation events between a user and a robot, it can
reason about the two types of semantic information: first, seman-
tic maps, i.e., the utility of each room and, second, space usage
semantics, i.e., tracking humans and robots through rooms of dif-
ferent utilities. The proposed system relies on two-way sharing of
information between the robot and the user. In the first phase, user
activities indicative of room utility are inferred from wearable de-
vices and shared with the robot, enabling it to gradually build a
semantic map of the environment. In the second phase, via colo-
cation events, the robot teaches the user device to recognize the
type of room where they are colocated. Over time, robot and user
become increasingly independent and capable of semantic scene
understanding.

Index Terms—Activity recognition, human—computer interac-
tion, intelligent robots.

I. INTRODUCTION

IGH-LEVEL semantic understanding of the environment
His still an open problem for complex cyber physical
systems involving robots and people. We envision that in
the next five years, such systems will become ubiquitous:
robots’ presence will continue to grow in workplaces, and
low-cost robots will increasingly assist humans in domestic
environments. The use of wearable sensors in manufacturing
has been investigated, with a particular focus on augmented
reality and dedicated assistance [2], [16]. Existing robotic and
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wearable sensor systems, however, still lack maturity in terms
of how they perceive the environment.

For example, robots typically perceive space in terms of low-
level metric, topological or feature maps. Recent work has moti-
vated the need for a high-level understanding of the environment
(e.g., semantic, affordances or high-level geometry) in order
to enable emerging robotics applications [6]. To date, vision-
based techniques for semantic mapping are well studied, but
they are labor intensive as they require careful training and/or
fine-tuning. Our vision instead is that semantic information can
be automatically acquired by robots over time as a result of
coexistence with users.

Similarly, wearable devices held by humans, e.g., smart-
phones or smartwatches, require tedious training (e.g., Wi-
Fi fingerprinting) and/or bespoke sensor infrastructure (e.g.,
UWB/Bluetooth) to localize themselves within a room, and
even then, they lack semantic understanding of the utility of
the room. Again, we advocate that this capability should be ac-
quired spontaneously by human-held devices as a result of them
interacting with robots.

To this end, we propose a system that enables robots and
wearable devices to have a semantic understanding of their en-
vironment via colocation and interaction with each other. We
believe that this is a key to a variety of applications from issu-
ing simple commands to robots such as “Go to the kitchen,” to
tasks of collaborative nature like “The robot should go to the
kitchen when the user (her smartphone) is there.” In an industrial
scenario, room-level localization of users could enable real-time
dynamic context-aware reasoning [4], in particular, in the frame-
work of Industry 4.0, in which the use of arrays of sensors on the
shop-floor could be replaced by a few mobile sensors, carried
by autonomous mobile service robots and by users.

The first intuition behind our approach is that user activities
provide informative hints about the utility of each room. For
example, a bedroom can be easily identified if people often sleep
in that room. However, the association between room types and
activities is not always unique. For instance, a user may eat in
the dining room most of the time, but may occasionally opt to do
so in the living room. The problem that arises is how to reliably
infer semantic labels for different rooms of the space given two
incomplete and noisy sources, i.e., robots’ perception of space
and users’ activity context.

Once we address the problem of semantic mapping, it paves
the way for inferring the sequence of room types that human
devices traverse. A robot, who is now aware of semantic room
labels, can feach human mobile devices how to recognize them
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based on their own signals. Specifically, we show how a robot
can help mobile devices to tune the parameters of the hidden
Markov model (HMM) that they use for localization.

To summarize, semantic mapping and semantic localization
are two faces of the same coin; we address both by leveraging
opportunistic colocation events between robots and human-held
devices. Through the diverse lenses of robots and wearable de-
vices, we show that they can both develop a semantic under-
standing of their space.

In particular, the contributions of this paper are as follows.

1) A method for inferring semantic labels (room types) for
different rooms by exploiting user activities and oppor-
tunistic colocation events.

2) A method for exploiting the inferred semantic map and
colocations in order to train the parameters of an HMM
for user localization.

3) We propose a bidirectional recurrent neural network
(RNN) with approximate variational inference for clas-
sification of complex daily activities from a smartwatch.

4) We validate the results in two work environments coin-
habited by robots and humans wearing smartwatches.

The remainder of this paper is structured as follows. Section II
provides an overview of related work. Section III presents the
architecture of our system. Section IV describes the semantic
representation of the map and the mapping procedure. Section V
discusses the training of the HMM for user localization.
Section VI evaluates the proposed approaches in different sce-
narios and Section VII presents our conclusions and directions
for future work.

II. RELATED WORK
A. Daily Activity Recognition

Activity recognition, and in particular wearable activity
recognition, is an important problem that has drawn significant
attention from the research community in the last ten years. Al-
though different sensor modalities have been studied, we focus
on the most related work that uses inertial sensor data (acceler-
ation and gyroscope) for activity recognition. We first discuss
recent work on classifying activities, and then discuss how activ-
ity information has been used within simultaneous localization
and mapping (SLAM) frameworks.

Ranjan and Whitehouse [20] used inertial data from a wrist-
mounted device to detect activities performed on household
objects. Ramos et al. [19] proposed to combine smartwatches
and smartphones for activity recognition and evaluate different
features. A deep belief network composed by stacked restricted
Boltzmann machines is used in [5] for detecting activities based
on spectrograms of acceleration data. A hybrid of deep learning
and hidden Markov models (DL-HMM) is also presented for
sequential activity recognition. An alternative dense approach
of labeling each sensor sample in a sequence, as opposed to
labeling a whole window of data, is explored using fully con-
volutional networks in [29]. The above-mentioned papers fo-
cus entirely on improving activity recognition; in this paper,
we propose a novel approach to activity recognition, based on
variational long short-term memory (LSTMs), that gives us es-

timates of classification uncertainty. This is a distinct advantage
as it enables us to integrate the activity classification model into
a purely probabilistic model, wherein uncertainty about activ-
ity translates to uncertainty about semantic room labels in a
principled manner.

We are now in a position to overview how activity classifi-
cation has been explored within SLAM frameworks. Hardegger
etal. [11] proposed a three-dimensional (3-D) SLAM algorithm
for users wearing wearable sensors, by including detected activ-
ities as landmarks in a particle filter SLAM approach. In [10],
the approach is extended into a unified Bayesian framework
for semantic SLAM with the goal of adding robustness to er-
rors in activity recognition. However, in both approaches, the
user carries a multitude of inertial sensors (wrist-mounted, hip-
mounted, and foot-mounted inertial measurement units (IMUs))
and does not exploit interactions with robots. Moreover, while
the approach is shown to work on some medium-length trajec-
tories, particle filter based SLAM methods are known to suffer
from the forgetting problem over longer trajectories (due to the
nature of resampling, the best trajectory could be discarded over
time). In [14], a method is proposed for tagging maps with ob-
jects. The object’s position is inferred by detecting user activities
and location, but the detected activities are not used in the map
estimation and there is no information exchange between the
robot and the user. To our knowledge, this is the first paper that
infers both user activity and its uncertainty from noisy wearable
sensors, and feeds this information to colocated robots, which
then learn semantic maps of the environment.

B. Semantic Mapping

Semantic mapping is the problem of associating high-level
semantic attributes to low-level geometric features. Both per-
ception and suitable map representations are active areas of
research, but to date most work in the robotics community has
been devoted to camera sensors [6]. Pronobis and Jensfelt [18]
presented a conceptual model for semantic map representation,
with different levels of abstraction, from sensor data to concepts,
such as rooms, with associated properties, such as shape, appear-
ance, and detected objects. The layered structure of the spatial
knowledge is used for reasoning at the semantic level, starting
from laser range finders and camera sensors. A number of works
have focused on assigning semantic concepts to high-level map
features, such as planar surfaces [21]. Pillai and Leonard [17]
segmented known objects in the map based on semantic labels.
Recently, Xiang and Fox [27] proposed a novel RNN architec-
ture for semantic labeling on RGB-D videos. Semantic infor-
mation is integrated with dense 3-D SLAM techniques, such as
KinectFusion, in order to obtain a 3-D semantic map of the envi-
ronment. The most closely related work on semantic mapping is
the recent work on inferring room labels [22] using visual place
categorization. A convolutional neural network is trained on the
SUN Scene Understanding dataset, and addresses the closed-
set limitation by training a set of one-versus-all classifiers for
recognizing new semantic classes.

The above-mentioned techniques rely on training data that as-
sociate visual sensor data to higher level semantic labels. Such
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learning tends to be very sensitive to the environment and incurs
a significant manual fine-tuning effort in each environment. For
example, the appearance of a kitchen may vary significantly
across different work and home environments. In our work, we
avoid environment-specific training; we rely on activity infer-
ence that transfers well between different environments, and
exploit robot—person interaction to gradually learn room types
from user activities over time. The only other work that ex-
ploited robot—person interaction is presented in [14], but only
to perform activity and associated object recognition in a more
reliable manner by combining the camera sensor of the robot
with the inertial sensors of the user.

C. User Localization

Indoor localization techniques have gained significant matu-
rity offering both infrastructure-based (e.g., UWB [3], acous-
tic [23], and Bluetooth low energy (BLE) beacons [32]) and
infrastructure-less (e.g., Wi-Fi [15], [24], geomagnetic [25], and
inertial [28]) solutions. In general, infrastructure-based methods
require the deployment and maintenance of bespoke localiza-
tion hardware, which greatly limits their application. On the
other hand, infrastructure-less methods exploit ambient signals
in the environment and are less costly. However, these methods
typically require offline training in the form of learning signal
maps of Wi-Fi or geomagnetic signals. The user’s positions can
then be localized by matching the online collected signals with
the surveyed signal map. Even after significant training effort,
location estimation can still be inaccurate in the online phase
due to the environmental dynamics and pose variations of users.

Unlike previous work on learning physical signal maps, the
adopted semantics are abstract and tightly related to user ac-
tivities. In our context, the aim is to infer semantic paths, e.g.,
the user went from the conference room to the kitchen and
back to his office. Previous work [13] on combining user ac-
tivities with Wi-Fi and acoustic data to localize users at room
level in domestic environments required a labor-intensive train-
ing phase for building the Wi-Fi map. Instead, we move away
from location-based training efforts, and rely on lifelong learn-
ing from human-robot interactions. The idea is to progressively
build confidence on the semantics of different rooms and make
wearable devices increasingly aware of their environment.

III. SYSTEM ARCHITECTURE

This section provides a high-level overview of our system.
We start by describing its actors and their sensing capabilities,
and then proceed to overview the two main components of the
system.

A. Actors and Sensing Capabilities

The proposed system includes two types of actors: a mobile
assistive robot and a user holding a wearable device, e.g., a
smartwatch. No other infrastructure is necessary.

1) Mobile Robot: We assume that the mobile robot is
equipped with proprioceptive sensors, such as wheel encoders
or an inertial sensor and an exteroceptive distance sensor such

Smartwatch .
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Fig. 1. Architecture of the semantic mapping subsystem.

as a laser range finder, sonars, or infrared sensors. Those sensors
are required in order for the robot to create a map of a previously
unseen environment and localize therein, as well as perform ba-
sic navigation in it. We do not rely on camera sensors, since
cameras are often forbidden in workplaces for privacy reasons,
and would also pose privacy issues in home environments.

2) User: We make the assumption that the user is carrying a
smart device, e.g., a smartwatch on his right arm if right-handed
or on left arm if left-handed. Smartwatches are a sensible choice
for detecting human activities from inertial data, and are not
intrusive compared to other sensors. Smartphones can be used
to infer low-level activities, such as walking, resting, climbing
stairs, etc., but are not useful for detecting a richer set of daily
activities, such as washing hands. It should be noted, however,
that smartwatches still present some limitations when having to
distinguish between activities that present similar motions, e.g.,
washing hands and washing dishes. In this paper, we model such
an uncertainty and take it into account in building semantic maps
and localizing users within them.

B. System Components

Our system consists of two main subsystems, one responsible
for building the semantic map of the environment, and one for
localizing users with wearables within the semantic map. These
two subsystems are discussed ahead in more detail.

1) Semantic Mapping: Fig. 1 provides an overview of the
first subsystem, designed to infer the semantic labels of map
cells. In this phase, we assume that the robot has already built
a grid map representation of the environment using an existing
SLAM algorithm, such as gmapping. The robot is also able to
localize in the map using its sensors and a suitable localization
algorithm, such as amcl. Moreover, the robot is able to navigate
the environment by planning trajectories and avoiding obsta-
cles. Such aspects of robot functionality are already mature and
accessible to researchers and practitioners in mobile robotics.

The user is wearing a smartwatch, which is acquiring inertial
measurements (accelerations and angular velocities). Based on
these measurements, we infer probability distributions of ac-
tivities using bidirectional long short-term memory (BLSTM)
neural networks. Whenever the robot happens to be colocated
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Fig. 2. Architecture of the user localization subsystem.

with the user in the same room, the robot detects the human
figure with its sensors and registers the colocation event.

The semantic map subsystem takes as input motion data from
the user, metric/topological maps inferred from the robot, and
colocation events detected by the robot, and combines them to
infer semantic labels for each grid cell of the robot map. Details
are further discussed in Section I'V.

2) Semantic Localization: Having obtained a semantic map
of the environment through the previous process, our system
includes a second component for localizing users within the
semantic map, as shown in Fig. 2. Our aim is to infer trajec-
tories that are not sequences of time—zy-floor coordinates, but
sequences of time-room label tuples.

In order to obtain such semantic paths reliably, we combine
the semantic map learnt from the previous phase with user activ-
ity distributions and colocation events between robot and user.
Fusing the above information in a probabilistic framework, we
are able to train the parameters of an HMM, which we then
apply to infer the user’s semantic paths. It is worth noting that
colocation events are only used for training the HMM; they are
not used at the inference stage. This means that the system can
learn to track the user through rooms independently of whether
the robot happens to be there. Further details on this part of the
system are provided in Section V.

IV. SEMANTIC MAPPING

In this section, we describe the first phase of our approach, in
which the robot is able to create a semantic map on top of the
metric map of the environment by accumulating information on
user activities over time during robot—user colocation events.
We first introduce BLSTM neural networks and describe the
proposed activity classification network architecture. Then, we
describe the semantic mapping creation process.

A. Activity Recognition

BLSTM RNNSs have recently shown promising results when
applied to the problem of human activity recognition (HAR)

[9], [30]. Inspired by these works, we started off by training a
BLSTM network that uses raw acceleration and gyroscope data
as input. However, the disadvantage of this method is that it does
not offer a Bayesian probabilistic interpretation of the quality
of classification results. In order to estimate the uncertainty
surrounding our classification results, we applied for the first
time the approach of variational LSTMs [7] to the problem
of activity recognition. In what follows, we first introduce the
reader to pure and BLSTMs, and then explain the benefits of the
variational approach.

Traditional RNNs are a type of neural network where the lay-
ers operate not only on the input data but also on the delayed
versions of the hidden layers and/or output. Therefore, the net-
work has an internal state which it can use as a “memory” to
keep track of past inputs and its corresponding decisions. Tradi-
tional RNNs, however, suffer from the problem of forgetting, as
they are unable to learn long-term trends in the input data. This
is known as the vanishing gradient problem. In [12], LSTM
networks were introduced as a modified version of RNNs in
order to address the vanishing point problem. Through the in-
clusion of gating cells that allow the network to selectively store
and forget past memories, the input gate g’ controls how the
input enters into the contents of the memory cell for the current
time step. The forget gate g/ determines when the memory cell
should be emptied by producing a control signal in the range
0-1 which clears the memory cell as needed. The output gate
g’ determines whether the contents of the memory cell should
be used at the current time step. g© is the cell state vector

g =o(W'sxh, | +T xx,)

gl =oc(W/ xh; | + T/ xx))
g’ =0c(W%xhy_ +1°xx;)

g’ =tanh(Wxh; | + I x x;)

m =g/ Oom_;+g" Og
h; = tanh(g’ ®m;_;) (D

where W% W/ W° and W are weight matrices and
I“,1/,1°,and I° are projection matrices. o is the logistic sig-
moid function. my; is the internal state of the cell and h; is the
hidden vector.

LSTM:s have been showed to be able to learn temporal behav-
ior and have been extensively used in many applications. Hence,
they seem a natural choice for detection of complex activities
from sequences of data that present a temporal component.

BLSTMs [8] are a variant of LSTMs composed by one for-
ward LSTM and one backward LSTM running in reverse on the
data and with their features concatenated at the output layer. This
enables information from both past and future to come together.
BLSTMs have been found to perform better when dealing with
small datasets.

A limit of RNNss is their tendency to overfit. Dropout can help
to a certain extent, but it has been shown to fail when applied
to recurrent layers. Gal and Ghahramani [7] suggested the use
of dropout in LSTMSs for an approximate Bayesian inference.
In the proposed variant, dropout is also used in the recurrent
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connections, and the same dropout masks are repeated at each
time step for inputs, outputs, and recurrent layers.

Variational LSTMs have been shown to outperform the clas-
sic variant, while at the same time offering a useful Bayesian
representation of the output, giving an estimate of the output
uncertainty. However, to our knowledge, they have not yet been
explored in the context of HAR.

In the variational variant, (1) becomes

g =c(W'x(h_0z)+I*(x, 0z,))

gl =c(W/ s (hy_,0z,)+ 1 % (x, ©2,))

g’ =0(W’x(h1 0zp) +1I7% (x; ©2,))

g =tanh(Ws (hy_1 ©zp) +I°% (% ©2,))  (2)

where z, and z;, are random binary masks that remain constant
at each step.

The other difference from standard LSTMs is that at predic-
tion time the dropout remains active. Each prediction is repeated
n times, in our case 50 times, and it is possible to compute the
mean class prediction and the associated variance over the set
of n samples, obtaining a prediction vector HAR, where each
element 4 denotes the probability p[i] of activity ¢ and the un-
certainty o[i] around it

HAR[i] = (HAR p[i], HAR .o [i]).

The ability to have an estimation of the uncertainty associated
with the detection is crucial when including this information in
a probabilistic framework.

B. Semantic Map Inference

1) Topological Mapping: As in [18], at the lower level, a
SLAM algorithm creates a grid map of the environment using
the robot sensors. Using a template-based door detector [18] on
laser distance data, the robot is able to group together multiple
cells into individual rooms. We use the concept of room in a
broad sense to denote both regular rooms and corridors. The
aim of semantic mapping is to assign semantic categorical la-
bels (e.g., kitchen, bathroom, corridor, etc.) to each cell in the
grid.

2) Detecting Colocation Events: Once the robot builds a grid
map of the environment, it starts roaming through it and records
any colocation events with users. In this section, we explain
how to robustly detect colocation events and identify the user
with whom the robot is colocated. For detecting humans, we
use fusion of distance data from the laser range finder on board
of the robot; we use an open-source code of an existing detector
that learns to recognize human legs [26].

However, in our application, we must ensure that the detected
person is effectively the user wearing the smartwatch. To this
end, we placed one BLE beacon onboard of the robot and mea-
sured the received signal strength (RSS) at the smartwatch. On
detecting a beacon, the smartwatch sends to the robot the user
identifier along with that user’s HAR (activity distribution) vec-
tor. Note that other methods based on RSS beyond blue tooth
low energy (BTLE) could be used for identifying users, for
example, Wi-Fi typically available on smartwatches.

Colocation

................................. i B e
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Laser scans

Fig. 3. Colocation detection. Bottom: Laser scans as seen by the robot, with
the detected leg pattern highlighted in red; third row: output of leg detector (the
output s 1 if any person is detected, 0 otherwise); second row: RSS from user ID
1 (the RSS threshold is shown by the dashed horizontal line); top row: detected
colocation events.

When the robot detects a user and receives probabilistic ac-
tivity data from that user, it triggers a colocation event. Fig. 3
shows an example of the colocation detection while the user is
approaching the robot.

3) Semantic Map Updates: Each cell c in the robot’s grid
map is assigned a vector smap|c] indicating the probability that
cell ¢ belongs to a room of a particular type. We use the abbre-
viation “smap” to refer to the semantic map, for example,

0.20 —  office

0.40 — kitchen
0.15 — bathroom
0.35 — bedroom

smap[c] =

Let smaplc]” be the element of smap[c| that corresponds to
a certain room type 7, for example, smap|[c]” ~ihen jg the cur-
rent estimate of the probability that cell c is in the kitchen. At
bootstrap, smap|c] is uniformly distributed over all room types.

On detecting a colocation event, the robot highlights a number
of cells that are within its view, with the intention of updating
their semantic map probabilities. Fig. 4 shows the cells that are
within the sensing range of the robot when it detects a person
nearby. Note that if a robot is situated in a room and looks in
the direction of the door, it ignores those cells that are beyond
the door frame.

The probabilities of selected cells having different room types
are then updated as follows:

smap[c]” := smap|c]” X Z p(rla) x HAR pla]  (3)

a€Activities

where p(r|a) is the probability of being in a room given activity
a, and HAR p[a] is the probability that the user is actually
performing that activity. In practice, this is implemented as a
sum of logs of the prior and conditional probabilities, instead of
a product of probabilities [22].
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Fig. 4. Grid mapping update. Each cell is represented as a vector of room-
type probabilities (shown in different colors) and is updated based on laser
observations using a ray-tracing procedure along each laser measurement.

Probabilities p(r|a) are drawn from the Concept net open-
source knowledge graph [1], which gives a list of all possible
activities associated with each room type, with a weight that
represents the strength of the relationship between room and
activity. We can exploit these weights, after normalization, in
order to obtain usable priors.

The semantic map is updated after each robot—user colocation
event. It can further be refined by taking into account that cells
belonging to the same room should be of the same type. By
averaging out the smap values of all cells in the same room, we
obtain a probabilistic semantic label for each room.

V. USER LOCALIZATION

In this section, we propose a simple graphical model for
room-level localization based on HMMs. The model is based
on the joint probability distribution between user location and
activity. The states of the model represent semantic room types
and the transitions represent the transition probability between
different room types, e.g., from kitchen to bathroom.

The model alternates between two phases, depending on the
predicted activity, namely a walking phase, and a stationary
activity phase. If a series of walking activities are detected, the
model estimates the length of the walking phase in seconds
(this is possible since activities are detected at a constant rate)
and treats it as a single walking event, representing a transition
between two nodes.

Otherwise, if another activity is detected, the model updates
the probability distribution of each node according to emission
probabilities, as in a classical HMM.

Letp® = (p!,...,p!,) be the probability vector for the current
location at time ¢, where n is total number of rooms. Each time
anew activity is detected, the vector p® is updated using one of
the two rules discussed as follows.

A. Walking Phase Update

We model the walking phase via a random variable w, which
contains information about the currently performed walking ac-
tivity. Examples of possible interpretations for w are walking
time, number of steps, walking distance, or even a part of a
trajectory. In this paper, we consider the simple case that w rep-
resents the walking time between two stationary user activities.

Assuming w is a continuous random variable, we have

= Zp(rt’1 =) /p(rt = rifw, v = r;)p(w)dw
j=1
4)

where we have assumed that W and 7/ ~! are statistically inde-
pendent. The integral in the above-mentioned formula marginal-
izes over the uncertainty on the walking random variable w,
whereas the sum marginalizes over the uncertainty of the loca-
tion at the previous step 7/~

The term p (r' = r;|w, 7"~ = r;) represents the likelihood
of the transition from room type r; to room type r; via a walking
event w.

This formulation accounts for the uncertainty on the estima-
tion of the walking times between rooms. For simplicity, we
can evaluate the walking time w without uncertainty by esti-
mating the duration of multiple contiguous walking activities.
This results in the simpler formula

1

ph=Y (' =) N (w; pij, o) ®
=1

where f1;; and o;; are the mean and standard deviation of the
time required to walk from a room type r; to a room type 7},
respectively.

In summary, the walking activity events are concatenated into
a single walking event that acts as a control input in the HMM
and impacts the transition probability between different room

types.

B. Stationary Activity Phase Update

In the stationary activity phase, state probabilities are only
updated using emission probabilities. The emission probability
for a given room type represents the probability of observing
an activity a given room type r. The state probabilities are then
updated as follows:

m

Pl =pl 1X:poz =a;j|r' =

The factor p (a' = a;) is the probability of the user performing
activity a; at time step t. It is the result of the activity prediction
represented as HAR_p(a; ) in Section IV-A.

Empirically, we found increased localization accuracy by
tweaking the above-mentioned formula into

) (a —a,) (6)

Z a' =aj|r' =ri)pla’ =a;)(1—0}) (7
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where the factor (1 — aj-) penalizes the effect of activity pre-
dictions that show a high standard deviation. By setting (7;- to
HAR_oa], the model is able to embed the uncertainty estima-
tion from the variational BLSTM (see Section IV-A).

C. Training Phase

Note that the conditional probability p(a’ = a;|r! =r;) is
learnt automatically before it is used within the HMM for lo-
calization. This occurs during the colocation events between
the robot and the user. Whenever they are both in room 7;, the
activity recognition module returns a vector HAR as discussed
in Section IV-A. HAR vectors corresponding to the same room
are averaged out in order to learn the conditional probability of
activity given room.

VI. EXPERIMENTAL RESULTS

We implemented our neural network using the Keras library
and Tensorflow as the optimization back end. The semantic map-
ping system is implemented using the robot operating system
(ROS). The source code as well as the user activity dataset used
in the experiments will be available online.

A. User Activities

1) Data Collection Protocol: For training our network, we
gathered inertial data from a set of 20 users [of ages between 24
and 60 (with ;o = 31)]. Users were given a smartwatch (Sony
Smartwatch 3) to be worn on their right hand if right-handed
or on the left if left-handed. We defined a list of complex daily
activities typical of domestic environments. Each subject was
asked to perform the activities, one by one, based on his/her
own interpretation and style. In order to sufficiently sample the
continuous movement of nontransient actions, each subject was
asked to perform each activity continuously for 60 s or more.
We define the following list of ten activities.

1) washing dishes;
2) opening door;

3) dressing up;

4) drinking/eating;
5) washing hands;
6) idling;

7) using a PC/laptop;
8) brushing teeth;

9) walking;

10) writing.

Two are simple activities (walking and idling), whereas the
rest are complex activities that are typically performed very
differently by different people and in different environments. In
total, 3 h and 10 min of data were collected.

2) Training: We train our network architecture using stan-
dard backpropagation and the ADAM optimizer. For activity
recognition, the input of the network is a sequence of three-
axial acceleration data and three-axial angular velocity data of
fixed length. Since the sensors present different sampling rates
(the accelerometer samples acceleration at ~100 Hz, while the
gyroscope samples at a lower ~30 Hz), we oversample the
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TABLE I
OPTIMAL VALUES FOR THE NEURAL NETWORK HYPERPARAMETERS
Parameter Value
BLSTM layers # 2
Neurons layer 1 50
Neurons layer 2 200
pW’l 0.8
PU1 0.05
pw 0.05
PU,2 0.05
Pdo 0.05
batch size 64
learning rate 0.001
dishes 0.03 0.02 0.00 0.12 0.00 0.00 0.00 0.00 0.01 0.9
door 0.01 0.8
dressing %0.23 0.7
drinking [-0.02 0.6
hands-0.11 05
idle +0.01
0.4
pc +0.00
0.3
teeth 0.01
0.2
walking +0.00
0.1
writing +0.00 0.00 0.00 0.02 0.00 0.01 0.06 0.00 0.00
1 1 1 1 1 1 1 1 1 0.0
n 3 o (=)} v ()] v < (=) o
) Q c c k] = o + c c
5 S § ¥ 5 ° § = g
© g = < .
° ° s
Fig. 5. Confusion matrix for the variational BLSTM over ten classes.

gyroscope data in order to match that of the accelerometer, us-
ing piecewise cubic spline interpolation.

We experimentally found that a window size of 3 s offers the
best results for complex activity classification in most cases.
This is due to the fact that these activities are composed by
a series of movements that span over a longer time window,
compared to classic activities, such as walking, running, biking,
etc. We divide the data into windows of 3 s with an overlap
of 50%. The data are subsampled to a frequency of 50 Hz and
a median filter is applied on the raw data in order to smooth
outlier measurements.

The optimal hyperparameters for the network were found
using the Hyperas python package with tree-structured Parzen
estimator (TPE) optimization and are reported in Table 1. pyy,
pu, and pgy, represent the dropout ratios for the W weight ma-
trices, for the U weight matrices, and for the drop-out layer,
respectively. Note that the batch size is dependent on the hard-
ware setup.

Fig. 5 shows the classification results. The network achieves
an accuracy of 87.5% on the test set. In order to validate the
choice the proposed architecture, we also compared with three
baselines: a nonvariational LSTM, a nonvariational BLSTM
(i.e., dropout was disabled at prediction time), both using the
same hyperparameters, and another nonrecurrent deep method

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 27,2020 at 15:23:46 UTC from IEEE Xplore. Restrictions apply.



ROSA et al.: SEMANTIC PLACE UNDERSTANDING FOR HUMAN-ROBOT COEXISTENCE—TOWARD INTELLIGENT WORKPLACES 167

Smart watch

Kinect camera

Fig. 6. Setup for the experimental tests during a colocation event, while the
user is performing an activity. The user is wearing a smartwatch; the robot is
using a Kinect camera for simulating a laser range finder.

[5]. The LSTM and the BLSTM achieved an accuracy of 78%
and 82%, respectively. Alsheikh et al. [5] achieved 82.5% ac-
curacy.

B. Semantic Mapping

We test the semantic mapping in both an office-like environ-
ment and a domestic environment. In our experiments, users are
equipped with a smartwatch, connected via Wi-Fi to the robot.
The robot is a Turtlebot 2 equipped with a Microsoft Kinect
camera. The robot is using the Kinect to simulate a laser range
finder to localize in the map, to detect doors using a simple
template matching algorithm available in ROS and to detect the
user using a simple classifier for leg detection based on laser
scans. As mentioned before, the camera is not used due to pri-
vacy concerns. The first scenario is an office-like environment,
composed by a series of rooms and a corridor. We had access
to the planimetry of the floor in the form of CAD files, but the
robot could build a map beforehand by performing SLAM. In
our experiment, we are interested in mapping five rooms (lab,
conference room, kitchen, office, and bathroom). There is a
sixth multipurpose room in the center, but it is not included in
the experiment since it is not represented by any particular set
of activities. The setup for the experiment is shown in Fig. 6.
For the second scenario, a grid map was built autonomously by
the robot beforehand using the gmapping ROS package.

The experiment lasted for a total of 30 min per user, with the
robot and the user moving in the environment, entering various
rooms and triggering colocation episodes, and the cumulative
result is shown in Fig. 7. It should be noted that in our exper-
iments, the robot was wandering autonomously from room to
room in a randomized manner.

}-Jlm . Office
}ﬁl e &= Bathroom
J { B common room
il,lr [ [l Kitchen
e t B
oo
Tt [m—-' _I -

Fig. 7. Resulting semantic map for the first scenario (activities only). The
estimated topological and semantic maps are superimposed a CAD map. Each
color of the map corresponds to a different room type (blue = corridor; red
= lab; light red = office; yellow = kitchen; green = bathroom; and cyan =
common room). The topological map is represented by colored circles (each
color represents a different room and red dots represents detected doors).

B office

| Kitchen
. Corridor

.

Fig. 8. Resulting semantic map for the first scenario with the approach pro-
posed in [22].

lab 064 bedroom

kitchen
living room

office

kitchen

cont. room

Selfvom) a0 bathroom

& & & &

& @ &

(b)

Fig. 9. Confusion matrix for the semantic maps in the two scenarios. Each
row represents one room; each column represent a semantic label; we report the
percentage of cells in each room that are classified with a particular semantic
label. (a) First scenario. (b) Second scenario.

Some issues are visible in the resulting semantic maps. For
instance, one door leading from the kitchen to the corridor was
not correctly detected at first. This is due to the difficulty to
tune the parameters of the door detector for different types of
openings. This led to the part of the corridor nearby the kitchen to
be labeled as corridor. The resulting semantic map is somewhat
sparse in certain areas since there were few colocation episodes.
Over a longer period of time, we can expect the map to become
more complete. On the other hand, the probabilistic mapping
procedure was able to cope with misclassified activities among
the users, by smoothly updating the map probabilities over time.

Fig. 9 reports the ratio of map cells identified as a particular
room type for the five rooms in the first scenario. The values are
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Washing dishes
Opening door
Dressing up
Drinking/eating
Washing hands
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Fig. 10.
location as well as the ground truth.

. Bedroom

. Bathroom
- Living room
Ml Kitchen

Fig. 11. Resulting semantic map for place classification in a domestic envi-
ronment. Here, red = bedroom; blue = living room; cyan = kitchen; and green
= bathroom. The map constructed by the robot is used here.

computed as the ratio between the cells classified as a particular
room type and the total number of cells in each room. Note that
the final mapped area is dependent on the presence of furniture
or obstacles and on the trajectory of the robot. The values in
Fig. 8(a) reflect the fact that only partial areas of each room
have been mapped. For instance, as the office was occupied by
a desk and several chairs, the robot could not reach the whole
room.

In order to provide a baseline for semantic mapping, we also
show the result of semantic mapping using the visual place clas-
sification approach from [22]. The result is shown in Fig. 8. In
[22], a convolutional neural network based on AlexNet was pre-
trained on the Places205 dataset [31] for place classification.
The network takes RGB images in input from the Microsoft
Kinect camera mounted on the robot. We only use the subset
of the 205 place labels, which are relevant to the testing en-
vironment (office, kitchen, conference room, and corridor). It
can be seen how the corridor class, absent from our method, is
correctly classified by the network given in [22] at the cost of a
large number of false positives. No fine-tuning of the network
was done.

Fig. 11 shows the results of one run in a household com-
posed by four rooms (bedroom, living room, kitchen, and bath-
room), while Fig. 8(b) reports the ratio of map cells iden-
tified as a particular room type for the four rooms in the

1800 s

Trace of activities and room location aligned in time. The top image shows the estimated activity probabilities; the bottom image shows the predicted

scenario. The experimental results show consistently accurate
classifications.

C. User Localization

In this experiment, we show how we can combine the seman-
tic map obtained in the first phase and successive colocation
events in order to learn the parameters of a simple graphical
model for user localization at room level, independently from
the robot. We perform these experimental tests in the same two
scenarios of the previous experiment. Inertial data were col-
lected from a test set of five users. We show the localization
results and compare them with the ground-truth location, which
is obtained by placing BLE beacons in each room of interest in
both scenarios.

The system first learns the correlation between room loca-
tions and activities in the form of emission probabilities for the
different activities given room types. This is done over a series
of colocation events over time. Since the robot has access to the
semantic maps from the previous experiment, it is able to learn
the emission probabilities over time. The relation between the
activities and the six semantic rooms considered is plotted in
Fig. 12. We expect that the activities performed in rooms which
are of the same type to be similar (e.g., lab and office), so in
this experiment we combine the two room types. Notice that the
opening door activity is not considered, as it is not related to a
specific room, but to the transition between rooms.

We use Laplace smoothing on the estimated transition prob-
abilities. As the classes are somewhat unbalanced (e.g., people
tend to spend most of the working day in the lab), the classifica-
tion accuracy for each specific class is weighted by the number
of samples in the class. The room-to-room distances used to es-
timate transition probabilities are obtained from the topological
map built by the robot on top of the metric map.

We provide statistical results for the localization module in
Table II for both environments and averaged over a test set of
five users, and we compare our graphical model with a baseline
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Fig. 12. Learned emission probabilities for activities performed in each room

(office-like environment).

TABLE II
PREDICTION ACCURACY OF USER LOCALIZATION FOR BOTH SCENARIOS FOR
THE PROPOSED MODEL AND A BASELINE HMM IMPLEMENTATION

Precision  Recall  fj score
. Office-like 0.8 0.71 0.75
Baseline HMM 0 (e 0.8 075 077
Pronosed model]  Office-like 081 0.91 0.86
P Domestic ~ 0.87 0.95 0.91

approach consisting of a trivial HMM implementation, where
the transition and emission probabilities are the same as the pro-
posed graphical model. It should be noted that for the office-like
scenario we used 3 s windows, while for the domestic scenario
a window of 5 s gave the best results. In Fig. 10, we show the
detected activities along with the predicted room locations for
one user in the second scenario, for a duration of 30 min. The
results show how the proposed model can outperform a classical
HMM in our particular task.

VII. CONCLUSION

This paper presented a framework that integrates assistive
robots, which will be present in workplaces and households of
the future, and consumer wearable devices, for sharing infor-
mation between robots and users that benefit each other. In our
scenario, a robot and the user coexist in a workplace or house-
hold. The robot creates a map using any sensor that can provide
distance measurements, then it is able to navigate the environ-
ment using standard navigation algorithms. The user wears a
smartwatch that continuously acquires inertial data. Whenever
the robot and the user meet, user activities are used to build addi-
tional semantic layers on top of the map, representing room-type
probability. We propose the use of a variational BLSTM net-
work for recognizing complex spatio-temporal activities from
raw data that keeps the whole framework probabilistic. Once a
semantic map is available, raw data from the user’s wearable

device can be used to detect room types. Over time, we train
a room-based graphical model for room-level localization for
the user even in the absence of the robot. In the model, nodes
represent room types and transitions represent transitions be-
tween room types. This enables the robot to know the type of
room the user is in at any time for executing high-level tasks.
Future work could be devoted to integrating a pedestrian dead
reckoning algorithm into the localization module. Another in-
teresting extension would be to investigate active exploration
strategies for the robot in order to maximize the chance of colo-
cation events. Finally, semantic user localization could provide
real-time context information to context-aware reasoning sys-
tems for supporting users without the need to instrument the
environment, relying instead on mobile autonomous robots and
wearable sensors.
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