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Abstract

Monads are a useful tool in both computer science and mathematics: they

model computational behaviour, describe data structures, and give access

to Kleisli and Eilenberg-Moore categories. To utilise multiple monads

simultaneously, monads can sometimes be composed to form composite

monads. Distributive laws ensure that such composite monads capture

the full behaviour of both their components, creating a lifting of the com-

ponent monads to the appropriate Kleisli or Eilenberg-Moore categories.

However, for a given pair of monads there does not necessarily exist a

distributive law to compose them.

This thesis presents a new method to prove so called no-go theorems : the-

orems that identify cases in which a distributive law cannot exist. The

method, which uses an algebraic perspective on monads, has unique ad-

vantages over the more usual categorical approaches. The most important

advantage is that it produces no-go theorems that identify large classes of

monads that do not compose via distributive laws, where previously only

a few specific counterexamples were known.

Among the many examples in this thesis, there are several that answer

open questions from the literature, and some that identify previously un-

noticed mistakes in the literature. Our no-go theorems will hopefully

prevent these type of mistakes from happening in future.
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Chapter 1

Introduction

This chapter discusses how the research presented in this thesis fits in both the wider

programme of theoretical computer science and my own research programme. It also

includes a note on the notation used in this thesis, and finishes with an acknowledge-

ment of the contributions, both direct and indirect, that my collaborators have made

to this thesis.

1.1 Historical Context

Monads are a key tool in computer science. They are, amongst other things, used to

provide semantics for computational effects such as states, exceptions, and I/O [48].

They are also used to structure functional programs [51, 62], and appear explicitly

in the standard library of the Haskell programming language [26]. As such, it is

important to fully understand and characterise their behaviour.

Monads are a categorical concept. A monad on a category C is a triple 〈T, η, µ〉
consisting of an endofunctor T : C → C and two natural transformations η : 1 ⇒ T

and µ : T ◦ T ⇒ T satisfying axioms described in Definition 2.1 below. A natural

question to ask is whether two simple monads, each modelling a different computa-

tional effect, can be combined into a new monad modelling both computational effects

simultaneously. Possible combinations of two monads include their direct sum, their

tensor product, and their composition. Hyland, Plotkin and Power describe how to

combine monads using sums and products [27]. In this thesis, we describe composi-

tions of monads.

Unfortunately, composing the functor parts of two monads does not, in general,

result in a new monad. Beck has shown that the existence of a distributive law

provides sufficient (but not necessary) conditions for such a composition to form a

monad [5]. A distributive law between monads S and T is a natural transformation

1



of type S ◦ T ⇒ T ◦ S, satisfying four equations described in Definition 2.10 below.

This important idea has since been generalised to notions of distributive laws for

combining monads with comonads, monads with pointed endofunctors, endofunctors

with endofunctors and various other combinations, see for example the work by Lenisa

et al. [38].

General-purpose techniques have been developed for constructing distributive

laws [7, 14, 28, 43, 44]. These methods are highly valuable, for, in the words of Bon-

sangue et al.: “It can be rather difficult to prove the defining axioms of a distributive

law.” [7]. In fact, it can be so difficult that on occasion a distributive law has been

published which later turned out to be incorrect; Klin and Salamanca have made an

overview of such cases involving the powerset monad [34].

The literature has tended to focus on positive results, either demonstrating specific

distributive laws, or developing general-purpose techniques for constructing them. By

comparison, there is a relative paucity of negative results, showing when no distribu-

tive law can exist. The most well-known result of this type appears in the paper

Distributing probability over non-determinism [60], where it is shown that there is no

distributive law combining the powerset and probability distribution monads, via a

proof credited to Plotkin. This result was strengthened by Dahlqvist and Neves to

show that the composite functor carries no monad structure at all [15]. Recently, the

same proof technique was used by Klin and Salamanca to show that composing the

covariant powerset functor with itself yields an endofunctor that does not carry any

monad structure [34], correcting an earlier error in the literature [43].

In this thesis we present a new method for proving the absence of distributive

laws, resulting in what we call no-go theorems. This terminology is borrowed from

physics, where theorems proving impossibilities are called ‘no-go theorems’, because

they clearly identify theoretical approaches that cannot succeed.

Our method uses an intimate connection between monads and universal algebra:

for every monad there exists an algebraic theory and vice versa. We explain this

connection in more detail in Section 2.4. Piróg and Staton extended this connection,

showing that for every composite monad originating from a distributive law, there ex-

ists a composite algebraic theory [52]. By exploring the properties of these composite

theories, and ultimately showing that some of them are inconsistent, we prove that

certain distributive laws cannot exist. This algebraic approach has the advantage

that it produces general theorems rather than specific counterexamples. As a result,

our theorems apply to large classes of monads. We are hence able to significantly

extend the current understanding of monad compositions via distributive laws.

2



There are many surprising results among the no-go theorems in this thesis. For

instance, we prove that the list monad cannot distribute over itself, resolving an

open question [43, 44] and previous error [33] in the literature. In addition, the no-

go theorems reveal a previously unnoticed faulty distributive law in the literature,

involving the list and exception monads [44].

We hope that by sharing these results our no-go theorems will live up to their

name, and prevent others from wasting time on wild goose chases.

1.2 Personal Context

In this section, I would like to share the story of my DPhil, and how serendipity has

led to the thesis that now lies before you.

Originally, I was investigating categorical models for natural language processing,

in particular compositional distributional models of meaning (DisCoCat [13]). I was

studying how density matrices from quantum physics could be used to model both

homonyms and hyponyms, two different types of ambiguity in natural language [2,64].

One of the major criticisms of this model is that it is not monadic, and therefore it

lacks all the nice properties that monads have. So the question was whether the

uncertainty of both hyponyms and homonyms could be captured in a monad, or a

structure based on a monad.

I was inspired by a paper by Dan Marsden [46], who used the probability distri-

bution monad to define an enriched category that could model either hyponyms or

homonyms, but not both at the same time. My idea was to use his construction on

the double probability distribution monad, which would result in an enriched category

suitable to model both types of lexical ambiguity.

I quickly learned that monads do not automatically compose, and in fact, it was

unknown whether the probability distribution monad could compose with itself. The

result of my investigation into this ‘minor side question’ is this thesis. It turns out

that the probability distribution monad does not compose with itself via a distribu-

tive law, as demonstrated in Example 5.22. This means that I cannot use the double

distribution monad as I had hoped, to model both hyponyms and homonyms simul-

taneously.

There is much more to be discovered about monads and monad compositions, so

I will continue this line of research. I leave the question of modelling ambiguity in

natural language to a new generation of students.

3



1.3 Prodding It with the Right Stick

One of the most well-known applications of category theory is to provide a way to

view mathematical objects from a different perspective. For example the famous

Stone duality allows us to view Stone spaces as Boolean algebras and vice versa [30].

We will view monads from both a categorical and an algebraic perspective, making

this thesis a prime example of applied category theory. The algebraic perspective

turns out to be particularly useful for proving negative results, while the categorical

perspective is better suited for positive results.

Apart from perspective, notation greatly influences how we think about mathe-

matics. With the right notation, a multiple-page proof might be reduced to a single

sentence, explainable in a pub. We will use string diagrams, commuting squares, and

old fashioned algebra in our proofs, presenting each proof in the most suitable way.

1.4 Acknowledgement of Contributions

Most of the work presented in this thesis is my own original work, but of course I have

not been working in complete isolation. My ideas are built on the work of others,

and influenced by discussions with others. Where appropriate I give credit through

the proper citations, but some influences cannot be indicated in this way, either

because they are considered folklore or because they stem from informal discussions.

In addition, some previously unpublished work from collaborators has found its way

into this thesis. Without these contributions, the story presented here would not have

been complete. I am grateful for my collaborators’ permission to include their work

in my thesis. In this section, I acknowledge all such contributions.

Ch 2: Any examples in this background chapter that are given without source are

considered well-known to the community.

Ch 3: In this chapter, I build on the ideas from Maciej Piróg and Sam Staton presented

in their paper “Backtracking with cut via a distributive law and left-zero monoids

[52], where they define the concept of a composite theory. Definition 3.2 is

based on their Definition 3. Theorems 3.7 and 3.9 are constructive versions of

their Theorem 5, so although the statement that distributive laws correspond

one-to-one to composite theories was already known by Piróg and Staton, the

method and proof of how to construct one from the other is new. The idea

of Proposition 3.5 was formulated by Dan Marsden, although the proof is my

4



own. The proof of Proposition 3.4, in particular the implication 2 ⇒ 3, was

done collaboratively by Marsden and me.

Ch 4: This chapter is entirely my own work, although I owe great thanks to Marsden

for pointing out its significance to me.

Ch 5: The original proof that the powerset monad does not distribute over the dis-

tribution monad, presented in Counterexample 5.18, is by Gordon Plotkin [60].

The idea of using universal algebra rather than categorical methods to prove

such negative results was Marsden’s. He was the first to try Plotkin’s argu-

ment algebraically, and he convinced me to translate my own proofs to algebra,

making them more convincing. The proofs of Theorem 5.20, Lemma 5.24, and

Theorem 5.25 were all found by Marsden. Louis Parlant has been a great help

in analysing Ernie Manes’s and Philip Mulry’s papers, especially the proof of

Theorem 4.6 in Monad Compositions II [44]. This theorem clashes with some

of our own results, and Parlant found the likely cause of this clash in the proof

of one of the lemmas in the same paper. Bartek Klin pointed out that although

the list monad does not distribute over itself, the composite functor LL does

carry a monad structure (see Remark 5.44). The idea of stable universal sets

was again formulated by Marsden. It captures why Theorem 5.20 can be applied

to the distribution monad, but not to the group monad. This was an important

step in our initial understanding of the range of applicability of our theorems.
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Chapter 2

Background

We assume the reader has a basic knowledge of category theory. In particular, we as-

sume that the concepts category, functor, and natural transformation are all familiar.

More information on these can be found in standard textbooks on category theory,

e.g. [1, 4, 40].

The core concepts of this thesis are monads, distributive laws, and algebraic the-

ories. In this chapter we give the standard definitions of these concepts, introduce

the notation we will use for them, and explain the relations between them.

We start this chapter with a brief reminder of string diagrams, a graphical notation

for category theory, which we shall use in some of the proofs in this thesis.

2.1 String Diagrams

String diagrams represent category-theoretical concepts using lines (‘strings’) and

boxes. This notation is particularly useful to study the structure of complicated

expressions or equations involving several natural transformations. It also makes

these expressions and equations easy to manipulate. This section briefly reminds the

reader of the basics of string diagrams, focussing on the aspects that are important

for this thesis. It is not meant to be a full introduction to string diagrams. For a more

complete explanation and rigorous definitions of string diagrams we refer the reader to

the Rosetta Stone paper by Baez and Stay [3] or the survey of graphical languages by

Sellinger [56]. We also recommend the Youtube channel ‘TheCatsters’ as an excellent

introduction to various categorical concepts, including string diagrams, monads and

distributive laws [9].
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In Cat, the category of categories, categories (the objects) are often drawn as

(labelled) points, functors (the morphisms) as arrows and natural transformations

(morphisms between morphisms) as areas indicated by double arrows between arrows.

C · · D
F

G

φ

That is, categories are drawn as zero dimensional things, functors get one dimension

and natural transformations two dimensions.

String diagrams reverse this order, having natural transformations as points (zero

dimensional), functors as lines (one dimensional) and categories as areas (two dimen-

sional). In topology, this is called the Poincaré dual [24].

φC D

F

G

Composition of functors is drawn horizontally, while natural transformations can

be composed horizontally and vertically. This is illustrated by the following string

diagram:

φ

C D

F

H

ψ

G

I

J

Eρ

,

which represents:

C D E

F

G

H

I

J

φ

ψ

ρ .

Notice that we expect the diagrams to be read from top to bottom. In the picture

above, ψ◦φ is drawn with φ on top, as that is the first natural transformation applied.

7



In string diagrams, only the topology of the diagram matters. Lines can bend,

nodes can be dragged along lines, etc.

φ

C D

F

H

ψ

G
φ

C D

F

G

ψ

H

φ

C D

F

H

ψ

G= =

But nodes cannot, in general, slide past each other as this changes the meaning of

the diagram.

φ

C D

F

H

ψ

G

ψ

C D

F

H

φ

G6= ==ψ ◦ φ φ ◦ ψ

When the types of the categories, functors, and natural transformations in a

string diagram are clear from the context, we omit their labels to make the picture

less cluttered. In addition, we draw the identity functor as an invisible line. So a

natural transformation η : Id ⇒ F between the identity functor and an endofunctor

F : C → C will simply be drawn as:

.

In the following sections, we shall give the definitions of various concepts both

in the usual categorical notation and using string diagrams, whenever appropriate.

Chapter 4 contains several short proofs using string diagrams.

8



2.2 Monads and Distributive Laws

We introduce monads and show how they can be composed using distributive laws.

There are several equivalent definitions of monads, and each community has their own

standard form. Category theorists generally prefer the monoid form, while functional

programmers are more likely to use monads in Kleisli form. The monoid form is the

most convenient for the purposes of this thesis, so that is the one we will introduce

here. More information about the Kleisli form and the connection between the two

formulations can be found in Algebraic Theories by Manes [41].

2.2.1 Monads

Monads are used in both mathematics and computer science. In mathematics, they

are studied for their nice properties, in much the same way as groups and categories

themselves are. In computer science, monads are used to model data structures and

computational effects.

Definition 2.1 (Monads). A monad on a category C is a triple 〈T, η, µ〉 consisting

of an endofunctor T : C → C, a natural transformation η : Id ⇒ T called the unit,

and a natural transformation µ : T 2 ⇒ T called the multiplication, which satisfy

the following axioms:

µ ◦ Tη = IdT (unit1)

µ ◦ ηT = IdT (unit2)

µ ◦ Tµ = µ ◦ µT (associativity)

We also give these axioms as commutative diagrams:

T TTT TT

TT T TT TT T

ηTTη

µT

Tµ µ

µ µ µ

In string diagrams, the unit is denoted by and the multiplication by . The axioms

they satisfy are:

= =

,

=

9



We mostly restrict to monads on the category Set of sets and functions. In

addition, if there is a finitary version and a full version of a monad, we mean the

finitary one unless otherwise specified.

We list a few monads on Set that we will use throughout this thesis.

Example 2.2 (Exception Monad). For any set E, the exception monad (− + E)

is given by:

� (X + E) is the disjoint union of X and E.

� ηEX is the left inclusion morphism.

� µEX is the identity on X, and collapses the two copies of each e ∈ E down to a

single copy. That is, µ : (X + E) + E ⇒ X + E.

When E is a singleton set, this monad is also known as the maybe monad: (−)⊥.

Example 2.3 (List Monad). The list monad L is given by:

� L(X) is the set of all finite lists of elements of X.

� ηLX(x) is the singleton list [x].

� µLX concatenates a list of lists.

For reasons that will become clear later on, this monad is also known as the free

monoid monad.

Example 2.4 (Multiset and Abelian Group Monad). The multiset monad M is

given by:

� M(X) is the set of all finite multisets1 of elements of X.

� ηMX (x) is the singleton multiset HxI.

� µMX takes a union of multisets, adding multiplicities.

We can generalise the notion of multiset to take multiplicities in the integers rather

than the natural numbers. This results in the Abelian group monad.

1by which we mean: multisets in which only finitely many elements have a non-zero multiplicity.
In other words: multisets with finite support. We assume the multiplicities are in the natural
numbers. Multisets are also known as ‘bags’.
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Example 2.5 (Powerset Monad). The finite powerset monad P is given by:

� P (X) is the set of all finite subsets of X.

� ηPX(x) is the singleton set {x}.

� µPX takes a union of sets.

Example 2.6 (Binary Tree Monad). The binary tree monad Tree is given by:

� Tree(X) is the set of all binary trees with leaves labelled by elements from X.

� ηTreeX (x) is the tree consisting of a single leaf labelled with x.

� µTree
X flattens a tree of trees.

Example 2.7 (Distribution Monad). The probability distribution monad D is

given by:

� D(X) is the set of all finitely supported probability distributions over X.

� ηDX(x) is the point distribution at x.

� µD(e)(x) is the weighted average
∑

d∈supp(e) e(d)d(x).

Example 2.8 (Reader Monad). For any set of states R, the reader monad (−)R is

given by:

� XR is the set of functions from R to X.

� ηRX(x) is constantly x.

� µRX(f)(r) = f(r)(r).

Example 2.9 (Writer Monad). For any monoid 〈W, ∗, 1〉, the writer monad (−)×W
is given by:

� X ×W is the Cartesian product of X and W .

� ηWX (x) = (x, 1).

� µWX ((x,w1), w2) = (x,w1 ∗ w2).

11



2.2.2 Distributive Laws

To understand complex systems, it is often useful to view them as a combination of

several simple systems. This idea of compositionality is found everywhere: comput-

ers are built from very simple logic gates and circuits, cities are built from houses,

molecules are built from atoms. Since monads model computational behaviour, we

would like to take several monads that each model a simple part, and combine them

to model more complex phenomena.

There are several ways to combine monads, for instance by taking their (co)product

[27] or their composition. We will consider the second option of these: combining mon-

ads by composing them. Since functors of the right type always compose, one expects

monads to compose as well. Unfortunately, it turns out that composing monads is

not as straightforward as composing functors.

The difficulty in composing monads is caused by the multiplication. For monads

〈S, ηS, µS〉 and 〈T, ηT , µT 〉 to compose, we need a multiplication of type

TSTS ⇒ TS.

Simply composing the multiplications of two monads gives a natural transformation

of type

µTS ◦ TTµS : TTSS ⇒ TS.

This mismatch of types can be solved by pre-composing with a natural transformation

λ of type ST ⇒ TS. Then:

TλS : TSTS ⇒ TTSS,

and so we get a natural transformation of the right type:

µTS ◦ TTµS ◦ TλS : TSTS ⇒ TS.

This is the core idea behind distributive laws.

Beck showed in 1969 that monads 〈S, ηS, µS〉 and 〈T, ηT , µT 〉 can be composed if

there is a distributive law between them [5]. A distributive law is a natural trans-

formation λ of type λ : ST ⇒ TS, which satisfies some axioms defined below. The

composition of two monads 〈S, ηS, µS〉 and 〈T, ηT , µT 〉 is then defined as:

〈T ◦ S, ηTηS, µTµS ◦ TλS〉.
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Definition 2.10 (Distributive laws). Given two monads 〈S, ηS, µS〉 and 〈T, ηT , µT 〉,
a distributive law is a natural transformation λ : ST ⇒ TS such that:

λ ◦ ηST = TηS (unit1)

λ ◦ SηT = ηTS (unit2)

λ ◦ µST = TµS ◦ λS ◦ Sλ (multiplication1)

λ ◦ SµT = µTS ◦ Tλ ◦ λT. (multiplication2)

These axioms can be visualised by the following commuting diagrams:

T SST STS TSS

ST TS ST TS

S STT TST TTS

ST TS ST TS

ηST TηS

µST

Sλ λS

TµS

λ λ

SηT ηTS
SµT

λT Tλ

µTS

λ λ

In string diagrammatic notation, the unit axioms are:

λ

η

=

η

S

S T T S

T S T ,

λ

η

=

η

S T T S

T S T S .

And the multiplication axioms are:

λ

µ

=

λ

λ

µ

S S T S S T

T S T S ,

λ

µ

=

λ

λ

µ

S T T S T T

T S T S .
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Remark 2.11. The string diagrams illustrate that in each of these equations, the unit

or multiplication in the diagram on the left hand side is being ‘pulled through’ the

distributive law to get the diagram on the right hand side. This intuitive way of

representing distributive laws is further explored in Dragging Proofs Out of Pictures

by Hinze and Marsden [25].

Remark 2.12. For a pair of monads S, T the expression ‘S distributes over T ’ is often

used. This phrasing is somewhat ambiguous: it could mean the underlying natural

transformation has type TS ⇒ ST or of type ST ⇒ TS, and conventions are applied

inconsistently in the literature. We will therefore avoid this phrasing, and explicitly

state the type of the natural transformation, for example ‘there is a distributive law

of type ST ⇒ TS’.

Example 2.13 (Ring Monad). The most famous example of a distributive law in-

volves the list monad and the Abelian group monad, and has type LA⇒ AL [5]. It

captures exactly the distributivity of multiplication over addition. Writing a list as a

formal product and a multiset with integer values as a formal sum, the distributive

law can be written as:

λ

(
n∏
i=0

mi∑
ji=0

xiji

)
=

m0∑
j0=0

· · ·
mn∑
jn

n∏
i=0

xiji ,

or more simply:

λ (a · (b+ c)) = (a · b) + (a · c). (2.1)

The resulting composite monad is the ring monad.

In his paper, Beck remarks that he thinks it unlikely that a distributive law of

type AL ⇒ LA exists [5], that is, he believes that addition does not distribute over

multiplication. In Chapter 5 we prove that Beck’s intuition is correct.

The term ‘distributive law’ is motivated by the ring monad example, and many

other distributive laws are based on what we will call the ‘times over plus’ distribu-

tivity. An example is the distributive law for the multiset monad over itself:

Example 2.14 (Multiset Monad composed with itself). The multiset monad is well-

known to distribute over itself. The action of the distributive law is exactly like the

distribution of times over plus:

λ (HHaI, Hb, cII) = HHa, bI, Ha, cII.
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More complicated multisets are distributed as if ‘multiplying out brackets’. For in-

stance, applying the distributive law to HHa, b, bI · 2I works exactly like multiplying

out (a+ b+ b) ∗ (a+ b+ b):

λ (HHa, b, bI · 2I) = λ (HHa, b, bI, Ha, b, bII)

= HHa, aI, Ha, bI, Ha, bI,

Hb, aI, Hb, bI, Hb, bI,

Hb, aI, Hb, bI, Hb, bII

= HHa, aI · 1, Ha, bI · 4, Hb, bI · 4I.

However, as we will see in Chapter 5, caution is needed: the validity of an equa-

tion such as (2.1) does not automatically imply the existence of a distributive law!

Neither do all valid distributive laws resemble the distributivity of times over plus.

Distributive laws need not even be unique. For example, Manes and Mulry have

found three different distributive laws for the non-empty list monad over itself, none

of which behave like times over plus:

Example 2.15 (Non-empty List Monad composed with itself). There are at least

three distributive laws for the non-empty list monad over itself:

[1] The first distributive law is given by a syntactic manipulation [43, Example

5.1.10]. It is best illustrated by an example. Given the list of lists [[a], [b, c, d], [e, f ]],

every comma ‘,’ in between two elements is replaced by bracket-comma-bracket

‘], [’, and every occurrence of ‘], [’ in the list is replaced by a comma ‘,’:

λ([[a], [b, c, d], [e, f ]]) = [[a, b], [c], [d, e], [f ]].

[2] The second distributive law for the non-empty list monad over itself [44, Ex-

ample 4.10] is recursively defined as:

λ([[a1, . . . , an]]) = [[a1], . . . , [an]],

λ(L1 ++ L2) = [head(λ(L1)) ++ head(λ(L2))].

So for example:

λ([[a], [b, c], [d, e]]) = [head(λ[[a]]) ++ head(λ[[b, c]]) ++ head(λ[[d, e]])]

= [head([[a]]) ++ head([[b], [c]]) ++ head([[d], [e]])]

= [[a, b, d]].
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More simply explained, this distributive law acts on a list of lists L by taking

the first element of each list L in L. So λ([[1], [2, 3, 4, 5, 6], [7, 8, 9]]) = [[1, 2, 7]].

For functional programmers, in Haskell this distributive law can be written as:

wrap.map head.

[3] The third distributive law for the non-empty list monad over itself is similar

to the second, but it consistently takes last element of a list instead of the

first [44, Example 4.10].

2.2.3 Iterated Distributive Laws

Distribute laws aid in the composition of two monads. However, when composing

three or more monads, distributive laws between each of them are no longer enough to

coherently compose them. For monads T , S, R, the compositions (TS)R and T (SR)

can be formed by finding a distributive law R(TS) ⇒ (TS)R and (SR)T ⇒ T (SR)

respectively, after having found distributive laws to form the monads TS and SR.

However, this by no means guarantees that the resulting monads (TS)R and T (SR)

are the same. To guarantee associativity of composition, Cheng found that we need

distributive laws λ : ST ⇒ TS, σ : RT ⇒ TR, and τ : RS ⇒ SR, which additionally

satisfy the Yang-Baxter equation [10]:

λR ◦ Sσ ◦ τT = Tτ ◦ σS ◦Rλ.

That is, the following diagram commutes:

SRT STR

RST TSR

RTS TRS

Sσ

λRτT

Rλ

σS

Tτ

Written in string diagrams, this equation becomes:

=

τ

σ

λ

λ

σ

τ

S R T S RT

T TSR R S

.
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Example 2.16. We can build the ring monad from Example 2.13 by composing

three monads rather than two: the exception monad E with a single exception, the

non-empty list monad L+ and the Abelian group monad A. We know the following

distributive laws:

λ : L+A⇒ AL+

σ : EA⇒ AE

τ : EL+ ⇒ L+E,

where λ is the distributive law from example Example 2.13, restricted to the non-

empty list monad instead of the full list monad. σ and τ are the standard distributive

laws for distributing the exception monad over any other monad, which maps excep-

tions to singleton exceptions and anything that is not an exception to itself.

The monad EL+ is just the full list monad L, and so the monad A(EL+) = AL

is the ring monad from Example 2.13. Since the distributive laws λ, σ, and τ satisfy

Yang-Baxter, the monad (AE)L+ also yields the ring monad. We leave it as an

exercise to the reader to verify that these distributive laws indeed satisfy the Yang-

Baxter equation.

Counterexample 2.17. In Example 2.14 we saw that the multiset monad distributes

over itself to form the monad MM . To form the monad MMM , the distributive

law for the multiset monad over itself would need to satisfy Yang-Baxter. Sadly, it

does not. We found a counterexample using Haskell QuickCheck [12]. Consider the

following element of MMM : H∅, H∅II. For the distributive law to satisfy Yang-Baxter,

the following equation must hold:

Mλ ◦ λM ◦Mλ H∅, H∅II = λM ◦Mλ ◦ λM H∅, H∅II.

However:

Mλ ◦ λM ◦Mλ H∅, H∅II = Mλ ◦ λM HH∅I, ∅I

= Mλ ∅

= ∅,

while:

λM ◦Mλ ◦ λM H∅, H∅II = λM ◦Mλ ∅

= λM ∅

= H∅I.

17



The fact that this distributive law fails Yang-Baxter does not exclude the possibil-

ity of (MM)M and M(MM) to be monads via a distributive law. However, neither

is true: in Theorem 5.4 we prove that there is no distributive law to form (MM)M ,

and in Theorem 5.10 we show that there is no distributive law to form the monad

M(MM).

2.3 Algebraic Theories

Monads and algebraic theories are two sides of the same coin. The intimate connection

between them is well-known [37, 39, 41], and it forms the basis of most of the work

presented in this thesis. In this section we recall the definition of an algebraic theory,

after which, in the next section, we explain the connection between algebraic theories

and monads.

Definition 2.18 (Algebraic Signature and Theory). An algebraic signature is

a set Σ of operation symbols, each with an associated natural number referred to

as its arity, denoted by a superscript (n). That is, +(2) is an example of a binary

operation symbol. The set of Σ-terms over a set X of variables is defined inductively

as follows:

� Each element x ∈ X is a term.

� If t1, ..., tn are terms, and σ ∈ Σ has arity n, then σ(t1, ..., tn) is a term.

An algebraic theory T consists of:

� An algebraic signature ΣT.

� A set of pairs of Σ-terms over X, ET, referred to as the equations or axioms

of T. We will often write a pair (s, t) ∈ ET as the more readable s = t when

convenient.

Two terms s and t are proven to be equal in the theory T if their equality can

be derived from the axioms of the theory using equational logic. Such a derivation

is called a proof in T. The inference rules of equational logic are summarised in

Figure 2.1 below.

We will use the following terminology and notational conventions in this thesis:

� Operations of arity n will be referred to as n-ary. Operations of arity 1,2 and

3 will be referred to as unary, binary and ternary operations. 0-ary terms

will be referred to as constants.
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Axiom: (s, t) ∈ ET

s =T t

Reflexivity: t =T t

Symmetry:
t =T t

′

t′ =T t

Transitivity:
t =T t

′ t′ =T t
′′

t′ =T t
′′

Congruence:

For any n-ary operation symbol σ:
t1 =T t

′
1, . . . , tn =T t

′
n

σ(t1, . . . , tn) =T σ(t′1, . . . , t
′
n)

Substitution:

For any substitution f :
t =T t

′

t[f ] =T t
′[f ]

Figure 2.1: Inference rules of equational logic

� Variable contexts: If Y ⊆ X is a set of variables and t is a term, then we write

Y ` t to mean that the free variables in t are a subset of Y . When we wish to

make the algebraic theory of interest explicit, we will write Y `T t meaning t is

a term of the algebraic theory T in variable context Y .

� Set of free variables: If we need the precise set of free variables in a term t, we

write var(t). In addition, # var(t) denotes the cardinality of the set var(t).

� Equality of terms: When two terms t1, t2 in T can be proved equal using equa-

tional logic and axioms of T as outlined in Figure 2.1, we write t1 =T t2. When

we wish to be specific about which variables may appear in t1 and t2, we will

write:

X ` t1 =T t2 iff X ` t1 and X ` t2 and t1 =T t2.

� Substitution: For a term in context Y `T t and partial function f mapping

variables in Y to T-terms, we will write t[f ] or t[f(y)/y] for the corresponding

substitution of terms for variables where f is defined.
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� Infix and postfix notation: We will extend our notation in the natural way to

include infix notation for binary operation symbols with symbolic names, for

example a + b, and postfix notation when it is standard to do so, for example

to indicate a multiplicative inverse a−1.

We give a few examples of common algebraic theories that will be of particular

interest to us.

Example 2.19 (Inconsistent Theory). An inconsistent theory is an algebraic theory

in which every term is equal to every other term, so it has only one equivalence class

of terms. If any theory allows the derivation of x = y, then by substitution we know

that the theory is inconsistent. We will use this frequently in our proofs, to show

that the only possible composition of two theories is an inconsistent one, which is in

general undesirable.

Example 2.20 (Pointed Sets). The algebraic theory of pointed sets has a signature

with one constant, and no equations.

Example 2.21 (Monoids). The algebraic theory of monoids has a signature contain-

ing one constant e and one binary operation ∗, satisfying the axioms:

e ∗ a = a (left unit)

a ∗ e = a (right unit)

(a ∗ b) ∗ c = a ∗ (b ∗ c). (associativity)

The theory of commutative monoids extends this theory with one further equation:

a ∗ b = b ∗ a. (commutativity)

The theory of join-semilattices extends the theory of commutative monoids with the

additional axiom:

a ∗ a = a. (idempotence)

These theories are part of a hierarchy of theories called the Boom hierarchy, which

will be investigated in detail in Chapter 6.

Example 2.22 (Abelian Groups). The algebraic theory of Abelian groups has an

additional operation beyond the signature of monoids. Its signature contains a con-

stant e, a unary operation (·)−1 and binary operation ∗. The axioms are: left and

right unit, associativity, commutativity, and:

a−1 ∗ a = e (left inverse)

a ∗ a−1 = e. (right inverse)
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In contexts where we are working with both monoids and Abelian groups, we will use

the symbols 1, ∗ for the constant and binary in monoids, and the symbols 0,−(·),+
for the constant, unary and binary in Abelian groups respectively.

2.4 Algebras and Algebras

Monads and algebraic theories are connected through their algebras. We first describe

the algebras for an algebraic theory, then the algebras for a monad, and finally we

explain the connection between them.

2.4.1 Algebras for an Algebraic Theory

Definition 2.23 (Σ-algebra). For a signature Σ, a Σ-algebra consists of:

� An underlying set A.

� For each n-ary operation σ ∈ ΣT a function JσK : An → A, called an interpre-

tation of σ.

For a fixed Σ-algebra, every Σ-term {x1, . . . , xn} ` t induces a function

JtK : An → A, defined inductively as follows:

� For a variable xi ∈ A, with 1 ≤ i ≤ n:

JxiK(x1, ..., xn) = xi.

� For an m-ary operation σ ∈ Σ:

Jσ(t1, ..., tm)K(x1, ..., xn) = JσK(Jt1K(x1, ..., xn), ..., JtmK(x1, ..., xn)).

A homomorphism of Σ-algebras of type (A, J−KA) → (B, J−KB) is a function

h : A→ B such that for each n-ary σ ∈ Σ:

h(JσKA(x1, ..., xn)) = JσKB(h(x1), ..., h(xn)).

Definition 2.24 ((Σ, E)-algebra). An algebra for an algebraic theory (Σ, E) is

a Σ-algebra that satisfies all the equations in E. A Σ-algebra satisfies the equa-

tion s =T t if:

JsK = JtK.

A (Σ, E)-algebra homomorphism is a Σ-algebra homomorphism between (Σ, E)-

algebras. (Σ, E)-algebras and their homomorphisms form a category (Σ, E)-Alg.
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Example 2.25 (Monoids on the Natural Numbers). The natural numbers with either

addition and 0, or multiplication and 1, are algebras for the theory of monoids. That

is, the following two form (Σ, E)-algebras for the theory of monoids:

N N

JeK = 0 JeK = 1

J∗K = + J∗K = ×

Remark 2.26. It is not uncommon to have two algebraic theories that give rise to iso-

morphic categories of algebras. For instance, consider the following algebraic theory,

having a signature with exactly one n-ary operation φn for each n ∈ N, and flattening

equations saying:

φn(φm1(x
1
1, ..., x

1
m1

), ..., φmn(xn1 , ..., x
n
mn)) = φ∑

imi
(x1

1, ..., x
n
mn).

The category of algebras for this theory is isomorphic to the category of algebras for

the theory of monoids.

Given a set A, there is a canonical way to construct a (Σ, E)-algebra on it.

Theorem 2.27. For an algebraic theory T, there is a left adjoint F T to the obvious

forgetful functor UT : (ΣT, ET)-Alg→ Set. The functor F T is defined as follows:

� For set A, F T(A) is the set of equivalence classes of ΣT-terms under provable

equality in equational logic, as described in Figure 2.1.

� The action on a function h : A → B is defined inductively on representatives

as follows:

F T(h)(a) = h(a) for a ∈ A,

F T(h)(σ(t1, ..., tn)) = σ(F T(h)(t1), ..., F T(h)(tn)) for n-ary σ ∈ ΣT.

2.4.2 Algebras for a Monad

Monads also have a notion of algebra, which is defined as follows:

Definition 2.28 (Algebras for a Monad). Given a monad 〈T, η, µ〉 on category C, a

T -algebra is a pair (X, h), with X an object in C and h a morphism of type TX → X,

such that the following equations hold:

h ◦ ηX = 1X

h ◦ Th = h ◦ µX .

These equations are visualised by the following commuting diagrams:
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X TX TTX TX

X TX X

ηX

h

Th

µX h

h

A morphism of T -algebras (X, h1)→ (Y, h2) is a morphism f : X → Y such that:

h2 ◦ Tf = f ◦ h1,

or:

TX TY

X Y

Tf

h1 h2

f

T -algebras and their morphisms form a category, called the Eilenberg-Moore (EM)

category, usually denoted as CT , EM(T ), or Alg(T ). A T -algebra is also called an

EM-algebra of T .

Example 2.29. A trivial example of a T -algebra is the pair (TX, µX). This is called

the free algebra on X. The category of all free algebras is called the Kleisli category,

written as CT or Kl(T ).

Given an Eilenberg-Moore category CT , we can recover the monad T via the free-

forgetful adjunction:

C CT ,
F

U

where T = U ◦ F .

2.4.3 Algebras are Algebras

We now have all the ingredients to describe monads algebraically. The key observation

is that every category (ΣT, ET)-Alg is the Eilenberg-Moore category of some monad.

Definition 2.30 (Free Model Monad). For an algebraic theory T = (ΣT, ET), the free

model monad induced by T is the monad induced by the free/forgetful adjunc-

tion UT ◦ F T : Set→ (ΣT, ET)-Alg→ Set.

It is well known that every finitary monad on the category of sets arises as a

free model monad for some algebraic theory. In fact, every monad arises from a

generalisation of algebraic theories, if we allow infinite arities [39,41]. All the monads

appearing in the present work are finitary, so we remain in the realm of conventional

universal algebra.

23



Definition 2.31. We will say that monad T has presentation/is presented by

theory T or that monad T and theory T correspond to each other if T is a free

model monad induced by T. In general, a monad has more than one presentation.

Even so, if a certain presentation is commonly used for a monad, we refer to it as the

theory presenting the monad.

Example 2.32. Many of the monads we have seen so far correspond to familiar

algebraic theories. Some monads are even named in acknowledgment of this corre-

spondence.

[1] The maybe monad of Example 2.2 corresponds to the theory of pointed sets

described in Example 2.20.

[2] The list, multiset and finite powerset monads of Examples 2.3, 2.4 and 2.5

correspond respectively to the theories of monoids, commutative monoids and

join-semilattices described in Example 2.21.

[3] The Abelian group monad of Example 2.4 corresponds to the theory of Abelian

groups described in Example 2.22.

[4] The ring monad, which was constructed using a distributive law in Exam-

ple 2.13, corresponds to the theory of rings.

Some monads have presentations that are less familiar:

[5] The algebraic theory corresponding to the exception monad of Example 2.2 has

a signature containing a constant for each exception, and no axioms.

[6] The algebraic theory presenting the binary tree monad of Example 2.6 has a

signature containing a constant and a binary operator. The axioms include the

left and right unitality equations, but nothing else.

[7] The algebraic theory corresponding to the distribution monad of Example 2.7

is the theory of convex, or barycentric, algebras [29,58]. These can be described

as follows. For each p ∈ (0, 1), the signature contains a binary operation +p,

and these satisfy the following axioms:

x+p x = x

x+p y = y +1−p x

x+p (y +r z) = (x+
p

p+(1−p)r y) +p+(1−p)r z.
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Note that convex algebras are often described using binary operations for p in

the closed interval [0, 1], the less redundant theory above is equivalent.

[8] The algebraic theory corresponding to the reader monad has a signature con-

taining just an n-ary operation, where n is the cardinality of the set of states R

used in the reader monad. For the case n = 2 we introduce a binary operation ∗,
with the intuitive reading of x ∗ y being “if the state is 1 do x else do y”, the

extension to larger state spaces has an analogous formulation describing how

to proceed conditional on the state that is read. The axioms in the binary case

are:

a ∗ a = a

(a ∗ b) ∗ (c ∗ d) = a ∗ d.

The first axiom is idempotence and generalises easily to the general case. The

second axiom generalises to taking a diagonal. The algebraic formulation of

computational monads such as this one is described in Notions of computation

determine monads by Plotkin and Power [53].
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Chapter 3

Composite Theories

In this chapter we study composite theories and their relation to distributive laws for

monads. A composite theory is an algebraic theory that is the result of ‘composing’

two other algebraic theories. In Distributive laws for Lawvere theories, Cheng has

made this notion precise for Lawvere theories [11]. Piróg and Staton further developed

Cheng’s ideas, formulating a concrete definition for universal algebra [52].

Intuitively, a composition of algebraic theories T and S should consist of exactly

all the equivalence classes of T-terms, using the equivalence classes of S-terms as their

variables. A naive way to try to achieve this would be to define:

ΣT◦S = ΣT ] ΣS

ET◦S = ET ∪ ES.

Unfortunately this is too simple, as the following example illustrates:

Non-Example 3.1. Consider the following theories, both consisting of a single bi-

nary operator and no equations:

ΣS = {∗(2)} ΣT = {+(2)}

ES = ∅ ET = ∅

The naive attempt to form a composite theory gives:

ΣT◦S = {∗(2),+(2)}

ET◦S = ∅.

We would like our composite theory to consist of terms made of +, using terms made

of ∗ as variables. So a typical term would be (a ∗ b) + (c ∗ d), but not (a+ b) ∗ c. The

naive theory ΣT◦S unfortunately has both of these terms. Since there are no equations

in this theory, every term is its own equivalence class, and terms ‘in the wrong order’

like (a+ b) ∗ c form unwanted equivalence classes.
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Defining a theory in which these unwanted terms are absent is impossible: any

theory that has the terms a+ b and d ∗ c will by definition have the term (a+ b) ∗ c as

well. A solution is to introduce more equations, ensuring that every term ‘in the wrong

order’, that is, with T-terms inside S-terms, is equal to a term ‘in the right order’: a

single T-term, with S-terms as variables. Of course equating everything achieves this

goal, but not in a useful way. Piróg and Staton’s definition of a composite theory

strikes the perfect balance between adding enough equations to make every term equal

to a term ‘in the right order’, while still preserving the properties of the individual

theories. The following definition is a slight rephrasing of the original.

Definition 3.2 (Composite Theories [52]). Let U be an algebraic theory that contains

two theories S and T.

� A term in U is separated if it is of the form t [sx/x], where X `T t and sx is a

family of S-terms indexed by x ∈ X.

� If there are terms X `T t and Y `T t′, and families of S-terms {sx | x ∈ X}
and {s′y | y ∈ Y }, we say that t [sx/x] and t′

[
s′y/y

]
are equal modulo (S,T) if

there are functions h : X → Z, h′ : Y → Z and terms {s̄z | z ∈ Z}, such that:

(a) t [h(x)/x] =T t
′ [h′(y)/y].

(b) ∀x ∈ X : sx =S s̄h(x).

(c) ∀y ∈ Y : s′y =S s̄h′(y).

The theory U is said to be a composite of T after S if every term u in U is equal to

a separated term, and moreover this term is essentially unique in the sense that if

any two terms v, v′ are separated and v =U v
′ then v and v′ are equal modulo (S,T).

Remark 3.3. Note that composite theories are oriented: a composite of S after T is

not equivalent to a composite of T after S, since it matters which terms are used as

variables for the other.

Also notice that a composite of two theories is not necessarily unique. Given two

algebraic theories S and T, we therefore speak of a composite theory U, not of the

composite theory T ◦ S. Composite theories correspond one-to-one to distributive

laws between monads [52]. In Section 3.1 we prove this connection constructively.

Before proving the connection between distributive laws and composite theories,

we introduce a few equivalent formulations of equality modulo (S,T), which will be

useful throughout this thesis. The third formulation will be particularly useful in our

proofs, because it allows us to use the implications in both directions.
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Proposition 3.4. Let S and T be two algebraic theories, and let U be an algebraic

theory that contains both S and T. For terms X `T t, Y `T t′ and families of S-terms

{sx | x ∈ X}, {s′y | y ∈ Y }, the following are equivalent:

1. The terms t [sx/x] and t′
[
s′y/y

]
are equal modulo (S,T). That is: there are

functions h : X → Z, h′ : Y → Z and terms {s̄z | z ∈ Z}, such that:

(a) t [h(x)/x] =T t
′ [h′(y)/y].

(b) ∀x ∈ X : sx =S s̄h(x).

(c) ∀y ∈ Y : s′y =S s̄h′(y).

2. There are functions h : X → Z, h′ : Y → Z satisfying:

(a) t [h(x)/x] =T t
′ [h′(y)/y].

(b) ∀x1, x2 ∈ X : h(x1) = h(x2) ⇒ sx1 =S sx2.

(c) ∀y1, y2 ∈ Y : h′(y1) = h′(y2) ⇒ s′y1 =S s
′
y2

.

(d) ∀x ∈ X, y ∈ Y : h(x) = h′(y) ⇒ sx =S s
′
y.

3. There are functions f : X → Z, f ′ : Y → Z satisfying:

(a) t [f(x)/x] =T t
′ [f ′(y)/y].

(b) ∀x1, x2 ∈ X : f(x1) = f(x2) ⇔ sx1 =S sx2.

(c) ∀y1, y2 ∈ Y : f ′(y1) = f ′(y2) ⇔ s′y1 =S s
′
y2

.

(d) ∀x ∈ X, y ∈ Y : f(x) = f ′(y) ⇔ sx =S s
′
y.

4. There are:

� Substitutions f : X → Z, f ′ : Y → Z,

� A substitution g : Z → S,

� A proof P in T proving t[f ][g] =T t
′[f ′][g],

� For each x ∈ X and y ∈ Y , proofs Px and P ′y in S proving sx =S g ◦ f(x)

and s′y =S g ◦ f ′(y),

such that the following is a proof of t [sx/x] =U t
′ [s′y/y]:
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[Px]

sx = g ◦ f(x)
[gen]

t [sx/x] = t[f ][g]

[P ]

t[f ] = t′[f ′]
[sub]

t[f ][g] = t′[f ′][g]
[trans]

t [sx/x] = t′[f ′][g]

[P ′y]

s′y = g ◦ f ′(y)
[gen]

t′
[
s′y/y

]
= t′[f ′][g]

[sym]

t′[f ′][g] = t′
[
s′y/y

]
[trans]

t [sx/x] = t′
[
s′y/y

]
Proof.

1⇒ 2: By transitivity of =S.

2⇒ 1: Taking Z ′ to be the union of the ranges of h and h′, requirements 2b-2d ensure

that we can choose s̄z′ such that:

s̄z′ =

{
sx, if h(x) = z′

sy, if h′(y) = z′.

2⇒ 3: We need to show that the reverse implications of properties 2a-2d hold. To this

end, we pick a function g : Z → Z ′ such that:

� If sx1 =S sx2 , then g(h(x1)) = g(h(x2)).

� If s′y1 =S s
′
y2

, then g(h′(y1)) = g(h′(y2)).

� If sx =S s
′
y, then g(h(x)) = g(h′(y)).

It is clear that such a g exists. The compositions f = g ◦ h and f ′ = g ◦ h′

then preserve properties 2a-2d. By definition, they also satisfy the reverse

implications, and so they satisfy condition 3.

3⇒ 2: Trivial.

1⇒ 4: Given h and h′, we take these as the substitutions f, f ′. We define the substi-

tution g as g(z) = s̄z. Then property 1a ensures the existence of proof P , while

properties 1b and 1c ensure the existence of proofs Px and P ′y to complete the

proof tree.

4⇒ 1: We take f and f ′ given by 4 as the functions h and h′ asked for by 1. We set

s̄h(x) = g ◦ f(x) and s̄h′(y) = g ◦ f ′(y). Then the proof P witnesses property 1a

and the proofs Px and P ′y witness properties 1b and 1c respectively.
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A property of composite theories worth mentioning is that they are never inconsis-

tent (see Example 2.19), unless their component theories are inconsistent themselves.

Proposition 3.5. If U is a composite theory of theories T after S, and both S and T
are consistent, then U is consistent.

Proof. Suppose for contradiction that U is an inconsistent theory. Then for each pair

of variables x, y we have x =U y. Since both x and y are separated terms, essential

uniqueness gives us two substitutions f : {x} → Z and g : {y} → Z such that:

x[f ] =T y[g]

f(x) = g(y) ⇔ x =S y.

For the first equation to be satisfied without violating the consistency of T, we must

have that f(x) = g(y). This implies, however, that x =S y, which contradicts the

consistency of S. We hence conclude that if U is a composite theory of T after S, U
must be consistent.

3.1 The Constructive Connection

Composite theories are the algebraic equivalent of distributive laws between monads.

That is, there is a one-to-one correspondence between composite theories U of T after

S and distributive laws λ of type ST ⇒ TS, where S and T are the free model monads

of theories S and T respectively. This fact was already proven non-constructively by

Piróg and Staton [52]. Here, we present a constructive version of this proof. Similar

observations have been made by Lack [36, Proposition 4.7], written up more explicitly

by Zanasi in his thesis [63, Proposition 2.27], although their results only hold for

symmetric monoidal theories, whereas the proofs below are more general.

Remark 3.6. The following proofs need substitutions t[sx/x], equivalence classes [[[t]]]T,

and interpretations JσK. All of these are traditionally denoted by square brackets.

We trust that we have made them sufficiently distinct to avoid confusion. Still, the

proofs are inherently fiddly, even though they are technically quite straightforward.

Theorem 3.7. Let S and T be algebraic theories presenting monads S and T , and

let U be a composite theory of T after S. Then the free model monad U is isomorphic

to the composition of T ◦ S via the distributive law mapping the equivalence class of

representative s [tx/x] to the suitable equivalence class of a separated term in U equal

to s [tx/x].
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Proof. We first argue that the functor U is isomorphic to the functor TS by finding

a natural isomorphism between them. We will use [[[t]]]T to denote the equivalence

class of term t in theory T. Let [[[u]]]U be any element of UX. Since U is a composite

theory, we know [[[u]]]U has a representative that is separated, that is, of form t[sx/x]

for some term t in T and terms sx in S. We use this representative to define a natural

transformation φ : U ⇒ TS as follows:

φ [[[u]]]U = [[[t[[[[sx]]]S/x]]]]T.

That is, φ maps the equivalence class of u to the equivalence class of term t in T,

with the equivalence classes of the terms sx in theory S as the variables in t. The

essential uniqueness property of U ensures that this is well-defined: if t′[s′y/y] is any

other separated representative of [[[u]]]U, then by essential uniqueness we have:

[[[t[[[[sx]]]S/x]]]]T = [[[t′[[[[s′y]]]S/y]]]]T.

The natural transformation φ has inverse ψ : TS ⇒ U , given by:

φ [[[t[[[[sx]]]S/x]]]]T = [[[t[sx/x]]]]U.

We conclude that the functor TS has a monad structure given by the monad structure

of the free model monad U of theory U. To prove that this monad structure comes

from a distributive law, we use the following equivalent statement [5]:

� 〈TS, ηTηS, µTS〉 is a monad, with multiplication µTS = φ ◦ µU ◦ ψTSψ.

� The natural transformations ηTS and TηS are monad maps.

� The middle unitary law holds: µTS ◦ TηSηTS = IdTS.

The distributive law is then given by:

λ = µTS ◦ ηTSTηS.

We have established that 〈TS, ηTηS, µTS〉 is indeed monad, isomorphic to the free

model monad of the theory U. For the next bullet we need to show that ηTS and

TηS are monad maps. That is:

� µTS ◦ ηTS ◦ ηTS = ηTS ◦ µS.

� µTS ◦ TηS ◦ TηS = TηS ◦ µT .
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We show the first of these. Given any [[[s[[[[sx]]]S/x]]]]S in SSX, we have:

ηTS ◦ µS [[[s[[[[sx]]]S]]]]S = ηTS [[[s[sx/x]]]]S

= [[[[[[s[sx/x]]]]S]]]T.

On the other hand:

µTS ◦ ηTS ◦ ηTS [[[s[[[[sx]]]S/x]]]]S = µTS [[[[[[s[[[[[[[sx]]]S]]]T/x]]]]S]]]T

= φ ◦ µU ◦ ψTSψ [[[[[[s[[[[[[[sx]]]S]]]T/x]]]]S]]]T

= φ ◦ µU [[[s[[[[sx]]]U/x]]]]U

= φ [[[s[sx/x]]]]U

= [[[[[[s[sx/x]]]]S]]]T,

which proves that ηTS is a monad map. The proof for TηS is similar.

Finally, we need to show the middle unitary law: µTS ◦ TηSηTS = IdTS. Let

[[[t[[[[sx]]]S/x]]]]T be any element of TSX. Then:

µTS ◦ TηSηTS [[[t[[[[sx]]]S/x]]]]T = µTS [[[t[[[[[[[[[[sx]]]S]]]T]]]S/x]]]]T

= φ ◦ µU ◦ ψTSψ [[[t[[[[[[[[[[sx]]]S]]]T]]]S/x]]]]T

= φ ◦ µU [[[t[[[[sx]]]U/x]]]]U

= φ [[[t[sx/x]]]]U

= [[[t[[[[sx]]]S/x]]]]T

= IdTS [[[t[[[[sx]]]S/x]]]]T.

So the monad 〈TS, ηTηS, µTS〉 does indeed come from a distributive law. We find the

distributive law through:

λ = µTS ◦ ηTSTηS.

Let [[[s[[[[tx]]]T/x]]]]S be any element of STX, then:

λ [[[s[[[[tx]]]T/x]]]]S = µTS ◦ ηTSTηS [[[s[[[[tx]]]T/x]]]]S

= µTS [[[[[[s[[[[[[[tx]]]S]]]T/x]]]]S]]]T

= φ ◦ µU ◦ ψTSψ [[[[[[s[[[[[[[tx]]]S]]]T/x]]]]S]]]T

= φ ◦ µU [[[s[[[[tx]]]U/x]]]]U

= φ [[[s[tx/x]]]]U.
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Let t′[s′x/x] be a separated term such that t′[s′x/x] =U s[tx/x]. By the separation

axiom of composite theories, such a term t′[s′x/x] exists. Then:

φ [[[s[tx/x]]]]U = φ [[[t′[s′x/x]]]]U

= [[[t′[[[[s′x]]]S/x]]]]T,

which is what the theorem claims λ [[[s[[[[tx]]]T/x]]]]S to be. The essential uniqueness

property of composite theories ensures that λ is well-defined.

To prove the other direction, we build a composite theory from a distributive law.

Definition 3.8 (Theory Uλ). Let S and T be the free model monads of algebraic

theories S and T. If there is a distributive law λ : ST ⇒ TS, then we define the set of

λ-equations Eλ as follows: Let s [tx/x] be a representative of an element in STX,

and t [sy/y] a representative of an element in TSX. Then s [tx/x] = t [sy/y] ∈ Eλ iff

λ maps the equivalence class of s [tx/x] to the equivalence class of t [sy/y].

We can then define the algebraic theory Uλ as:

ΣUλ = ΣS ] ΣT

EUλ = ES ∪ ET ∪ Eλ.

Theorem 3.9. Let S and T be the free model monads of algebraic theories S and T.

If there is a distributive law λ : ST ⇒ TS, then the theory Uλ is a composite theory

of T after S, and the monad 〈TS, ηTηS, µTµS ◦ TλS〉 is the free model monad of this

theory.

Proof. From Piróg and Station [52, Theorem 5], we already know that λ induces a

monad that is the free model monad of a composite of T after S. What is left to show

is that Uλ is a representation of this composite theory. We prove this by establishing

an isomorphism between the Eilenberg-Moore category of the monad TS and the

category of algebras for Uλ.

Define the functor F : CTS → Uλ-Alg as follows:

� F maps an algebra (A, a) in CTS to the algebra (A, J·Ka), where J·Ka is defined

by:

JσKa(x1, . . . , xn) =

{
a ◦ ηTS [[[σ(x1, . . . , xn)]]]S, if σ ∈ ΣS

a ◦ TηS [[[σ(x1, . . . , xn)]]]T, if σ ∈ ΣT

=

{
a [[[[[[σ(x1, . . . , xn)]]]S]]]T, if σ ∈ ΣS

a [[[σ([[[x1]]]S, . . . , [[[xn]]]S)]]]T, if σ ∈ ΣT.
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� F maps a morphism h : (A, a) → (B, b), which is a function A → B, to itself,

now interpreted as a morphism h : (A, J·Ka)→ (B, J·Kb).

The interpretation J·Ka extends to any term u ∈ U in the standard inductive way:

� For a variable x:

JxKa = x.

� For any m-ary operation σ ∈ ΣUλ and terms u1, . . . , um in Uλ:

Jσ(u1, . . . , um)Ka = JσKa(Ju1Ka, . . . , JumKa).

We will show that the interpretation J·Ka behaves as you would expect, namely

for any term u in Uλ and any separated term t [sx/x] such that u =Uλ t [sx/x]:

JuKa = a [[[t [[[[sx]]]S/x]]]]T. (3.1)

That is, the interpretation of u according to a is the result of applying a to the

equivalence class of the term t, with equivalence classes of the terms sx as variables.

Notice that the essential uniqueness property ensures that Equation(3.1) is well-

defined for equivalence classes: for any two separated terms t [sx/x] =Uλ u =Uλ

t′ [s′x′/x
′] we have by essential uniqueness that [[[t [[[[sx]]]S/x]]]]T = [[[t′ [[[[s′x′]]]S/x

′]]]]T.

The proof of Equation(3.1) is by induction. If u is a variable, the claim is trivial.

Now suppose that the claim holds for terms u1, . . . , um and let σ be anm-ary operation

in ΣUλ . Then either σ ∈ ΣS or σ ∈ ΣT. We prove these two cases separately.

� σ ∈ ΣS. Then:

Jσ(u1, . . . , um)Ka

= { inductive definition of interpretations }

JσKa(Ju1Ka, . . . , JumKa)

=
{

definition of JσKa for σ ∈ ΣS }
a [[[[[[σ(Ju1Ka, . . . , JumKa) ]]]S]]]T

= { IH, where ti [sx/x] is a separated term equal to ui }

a [[[[[[σ( a [[[t1 [[[[sx]]]S/x]]]]T, . . . , a [[[tm [[[[sx]]]S/x]]]]T) ]]]S]]]T

= { moving the application of a to the front }

a ◦ TSa [[[[[[σ( [[[t1 [[[[sx]]]S/x]]]]T, . . . , [[[tm [[[[sx]]]S/x]]]]T) ]]]S]]]T

=
{
a ◦ TSa = a ◦ µTS

}
a ◦ µTS [[[[[[σ( [[[t1 [[[[sx]]]S/x]]]]T, . . . , [[[tm [[[[sx]]]S/x]]]]T) ]]]S]]]T
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=
{
µTS = µTµS ◦ TλS

}
a ◦ µTµS ◦ TλS [[[[[[σ( [[[t1 [[[[sx]]]S/x]]]]T, . . . , [[[tm [[[[sx]]]S/x]]]]T) ]]]S]]]T. (3.2)

We know that λ maps equivalence classes of form [[[s [[[[tx]]]T/x]]]]S to equivalence

classes of form [[[t [[[[sy]]]S/y]]]]T. So suppose that

λ [[[σ( [[[t1]]]T, . . . , [[[tm]]]T)]]]S = [[[t′
[
[[[s′y]]]S/y

]
]]]T

for some term t′
[
s′y/y

]
. We continue our reasoning from (3.2):

(3.2) =
{

if λ [[[σ( [[[t1]]]T, . . . , [[[tm]]]T)]]]S = [[[t′
[
[[[s′y]]]S/y

]
]]]T
}

a ◦ µTµS [[[[[[t′
[
[[[s′y [[[[sx]]]S/x]]]]S/y

]
]]]T]]]T

= { applying the multiplications }

a [[[t′
[
[[[s′y [sx/x]]]]S/y

]
]]]T.

To finish the proof for this case we need to show that t′
[
s′y [sx/x]

]
is a separated

term equal to σ(u1, . . . , un). By the induction hypothesis, we know that all ui

are equal to the separated terms ti [sx/x] so we can write:

σ(u1, . . . , um) = σ(t1 [sx/x] , . . . , tm [sx/x]) = σ(t1, . . . , tm) [sx/x] .

By definition of Uλ and the axiom of substitution, this term is indeed equal

to a TS-representative of λ [[[σ( [[[t1]]]T, . . . , [[[tm]]]T)]]]S, followed by the substitution

x 7→ sx. We assumed this TS-representative to be t′
[
s′y/y

]
, and hence:

σ(t1, . . . , tm) [sx/x] =Uλ t
′ [s′y/y] [sx/x] = t′

[
s′y [sx/x]

]
,

which is what we needed to show.

� σ ∈ ΣT . Then:

Jσ(u1, . . . , um)Ka

= { inductive definition of interpretations }

JσKa(Ju1Ka, . . . , JumKa)

=
{

definition of JσKa for σ ∈ ΣT }
a [[[σ( [[[Ju1Ka]]]S, . . . , [[[JumKa]]]S) ]]]T

= { IH, where ti [sx/x] is a separated term equal to ui }

a [[[σ( [[[a [[[t1 [[[[sx]]]S/x]]]]T]]]S, . . . , [[[a [[[tm [[[[sx]]]S/x]]]]T]]]S) ]]]T)

= { moving the application of a to the front }

a ◦ TSa [[[σ( [[[[[[t1 [[[[sx]]]S/x]]]]T]]]S, . . . , [[[[[[tm [[[[sx]]]S/x]]]]T]]]S) ]]]T
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=
{
a ◦ TSa = a ◦ µTS

}
a ◦ µTS [[[σ( [[[[[[t1 [[[[sx]]]S/x]]]]T]]]S, . . . , [[[[[[tm [[[[sx]]]S/x]]]]T]]]S) ]]]T

=
{
µTS = µTµS ◦ TλS

}
a ◦ µTµS ◦ TλS [[[σ( [[[[[[t1 [[[[sx]]]S/x]]]]T]]]S, . . . , [[[[[[tm [[[[sx]]]S/x]]]]T]]]S) ]]]T

=
{

unit law for λ : ηST = TηS
}

a ◦ µTµS [[[σ( [[[t1 [[[[[[[sx]]]S]]]S/x]]]]T, . . . , [[[tm [[[[[[[sx]]]S]]]S/x]]]]T) ]]]T

= { applying the multiplications }

a [[[ σ(t1 [[[[sx]]]S/x] , . . . , tm [[[[sx]]]S/x]) ]]]T.

By the axiom of congruence, σ(t1 [sx/x] , . . . , tm [sx/x]) is indeed a separated

term equal to σ(u1, . . . , um). Hence this is what we needed to show.

Now that we understand the mapping F : CTS → Uλ-Alg, we can prove it is indeed a

functor:

� F maps objects to objects:

For (A, J·Ka) to be a Uλ-algebra, J·Ka needs to preserve all the equations in EUλ .

Since EUλ = ES ∪ ET ∪ Eλ, we check that J·Ka preserves the equations in each

of these three sets.

– s1 =S s2 ∈ ES is preserved by J·Ka:
From Equation (3.1) and the fact that s1 and s2 are both separated we

know:

Js1Ka = a [[[[[[s1]]]S]]]T

Js2Ka = a [[[[[[s2]]]S]]]T.

Since s1 =S s2, we know [[[[[[s1]]]S]]]T = [[[[[[s2]]]S]]]T, and so indeed:

Js1Ka = Js2Ka.

– t1 =T t2 ∈ ET is preserved by J·Ka:
From Equation (3.1) and the fact that t1 and t2 are both separated we

know that:

Jt1Ka = a [[[t1 [[[[x]]]S/x]]]]T

Jt2Ka = a [[[t2 [[[[x]]]S/x]]]]T.

Since t1 =T t2, [[[t1 [[[[x]]]S/x]]]]T = [[[t2 [[[[x]]]S/x]]]]T, and so indeed:

Jt1Ka = Jt2Ka.

36



– s [tx/x] =Uλ t [sx/x] is preserved by J·Ka:
From Equation (3.1) we know:

Js [tx/x]Ka = a [[[t′ [[[[s′x′]]]S/x
′]]]]T

for some separated term t′ [s′x′/x
′] =Uλ s [tx/x]. By essential uniqueness,

we must have that t′ [s′x′/x
′] and t [sx/x] are equal modulo (S,T) and so:

[[[t′ [[[[s′x′]]]S/x
′]]]]T = [[[t [[[[sx]]]S/x]]]]T.

Hence:

Js [tx/x]Ka = Jt [sx/x]Ka.

� F maps morphisms to morphisms:

Let h : (A, a)→ (B, b) be a morphism in CTS. Then F (h) : (A, J·Ka)→ (B, J·Kb)
must a morphism in Uλ-Alg. Since F maps h to itself, all we need to show is

that h is a homomorphism in Uλ-Alg. That is, for any σ ∈ ΣUλ :

h(JσKa(x1, . . . , xn)) = JσKb(h(x1), . . . , h(xn)).

There are two cases, σ ∈ ΣS and σ ∈ ΣT. We prove these separately.

– σ ∈ ΣS.

h(JσKa(x1, . . . , xn))

= { definition of J·Ka }

h ◦ a [[[[[[σ(x1, . . . , xn)]]]S]]]T

=
{
h is a morphism in CTS, so: h ◦ a = b ◦ TSh

}
b ◦ TSh [[[[[[σ(x1, . . . , xn)]]]S]]]T

= { moving the application of h inside }

b [[[[[[σ(h(x1), . . . , h(xn))]]]S]]]T

=
{

definition of J·Kb
}

JσKb(h(x1), . . . , h(xn)).

– σ ∈ ΣT.

h(JσKa(x1, . . . , xn))

= { definition of J·Ka }

h ◦ a [[[σ([[[x1]]]S, . . . , [[[xn]]]S)]]]T

=
{
h is a morphism in CTS, so: h ◦ a = b ◦ TSh

}
b ◦ TSh [[[σ([[[x1]]]S, . . . , [[[xn]]]S)]]]T
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= { moving the application of h inside }

b [[[σ([[[h(x1)]]]S, . . . , [[[h(xn)]]]S)]]]T

=
{

definition of J·Kb
}

JσKb(h(x1), . . . , h(xn)).

� F trivially preserves identities and compositions, since it maps each morphism

to itself.

We now define a functor G : Uλ-Alg→ CTS as follows:

� G maps the pair (A, J·KA) in Uλ-Alg to the algebra (A, aJ·KA), where aJ·KA is

defined on u ∈ TSX as:

aJ·KA(u) = Jt [sx/x]KA,

where t [sx/x] is a representative of u in TS: u = [[[t [[[[sx]]]S/x]]]]T.

� G maps a morphism h : (A, J·KA) → (B, J·KB), which is a function A → B, to

itself, now interpreted as a morphism h : (A, aJ·KA)→ (B, bJ·KB).

We show that this is indeed a functor.

� G maps objects to objects:

For (A, aJ·KA) to be an EM-algebra, we need to show that it satisfies:

aJ·KA ◦ ηTS = IdTS

aJ·KA ◦ TSaJ·KA = aJ·KA ◦ µTS.

Starting with the unit equation, let x be any element of X, then:

aJ·KA ◦ ηTSX (x)

=
{
ηTSX = ηTXη

S
X

}
aJ·KA ◦ ηTXηSX(x)

= { applying both units }

aJ·KA [[[[[[x]]]S]]]T

=
{

definition of aJ·KA
}

JxKA

= x.
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Next is the multiplication. Let u ∈ TSTSX and let t [sx [ty [sz/z] /y] /x] be any

representative of u, that is:

u = [[[t [[[[sx [[[[ty [[[[sz]]]S/z]]]]T/y]]]]S/x]]]]T.

Then:

aJ·KA ◦ TSaJ·KA(u)

= aJ·KA ◦ TSaJ·KA [[[t [[[[sx [[[[ty [[[[sz]]]S/z]]]]T/y]]]]S/x]]]]T

=
{

moving the application of aJ·KA inside
}

aJ·KA [[[t
[
[[[sx
[
aJ·KA( [[[ty [[[[sz]]]S/z]]]]T )/y

]
]]]S/x

]
]]]T

=
{

definition of aJ·KA
}

aJ·KA [[[t
[
[[[sx
[

Jty [sz/z]KA /y
]
]]]S/x

]
]]]T

=
{

definition of aJ·KA
}

Jt
[
sx
[
Jty [sz/z]KA/y

]
/x
]
KA

= Jt [sx [ty [sz/z] /y] /x]KA.

On the other hand:

aJ·KA ◦ µTS(u)

= aJ·KA ◦ µTµS · TλS [[[t [[[[sx [[[[ty [[[[sz]]]S/z]]]]T/y]]]]S/x]]]]T

= { if λ[[[sx [[[[ty]]]T/y]]]]S = [[[t′x [[[[s′w]]]S/w]]]]T }

aJ·KA ◦ µTµS [[[t [[[[t′x [[[[s′w [[[[sz]]]S/z]]]]S/w]]]]T/x]]]]T

= { applying the multiplications }

aJ·KA [[[t [t′x [[[[s′w [sz/z]]]]S/w] /x]]]]T

=
{

definition of aJ·KA
}

Jt [t′x [s′w [sz/z] /w] /x]KA.

To finish the proof of the multiplication axiom, we need to show that:

Jt [sx [ty [sz/z] /y] /x]KA = Jt [t′x [s′w [sz/z] /w] /x]KA

Since λ [[[sx [[[[ty]]]T/y]]]]S = [[[t′x [[[[s′w]]]S/w]]]]T, we know that:

sx [ty/y] =Uλ t
′
x [s′w/w] ,

and hence by substitution and congruence:

t [sx [ty [sz/z] /y] /x] =Uλ t [t′x [s′w [sz/z] /w] /x] .
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Therefore:

Jt [sx [ty [sz/z] /y] /x]KA = Jt [t′x [s′w [sz/z] /w] /x]KA,

which proves that aJ·KA ◦ TSaJ·KA = aJ·KA ◦ µTS.

� G maps morphisms to morphisms:

Let h : (A, J·KA)→ (B, J·KB) be a morphism in Uλ-Alg. Then G(h) : (A, aJ·KA)→
(B, bJ·KB) must a morphism in CTS. Since G maps h to itself, all we need to show

is that h ◦ aJ·KA = bJ·KB ◦ TSh:

h ◦ aJ·KA [[[t [[[[sx]]]S/x]]]]T

=
{

definition of aJ·KA
}

h(Jt [sx/x]KA)

=
{

property of J·KA
}

Jt [sx [h(y)/y] /x]KB

=
{

definition of bJ·KB
}

bJ·KB [[[t [[[[sx [h(y)/y]]]]S/x]]]]T

= { moving h to the front }

bJ·KB ◦ TSh [[[t [[[[sx]]]S/x]]]]T.

� G trivially preserves identities and compositions.

The last step in this proof is showing that both F ◦G = IdUλ-Alg and G◦F = IdCTS .

We only show this property for objects; it is trivial for the morphisms since both F

and G map each morphism to itself. First we show that F ◦G = IdUλ-Alg:

F ◦G (A, J·KA) = F (A, aJ·KA)

= (A, J·KaJ·KA ).

So we need to show that J·KA = J·KaJ·KA :

Jσ(x1, . . . , xn)KaJ·KA

= { definition of J·KaJ·KA: }{
aJ·KA [[[[[[σ(x1, . . . , xn)]]]S]]]T, if σ ∈ ΣS

aJ·KA [[[σ([[[x1]]]S, . . . , [[[xn]]]S)]]]T, if σ ∈ ΣT
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=
{

definition of aJ·KA:

}{
Jσ(x1, . . . , xn)KA, if σ ∈ ΣS

Jσ(x1, . . . , xn)KA, if σ ∈ ΣT

=
{

definition of J·KA
}

Jσ(x1, . . . , xn)KA.

Then we show that G ◦ F = IdEMTS:

G ◦ F (A, a) = G (A, J·Ka)

= (A, aJ·Ka).

So we need to show that a = aJ·Ka :

aJ·Ka [[[t [[[[sx]]]S/x]]]]T

=
{

definition of aJ·Ka
}

Jt [sx/x]Ka

= { definition of J·Ka }

a [[[t [[[[sx]]]S/x]]]]T.

We may conclude that CTS and Uλ-Alg are isomorphic categories.

Theorems 3.7 and 3.9 together give us a concrete presentation for composite theories.

Corollary 3.10. Let S and T be algebraic theories with presentations (ΣS, ES) and

(ΣT, ET) respectively. Let U be a composite theory of T after S. Then the following

gives a presentation of U:

ΣU = ΣS ] ΣT

EU = ES ∪ ET ∪ Eλ,

where Eλ consists of all provable equations in U of form s[tx/x] = t[sy/y].
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Chapter 4

Characterising Idempotent
Monads via Distributive Laws

Self-composition of monads is a fascinating subject that is often overlooked. We

have already seen that the multiset monad distributes over itself (see Example 2.14),

whereas the powerset monad does not self-compose at all [34], indicating that this is

not a trivial subject.

It is tempting to believe that any monad will distribute over itself, because of the

type of such a distributive law: TT ⇒ TT . There is an obvious natural transformation

of that type: the identity! However, a quick check of the axioms shows that the

identity cannot be a distributive law for most common monads. It fails for instance

for monads such as multiset, list, probability distribution, etc. And so the idea of

having the identity as a distributive law is quickly dismissed. But what if we take

this naive idea seriously: could the identity natural transformation ever function as

a distributive law?

In this chapter we show that the identity can only be a distributive law in the

trivial case of self-composing an idempotent monad. In fact, having the identity as

a self-distributive law is equivalent to being an idempotent monad. In addition, we

show that two other obvious candidates for a distributive law characterise idempotent

monads as well, namely µηT and µTη.

In the following chapters we will return to the subject of self-distribution, showing

that the list monad and the probability distribution monads do not distribute over

themselves in Chapter 5 and using self-distribution as inspiration in Chapter 6.
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4.1 Idempotent Monads

Idempotent monads are monads which, when applied twice, do the same as if they

were applied just once.

T ◦ T = T.

Idempotent monads can be characterised as follows [49]. A monad 〈T, η, µ〉 is idem-

potent iff any of the following six statements are true:

[1] The multiplication µ is a natural isomorphism.

[2] All components of µ are monomorphisms.

[3] The natural transformations ηT and Tη are equal.

[4] For every algebra (X, h) in the Eilenberg-Moore category CT , the action h :

TX → X is an isomorphism.

[5] The forgetful functor CT → C is full and faithful.

[6] There exists a pair of adjoint functors F a U such that the induced monad

(UF,UεF ) is isomorphic to (T, µ) and U is full and faithful.

We will now add the following characterisations to this list:

[7] The identity natural transformation Id : TT ⇒ TT is a distributive law for T

over itself.

[8] The natural transformation ηT ◦ µ : TT ⇒ TT is a distributive law for T over

itself.

[9] The natural transformation Tη ◦ µ : TT ⇒ TT is a distributive law for T over

itself.

4.2 The Identity as Distributive Law

Theorem 4.1. For a monad T , the identity Id : TT ⇒ TT is a distributive law for

T over itself iff T is an idempotent monad.

Proof. We will give this proof diagrammatically. Let T be a monad with unit η and

multiplication µ. Recall that in string diagrams, η is denoted by a lollipop and µ

by a fork , and diagrams are read from top to bottom.
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Suppose that the identity natural transformation Id : TT ⇒ TT is a distributive

law. We will indicate the appearance of this distributive law in a diagram by dashed

boxes around identity wires.

The unit axioms of a distributive law then tell us that:

=

and

=

.

In other words, the maps Tη and ηT are equal, which is one of the characterisations

of an idempotent monad.

Now suppose that T is an idempotent monad. We need to show that the identity

natural transformation is a distributive law. Since T being idempotent means that

the maps Tη and ηT are equal, the unit axioms are satisfied. For the multiplication

axioms, we need to show that:

=

and

=

.

Both of these simplify to the identity:

=

.

Since T is idempotent, µ is a natural isomorphism, and therefore:

= =

.

This proves both the multiplication axioms, showing that the identity is indeed a

distributive law for an idempotent monad.
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4.3 Two Other Extreme Cases of Distributive Laws

Theorem 4.2. For a monad T , the natural transformations Tη ◦ µ and ηT ◦ µ are

distributive laws of type TT ⇒ TT iff T is an idempotent monad.

Proof. Again, the proof is in terms of diagrams. We will only show the proof for

Tη ◦ µ, as the proof for ηT ◦ µ is similar.

Assume that Tη ◦ µ : TT ⇒ TT is a distributive law. Then by one of the unit

axioms for distributive laws (first equality) and one of the unit axioms for monads

(second equality), we have:

==

.

So ηT = Tη, proving that T is an idempotent monad.

Now suppose that T is an idempotent monad. Then by one of the unit axioms for

monads (first equality), and the fact that Tη = ηT for idempotent monads (second

equality), we have:

= =

,

which proves the first unit axiom of a distributive law. The second one is shown

similarly:

=

.
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For the multiplication axioms, we need to show that:

=

and

=

.

For both, we need an application of one of the unit axioms of a monad (first equality)

and associativity of the multiplication (second equality). We prove the first multipli-

cation axiom of a distributive law:

= =

,

and the second:

= =

.

This proves that Tη ◦ µ : TT ⇒ TT is a distributive law.

Now that we have seen some distributive laws that only work for the trivial monad

composition of an idempotent monad with itself, we will start looking at proofs show-

ing when no distributive laws are possible at all.

46



Chapter 5

No-Go Theorems for Distributive
Laws

The ultimate goal of this line of research is to understand monad compositions com-

pletely: to know exactly which properties are necessary and sufficient for monads

to compose via distributive laws. Significant progress has been made on the side of

positive results, where certain properties of monads were found to be sufficient for

the existence of a distributive law. The most well-known result of this type is by

Manes and Mulry, stating that commutative monads distribute over monads that are

presented by theories with only linear equations [43].

However, the properties found so far have not been proven to be necessary for

monads to compose. One way to close this gap in knowledge is to prove which

properties are sufficient for monad compositions to fail. These are the type of results

that we study in this chapter.

The literature contains a few counterexamples of specific monads that do not

compose via a distributive law. Plotkin famously proved that there is no distributive

law for the powerset monad over the probability distribution monad DP ⇒ PD [60],

and a few other counterexamples involving the powerset monad have followed since

[34, 61]. However, no general theorems matching Manes and Mulry’s positive results

have showed up in the literature1.

We found that by viewing monads algebraically rather than categorically, such

general negative results are much easier to produce. In this chapter we show the

theorems (and proofs) this algebraic viewpoint has produced so far. In Chapter 7 we

analyse the method used in the proofs of this chapter, extracting a ‘template’ for an

algebraic no-go theorem. We then compare the algebraic and categorical approaches.

1The results by Klin and Salamanca are more general than Plotkin’s counterexample, but they
remain limited to the specific case of the powerset monad.
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5.1 Multiplicative Zeroes

The algebraic equivalent of a distributive law is a composite theory. To prove alge-

braically that a there is no distributive law between two monads, we therefore have

to show that there is no composite theory of their algebraic theories. We prove this

by contradiction. We assume that there is a composite theory, and then show that

this assumption is incompatible with various properties the two component theories

may have. Proposition 3.4, the proposition stating various equivalent formulations of

composite theories, will play a vital role in our proofs.

We start with a short but important proposition, which will form a key step

in several no-go theorems in this thesis. Although it is not a full no-go theorem,

it illustrates how we use the two properties of composite theories (separation and

essential uniqueness) in our proofs.

We aim to generalise the concept of a multiplicative zero, which annihilates any

term it appears in:

x ∗ 0 = 0.

In the theory of rings, 0 comes from the theory of Abelian groups, and is substituted

for y in the term x ∗ y, which comes from the theory of monoids, see Example 2.13.

Generalising this, we will look at a composite theory U of theories T after S. Then

we take a constant eT from T, and substitute it into a term s from S, which yields

a term of form s[eT/xi], where xi is one of the variables appearing in s. The goal is

then to find conditions for the theories S and T such that:

s[eT/xi] =U eT.

The proposition captures the conditions of S and T that we found to imply this

equation in any composite theory of T after S. We have formulated these conditions

in their most general form, to ensure that the proposition has a wide applicability.

An explanation of them can be found immediately below the proposition itself.

Proposition 5.1. Let S be an algebraic theory with an n-ary term s (n ≥ 1) such

that:

� There is a substitution f : var(s)→ S such that for any x ∈ var(s):

Γ ` s[f(y)/y 6= x] =S x.

And let T be an algebraic theory with a constant eT such that:
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� For all terms X ` t′ and any variable substitution f : X → Y :

Y ` t′[f ] =T eT ⇒ X ` t′ =T eT.

If U is a composite theory of T after S, then we must have that, for any xi ∈ var(s):

s[eT/xi] =U eT.

Remark 5.2 (Interpretation of Axioms). The assumption for S is a generalisation

of idempotence and unitality. It requires that terms can be reduced to variables

via a suitable substitution. Idempotence and unitality are both instances of this.

Idempotence requires the substitution to change all variables to x:

s(x, y)[x/x, x/y] = s(x, x) = x,

while unitality uses a substitution of a constant for all but one variable:

s(x, y)[es/y] = s(x, es) = x.

Notice that any variable (seen as a term in S) satisfies this assumption, and trivially

satisfies the conclusion of this proposition as well.

The assumption for the theory T states that if a variable substitution of term t′ is

provably equal to a constant, then t′ is already provably equal to that constant. Since

variable substitutions exclude constants from being substituted into a term, this is

quite a common property in algebraic theories. It does, however, exclude equations

such as:

t(x, x, z) = z,

because t(x, y, eT) would be non-reducible, but:

t(x, y, eT)[x/y] = t(x, x, eT) = eT.

So unless the term t(x, y, eT) is reducible to eT, this would violate the assumption

stated for T in the proposition.

We will now prove the proposition.

Proof. Let S and T be theories with the properties indicated above, let U be any

composite theory of T after S, and let s be any term in S satisfying the requirement

stated in the proposition. The conclusion of the proposition is trivial in the case that

s has only one free variable, because our assumption for S implies that we must have

s(x) =S x. We may therefore assume that s has at least two free variables.
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Consider the term s[eT/xi] in U, where xi is an arbitrary variable appearing in s

and eT is a constant of T. Separation tells us that every term in a composite theory

is equal to a separated term. Since s[eT/xi] is not separated, there is a term t′ in T
and there are terms s′x in S such that:

s[eT/xi] =U t
′[s′x/x].

We use substitutions to manipulate s[eT/xi] into a separated term. The substitu-

tion f given by the assumption for S makes this easy to do:

eT =U s[eT/xi][f(y)/y 6= xi] =U t
′[s′x[f(y)/y 6= xi]/x].

Hence:

eT =U t
′[s′x[f(y)/y 6= xi]/x].

We now have two separated terms equal to each other, so we can use essential unique-

ness to conclude that there are variable substitutions g1, g2 such that:

eT[g1] =T t
′[g2]. (Proposition 3.4, 3a)

Of course g1 has no effect on the constant eT, which has no variables to substitute.

Since g2 is a variable substitution, we can apply the assumption for T, and conclude

that t′ =T eT. Going back to our original equation:

s[eT/xi] =U t
′[s′x/x]

⇒ { t′ =T eT }

s[eT/xi] =U eT[s′x/x]

⇒ { eT has no variables }

s[eT/xi] =U eT,

which is what we needed to show.

Remark 5.3. If all terms in S with ≥ 1 free variables satisfy the assumption stated in

the proposition, then the constant eT in T annihilates any S-term it appears in. We

then say that eT acts as a multiplicative zero in the composite theory.

If T has more than one constant, this immediately leads to an inconsistency. We

make this precise in our first no-go theorem.

50



Theorem 5.4 (No-Go Theorem: Too Many Constants). Let S be an algebraic theory

with an n-ary term s, where n ≥ 2, such that:

� There is a substitution f : var(s)→ S such that for any x ∈ var(s):

Γ ` s[f(y)/y 6= x] =S x.

And let T be an algebraic theory with at least two constants e1, e2 such that for both

constants:

� For all terms X ` t′ and any variable substitution f : X → Y :

Y ` t′[f ] =T ei ⇒ X ` t′ =T ei,

where ei ∈ {e1, e2}.

Then there exists no composite theory of T after S.

Proof. Suppose that U is a composite theory of T after S, let e1 and e2 be distinct

constants in T, and let s be a term in S satisfying the stated assumption. Suppose

that {x, y} ⊆ var(s). Then by Proposition 5.1 we have:

e1 =U s[e1/x, e2/y] =U e2.

By essential uniqueness we may conclude that:

e1 =T e2. (Proposition 3.4, 3a)

Contradiction. So U cannot be a composite of T after S.

The following corollary reflects our interest in monads. It relies on the one-to-one

connection between composite theories and distributive laws explained in Chapter 3.

Corollary 5.5. If monads S and T have presentations S and T such that the condi-

tions of Theorem 5.4 are satisfied, then there is no distributive law of type S ◦ T ⇒
T ◦ S.

Each of our subsequent no-go theorems will have a similar corollary, but we will

not state these explicitly. Instead, we will use the statement “no composite theory

exists for theory T after S” as a synonym for “no distributive law of type S◦T ⇒ T ◦S
exists”, where S is the free model monad of S and T is the free model monad of T.
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Example 5.6 (Iterated Distributive Laws). Theorem 5.4 is remarkably useful for

determining whether iterated distributive laws are possible. Recall from Chapter 2,

Section 2.2.3, that three or more monads can be composed by composing pairwise

distributive laws if these distributive laws satisfy the Yang-Baxter equation. Theo-

rem 5.4 approaches the question of iterated distributive laws from the other end, by

severely limiting the possibilities. If in a proposed composition of monads C ◦B ◦A,

the monads B and C each have a constant (and the other mild requirements of The-

orem 5.4 are satisfied), then there is no distributive law A ◦ (C ◦B)⇒ (C ◦B)⇒ A,

and hence any possible pairwise distributive laws will not satisfy Yang-Baxter.

We give a few concrete examples involving the list, multiset and powerset monads

L,M,P , whose algebraic theories are monoids, commutative monoids, and join semi-

lattices respectively (see Example 2.32). We know from Manes and Mulry [43, The-

orem 4.3.4] that we can form the monads M ◦L, M ◦M , and M ◦ P via distributive

laws. All of these monads have two constants, which satisfy the condition for T in

Theorem 5.4. By picking the term x ∗ y in each of the theories for L, M , and P , we

see that these monads satisfy the condition for S. We can therefore exclude all of the

following compositions via distributive laws:

Table 5.1: Overview of possible distributive laws of type:
row ◦ column ⇒ column ◦ row, involving the monads

list (L), multiset (M), and powerset (P ).

M ◦ L M ◦M M ◦ P
L × × ×
M × × ×
P × × ×

Example 5.7 (An Error in the Literature). We saw in the previous example that the

term x∗y from monoids (the list monad) satisfies the conditions for S in Theorem 5.4.

The exception monad satisfies the conditions for T with each of its exceptions, so when

the exception monad has more than one exception, Theorem 5.4 states that there is

no distributive law L ◦ (−+ E)⇒ (−+ E) ◦ L.
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However, Manes and Mulry claim to have a distributive law of this type for the

case where E = {a, b} [44, Example 4.12], given by:

λ[ ] = [ ]

λ[e] = e for any exception e ∈ E

λL = L if no element of L is in E

λL = a otherwise.

We check more concretely that this cannot be a distributive law by showing that it

fails the first multiplication axiom from Definition 2.10:

[[b], [ ]] [b, [ ]] a

[b] b a

µLEX

L(λX) λLX

E(µLX)

λX 6=

The given distributive law follows directly from Manes and Mulry’s Theorem 4.6 [44].

We suspect that the problem originates in Lemma 4.5 of this paper. Louis Parlant

found that the proof of this lemma might use the isomorphism (A⊗I) ∼= A implicitly if

the signature of the theory has constants, while the lemma explicitly does not assume

any monoidal properties of its functors. So the lemma, and hence also Theorem 4.6,

may not be valid in the case that the theory has constants. In addition, the induction

in the proof of Lemma 4.5 starts at n = 1, where n is the number of variables

appearing in a term. This induction therefore excludes constants, which should be

considered separately but are absent from the proof.

It is important to notice that Theorem 5.4 does not contradict the well-known

result that the exception monad distributes over every set monad T ; that result is for

the other direction (−+ E) ◦ T ⇒ T ◦ (−+ E).

Non-Example 5.8 (Exception Monad). It is well known that the exception monad

distributes over itself. In the algebraic theory for the exception monad, the only terms

are constants and variables. Since there are no terms with two or more free variables,

it fails the condition required for S in Theorem 5.4, and hence this theorem does not

prevent a distributive law for the exception monad over itself.

Theorem 5.4 is a direct and useful consequence of Proposition 5.1, providing us

with many examples of non-existent distributive laws. In the following sections, we

will see more applications of Proposition 5.1.
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5.2 Inverses and Absorption: Playing with Vari-

ables

In this section, we use Proposition 5.1 to solve a question posed by Beck in his original

paper about distributive laws: “Does the Abelian group monad distribute over the

list monad?” [5]. We then generalise this example and find two no-go theorems,

Theorem 5.10 and Theorem 5.14. These theorems are based on the equations of

inverses and absorption respectively:

x+ (−x) = 0 (inverse)

x ∨ (x ∧ y) = x (absorption)

5.2.1 No Distribution of Plus over Times

Can addition distribute over multiplication? Beck considered this question after in-

troducing the classical example of distributive laws, which builds the ring monad

from the list monad L, and the Abelian group monad A. The composition uses a

distributive law of type L ◦ A⇒ A ◦ L, which exploits the arithmetic distribution of

multiplication over addition, see Example 2.13. Beck’s question effectively reverses

the direction of distribution, asking whether a distributive law of type A ◦L⇒ L ◦A
is possible. Beck’s intuition is that such a distributive law “would have the air of a

universal solution to the problem of factoring polynomials into linear factors”. He

suggests L ◦ A “has little chance of being a triple” [5, Example 4.1]. Unsurprisingly,

Beck’s intuition is correct, and no such distributive law exists.

Counterexample 5.9. There is no distributive law of type A◦L⇒ L◦A, distributing

the Abelian Group monad over the list monad.

Proof. The theory of Abelian groups A, yielding the Abelian group monad A, has

presentation:

� Signature: ΣA = {0(0),−(.)(1),+(2)}.

� Equations: EA contains the equations stating that 0 is the unit of +, + is

associative and commutative, and −x is the additive inverse of x: x+(−x) = 0.
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The theory of monoids M, yielding the list monad L, has presentation:

� Signature: ΣM = {1(0), ∗(2)}.

� Equations: EM contains the equations stating that 1 is unit of ∗, and ∗ is

associative.

The term x+ y in A satisfies the conditions for S in Proposition 5.1, and M satisfies

the conditions for T. We conclude that in any composite theory U of M after A, the

following equation must hold:

x+ 1 =U 1.

We prove that this implies that x =U 0:

x

=U { unit }

x+ 0

=U { inverse }

x+ (1 + (−1))

=U { associativity }

(x+ 1) + (−1)

=U { x+ 1 =U 1 }

1 + (−1)

=U { inverse }

0.

Hence for any two variables: x =U 0 =U y, which means that any composite theory U

is inconsistent. Since the component theories M and A are consistent, Proposition 3.5

tells us that there is no such composite theory.

This proof perfectly illustrates the usefulness of an algebraic approach. Beck’s

question has been open for 50 years, but the proof above involves algebraic manipula-

tions that are near trivial. The key lies in gaining the right perspective. Having access

to Proposition 5.1 made all the difference. Proposition 5.1 itself is proven by a fairly

simple argument involving separation and essential uniqueness, the key properties of

a composite theory.

The result of Counterexample 5.9 is an instance of a more general theorem, which

we will prove in the next section.
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5.2.2 Generalisations

We consider two variations on the inverse equation x+ (−x) = 0. The first is a direct

generalisation:

s = eS,

where s is a term containing at least one variable and eS is a constant. The second

variation replaces the constant with a term s′ with variables, but such that at least

one variable in s does not appear in s′:

s = s′.

An example of such an equation is the absorption rule for lattices: x ∨ (x ∧ y) = x.

These two equations give rise to two no-go theorems, which can both be seen as

generalisations of Counterexample 5.9. Just as in the counterexample, all the work in-

volving composite theories and essential uniqueness is concentrated in Proposition 5.1.

The rest of the proof is just clever, but standard, algebraic manipulation of terms.

The first theorem, requiring the equation s = eS, is the most direct generalisation of

Counterexample 5.9.

Notice that the proof of Counterexample 5.9 used associativity. We could have

avoided this by using the following alternative, but less intuitive, reasoning that

applies Proposition 5.1 twice:

x

=U { unit }

x+ 0

=U { inverse }

x+ (1 + (−1))

=U { substitution }

x+ (1 + y)[−1/y]

=U { Proposition 5.1: 1 + y =U 1 }

x+ 1[−1/y]

=U { no variable y }

x+ 1

=U { Proposition 5.1: x+ 1 =U 1 }

1.

This argumentation uses fewer assumptions, so this is the proof we generalise below.
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Theorem 5.10 (No-Go Theorem: Inverse Trouble). Let S be an algebraic theory such

that:

(S1) S has a constant eS.

(S2) S has a term s of arity ≥ 2 such that eS is a unit of s, that is, for any variable

x ∈ var(s):

s[eS/y 6= x] =S x.

(S3) S satisfies an equation of form

X ` s′ =S eS,

with var(s′) 6= ∅, and s′ can be written as s′′[si/xi], such that var(s′′)∩var(s′) 6=
∅, and there is a substitution f : var(s′′)→ S such that for any x ∈ var(s′′):

Γ ` s′′[f(y)/y 6= x] =S x.

Let T be an algebraic theory such that:

(T1) T has a constant eT.

(T2) For all terms t′ and any variable substitution f : X → Y :

Y ` t′[f ] =T eT ⇒ X ` t′ =T eT.

Then there does not exist a composite theory of T after S.

Remark 5.11 (Interpretation of Axioms). Axiom (S3) is the most difficult to parse. It

is designed to generalise the proof technique illustrated above. We used the equation

x + (−x) = 0, and the fact that x + (−x) could be written as x + y[(−x)/y]. We

then used Proposition 5.1 on x+ y. In order for this argument to work in general, we

hence require:

� a term s′ which is equal to a constant, s′ = x+ (−x) in the example above.

� a term s′′ such that s′ is equal to s′′ under a certain substitution, s′′ = x+ y in

the example.

� since we want to apply Proposition 5.1, s′′ needs to satisfy the conditions for

this proposition.
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� and lastly we require that s′ and s′′ share at least one variable, which is a

technicality needed to make the proof go through.

We need axiom (T2) to be able to apply Proposition 5.1. As a reminder, it reads:

“If a variable substitution of term t′ is provably equal to a constant, then t′ is already

provably equal to that constant.”

Proof. Let U be any (candidate) composite theory of T after S. Consider the equation

s′ = eS. We know from axiom (S2) that S has a term s such that eS is a unit of s.

Choose variable x such that x /∈ var(s′). Then we use both the unit equation for s

and the fact that s′ = eS:

x =U s[eS/y 6= x]

⇒ { eS =S s
′ }

x =U s[s
′/y 6= x].

Next, we substitute eT into all variables in s′. Since we chose x such that x /∈ var(s′),

this substitution has no effect on the left hand side of our equation.

x =U s[s
′/y 6= x]

⇒ { substitution }

x[eT/z ∈ var(s′)] =U s[s
′[eT/z ∈ var(s′)]/y 6= x]

⇒ { x /∈ var(s′) }

x =U s[s
′[eT/z ∈ var(s′)]/y 6= x].

We will now work on the term s[s′[eT/z ∈ var(s′)]/y 6= x]. Recall that s′ can be written

as s′′[si/xi] and s′′ satisfies the conditions for Proposition 5.1. Also, since var(s′′) ∩
var(s′) 6= ∅, we know that the substitution s′[eT/z ∈ var(s′)] =U s′′[si/xi][eT/z ∈
var(s′)] yields a term where at least one of the variables of s′′ gets substituted with

eT. Hence by Proposition 5.1, this resulting term is equal to eT. Therefore:

x =U s[s
′[eT/z ∈ var(s′)]/y 6= x]

⇒ { writing s′ as s′′[si/xi] }

x =U s[s
′′[si/xi][eT/z ∈ var(s′)]/y 6= x]

⇒ { Proposition 5.1: s′′[si/xi][eT/z ∈ var(s′)] =U eT }

x =U s[eT/y 6= x]

⇒ { Proposition 5.1 again }

x =U eT.
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Notice that in the last step, we applied Proposition 5.1 to s instead of s′′. We are

allowed to do this because s is unital by assumption (S2), and hence also satisfies

Proposition 5.1.

From the equation x =U eT, we get by simple variable substitution that y =U eT for

any variable y, and so specifically: x =U eT =U y. We conclude that U is inconsistent.

As the original theories are assumed to be consistent, there is no such composite

theory.

Example 5.12. In case of Abelian groups and monoids, the equation s′ = eS required

from Abelian groups is the inverse equation x+ (−x) = 0. Equation x+ (−x) can be

written as (x+ y)[(−x)/y]. Since the terms x+ y and x+ (−x) share the variable x,

condition (S3) is satisfied.

Example 5.13. There are countless monads satisfying the criteria for T. A few

natural examples are the list, multiset, powerset, and the exception monads.

We have already seen that Abelian groups satisfy the criteria for S. In addition,

any theory with a multiplicative zero x ∗ 0 = 0 can be a good candidate, if the

binary operation ∗ is either idempotent or unital. Rings are an obvious example, but

Proposition 5.1 gives us many more. The multiset monad satisfies all the criteria for

S and T in Proposition 5.1. We know that there is a distributive law for the multiset

monad over itself, see Example 2.14, so the unit of one of the binary operations in

the composite theory corresponding to the monad M ◦M must act a multiplicative

zero for the other.

We can hence make the following table of example compositions Theorem 5.10

proves impossible via a distributive law:

Table 5.2: Overview of some distributive laws of type:
row ◦ column ⇒ column ◦ row, which are excluded by Theorem 5.10.

List Multiset Powerset Exception
Abelian groups × × × ×
Rings × × × ×
(Multiset)2 × × × ×

More examples illustrating the scope of Theorem 5.10 will be given in Chapter 6.

The second theorem we find as a generalisation of Counterexample 5.9 focusses

on the equation s = s′, where s has a variable that does not appear in s′. Although

this is a slightly less direct abstraction of Counterexample 5.9 than Theorem 5.10

is, it does exploit the same technique of controlled introduction and elimination of
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variables. Here the motivating example axiom is the absorption law x ∨ (x ∧ y) = x,

seen in lattices and similar structures.

Theorem 5.14 (No-Go Theorem: Absorption Trouble). Let S be an algebraic theory

such that:

(S1) S satisfies an equation of form X ` s =S s
′, where var(s) \ var(s′) 6= ∅ (that is,

s has a variable that does not appear in s′).

(S2) There is a substitution f : var(s)→ S such that for any x ∈ var(s):

Γ ` s[f(y)/y 6= x] =S x.

(S3) There is a substitution f ′ : var(s′)→ S such that for any x ∈ var(s′):

Γ ` s′[f ′(y)/y 6= x] =S x.

Let T be an algebraic theory such that:

(T1) T has a constant eT.

(T2) For all terms t′ and any substitution f : X → Y :

Y ` t′[f ] =T eT ⇒ X ` t′ =T eT.

Then there does not exist a composite theory of T after S.

Remark 5.15 (Interpretation of Axioms). (S2) and (S3) are again generalisations of

idempotence/unitality equations, needed to apply Proposition 5.1, and (T2) is the

now familiar axiom stating “If a variable substitution of term t′ is provably equal to

a constant, then t′ is already provably equal to that constant.”

Proof. Let U be any (candidate) composite theory of T after S. Consider the equation

s = s′ from the assumptions. Let f ′ be a substitution of the variables in s′ such that

s′[f ′] =S x, where x ∈ var(s′). Then:

s =S s
′

⇒ { axiom of substitution }

s[f ′] =S s
′[f ′]

⇒ { s′[f ′] =S x by construction of f ′ }

s[f ′] =S x.
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Now let g be the constant substitution g : var(s)\var(s′)→ {eT}, mapping all the

variables that appear in s but not in s′ to the constant eT. Since var(s) \ var(s′) 6= ∅,
at least one instance of eT will be present in s[f ′][g]. Then:

s[f ′] =U x

⇒ { axiom of substitution }

s[f ′][g] =U x[g]

⇒ { x ∈ var(s′) and therefore untouched by g }

s[f ′][g] =U x

⇒ { Proposition 5.1, since s[f ′][g] contains at least one eT }

eT =U x.

Using substitution, we can hence show that x =U eT =U y, from which it follows that

U is inconsistent. As the original theories are assumed to be consistent, there is no

such composite theory.

Theorem 5.14 solves a question Julian Salamanca posed in 2018 [55], asking

whether there is a distributive law bL ◦P ⇒ P ◦ bL, distributing the bounded lattice

monad bL over the powerset monad P . The answer is no.

Example 5.16. There is no distributive law for the (bounded) lattice monad over

the powerset monad. The presentation for the bounded lattice monad is given by:

� Signature: {>(0),⊥(0),∨(2),∧(2)}.

� Equations: > is the unit of ∧, ⊥ is the unit of ∨, associativity of ∨ and ∧,

commutativity of ∨ and ∧, idempotence of ∨ and ∧, absorption both ways:

x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x.

We see that the bounded lattice monad satisfies the criteria for S in Theorem 5.14:

� The equation s = s′ is x ∨ (x ∧ y) = x.

� The substitution f such that s[f ] = x uses the unit of ∧ and idempotence of ∨:

x ∨ (x ∧ y)[>/y] = x ∨ (x ∧ >) = x ∨ x = x.

� The substitution f ′ such that s′[f ′] = x is the identity, since the term s′ is just

the variable x.
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The presentation of the powerset monad is given by:

� Signature: {0(0),+(2)}.

� Equations: 0 is unit of +, + is associative, commutative, and idempotent.

The powerset monad satisfies the criteria for T in Theorem 5.14, and so we conclude

that there is no distributive law bL ◦ P ⇒ P ◦ bL.

Remark 5.17. The proofs of the two theorems above use intricate variable manipu-

lations to reach their goal. This is a common theme in theorems about distributive

laws: the well-known positive result of Manes and Mulry requires monads presented

by theories with only linear equations [43, Theorem 4.3.4]. That is, with variables

appearing exactly once on each side of the equation. These monads distribute over

commutative monads in the direction linear ◦ commutative ⇒ commutative ◦ lin-

ear. Linear equations have the advantage that their variables are easy to manage

and analyse, since variables can neither be duplicated nor be deleted. Similarly strict

variable management properties will prove to be essential for some of our later no-go

theorems, for instance those in Section 5.3.

In this regard, the inverse and absorption equations from this section are ‘wildly

behaving’ equations, since they can make any variable appear or disappear. This

makes it impossible to keep a tight bound on the variables that can appear in the

terms we analyse in the proofs. But rather than seeing this behaviour as a nuisance,

the theorems in this section use it to their advantage. The ability to make new

variables appear means that we can introduce variables on one side of an equation

but not the other, and hence we can define substitutions that affect only one side of

an equation.

5.3 No-Go Theorems Based on Idempotence

In the previous section we gained two general no-go theorems by analysing a specific

counterexample, namely the impossibility of ‘plus’ (the Abelian group monad A) to

distribute over ‘times’ (the list monad L). In this section, we will again produce a

class of no-go theorems based on the analysis of one specific counterexample. The

counterexample central to this section was found by Plotkin [60], and proves that

there is no distributive law for the distribution monad over the powerset monad:

DP ⇒ PD.
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Plotkin’s counterexample was originally presented categorically, so our first efforts

will focus on translating its proof into our algebraic setting. This translation will make

it easier to keep track of the assumptions that are being made in the proof, which

will then lead us to our first general no-go theorem: Theorem 5.20. We then set out

to generalise this theorem even further, resulting in Theorems 5.25, 5.28, and 5.30.

5.3.1 The Original Counterexample

We present Plotkin’s original counterexample [60], slightly rephrased to facilitate a

translation from the categorical proof into our algebraic framework, and annotated

with comments to explain the strategies that are used.

Counterexample 5.18. There is no distributive law of type D ◦ P ⇒ P ◦D, where

D is the finite probability distribution monad and P the finite powerset monad.

Remark 5.19. The original counterexample involves the free real cone monad (a.k.a.

the finite valuation monad) instead of the finite probability distribution monad, be-

cause it requires slightly weaker assumptions. Since we are generalising the algebraic

properties later on, we choose to restrict to the simpler probability distribution monad

for now. Our later results are equally applicable to the free real cone monad.

Proof. Assume, by way of a contradiction, that there is a distributive law λ : D◦P ⇒
P ◦D. Fix the set X = {a, b, c, d}, and consider the element Ξ ∈ DP (X) defined as:

Ξ = {a, b}+
1
2 {c, d}.

We define three functions f1, f2, f3 : X → X:

f1(a) = a f2(a) = a f3(a) = a

f1(b) = b f2(b) = b f3(b) = a

f1(c) = a f2(c) = b f3(c) = b

f1(d) = b f2(d) = a f3(d) = b

The plan of the proof is to analyse how Ξ travels around the naturality square for λ,

for each of the three functions. The element Ξ and the three functions have been

carefully chosen so that the distributive law unit axioms can be applied during the

proof.

DP (X)

DP (X)

PD(X)

PD(X)

λX

λX

DP (fi) PD(fi) (5.1)
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We first trace Ξ around the naturality square (5.1) for f1. Since +
1
2 is idempotent,

we conclude:

DP (f1)(Ξ) = {a, b}+
1
2 {a, b}

= ηDPX{a, b}.

We then apply the first distributive law unit axiom to conclude that:

λX ◦DP (f1)(Ξ) = {ηDX(a), ηDX(b)}.

Now we consider the action of PD(f1), effectively reversing the right vertical arrow

in the naturality square, by computing the preimage of f1: f−1
1 (a) = {a, c}, f−1

1 (b) =

{b, d}. We conclude that any element in λ(Ξ) that is mapped by PD(f1) to ηDX(a)

can only contain the variables a and c, and any element that is mapped to ηDX(b) can

only contain the variables b and d. Therefore, λX(Ξ) must be a subset of:

{a+p c | p ∈ [0, 1]} ∪ {b+p d | p ∈ [0, 1]}.

Next, we trace Ξ around the naturality square (5.1) for f2. We use commutativity

of {−,−} and idempotence of +
1
2 to conclude:

DP (f2)(Ξ) = {a, b}+
1
2 {b, a}

= {a, b}+
1
2 {a, b}

= ηDPX{a, b}.

We then apply the first distributive law unit axiom again to conclude that:

λX ◦DP (f2)(Ξ) = {ηDX(a), ηDX(b)}.

And again, we reverse the right vertical arrow in the naturality square by computing

the preimage of f2: f−1
2 (a) = {a, d}, and f−1

2 (b) = {b, c}. We conclude that any

element in λ(Ξ) that is mapped by PD(f2) to ηDX(a) can only contain the variables a

and d, and any element that is mapped to ηDX(b) can only contain the variables b and

c. Therefore, λX(Ξ) must be a subset of:

{a+p d | p ∈ [0, 1]} ∪ {b+p c | p ∈ [0, 1]}.

This, together with our conclusion from tracing Ξ around the naturality square for

f1, yields that λX(Ξ) must be a subset of:

{ηDX(a), ηDX(b), ηDX(c), ηDX(d)}.
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Lastly, we trace Ξ around the naturality square (5.1) for f3. In this case, we

exploit the idempotence of the operation {−,−} to conclude:

DP (f3)(Ξ) = {a, a}+
1
2 {b, b}

= ηPX(a) +
1
2 ηPX(b).

This time, we apply the second unit axiom for λ to conclude:

λX ◦DP (f3)(Ξ) = ηPDX(a+
1
2 b).

By considering the action of PD(f3) as before, we conclude that λX(Ξ) must contain

an element mapped onto a+
1
2 b by PD(f3). That means that λX(Ξ) must contain an

element with at least two variables. However, we previously concluded that λX(Ξ)

must be a subset of {ηDX(a), ηDX(b), ηDX(c), ηDX(d)}, and none of these elements contain

more than one variable. Contradiction, hence no distributive law of type D ◦ P ⇒
P ◦D can exist.

In summary, the proof considers the unknown action of a possible distributive law

λ on the element Ξ. By chasing the naturality square for two different functions,

it establishes an upper bound on the number of variables that can appear in each

element of λX(Ξ): each element in λX(Ξ) can have at most one variable. Then, a

third naturality square is used to establish a lower bound on the number of variables:

λX(Ξ) must contain an element with at least two variables. The upper and lower

bounds contradict each other, which means such a distributive law cannot exist.

5.3.2 Generalising Plotkin’s Counterexample

Some of the arguments used in the proof above clearly allude to algebraic properties,

such as idempotence and commutativity. This strongly suggests that our algebraic

framework is well-suited for analysing and generalising this example. Some other

parts of the argument, however, are less straightforward to pin down. An essential

part of the proof involves ‘taking an inverse image’ to reason about variables that

may appear in as yet unknown elements. In principle this reasoning involves inverse

images of equivalence classes of terms in one algebraic theory, with variables labelled

by equivalence classes of terms in a second algebraic theory. It is not immediately

obvious why this argument works for the powerset and distribution monads and not

for other monads. This strongly motivates our move to an algebraic setting, where we

can reason on terms directly, without equivalence classes obscuring any details and

making things unnecessarily complicated.
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We start by making a direct algebraic translation of the argument presented in

Counterexample 5.18. This will reveal precisely which algebraic properties are used

in the proof. In doing so, we produce our first general no-go theorem based on this

counterexample. We then further generalise by considering which of the algebraic

properties we used can be relaxed, without breaking the proof.

Some of the properties required in the following theorem may look unfamiliar;

these are the ones required to make the ‘inverse image’ part of the proof work. They

are explained in more detail in Remark 5.21 below.

Theorem 5.20. Let S and T be two algebraic theories. If there are terms:

2 `S s and 2 `T t,

such that:

(S1) s is idempotent:

{a} ` s(a, a) =S a.

(S2) For all terms s′ ∈ S, and any variable a:

Γ ` a =S s
′ ⇒ {a} ` s′.

(S3) For all terms s′ ∈ S:

Γ ` s(a, b) =S s
′ ⇒ ¬({a} ` s′ ∨ {b} ` s′).

(T1) t is commutative:

{a, b} ` t(a, b) =T t(b, a).

(T2) t is idempotent:

{a} ` t(a, a) =T a.

(T3) For all terms t′ ∈ T:

Γ ` t(a, b) =T t
′ ⇒ {a, b} ` t′.

Then there is no composite theory of T after S.
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Remark 5.21. Properties (T3), (S2), and (S3) are constraints on the variables ap-

pearing in certain terms, which are needed for the ‘inverse image’ part of Counterex-

ample 5.18. Property (T3) states that any term equal to the special binary term t

can have at most two free variables. Property (S2) states that any term equal to

a variable can only contain that variable, and property (S3) states that any term

equal to the special binary term s must have at least two free variables. Notice

that the upper/lower bound principle from the original argument is reflected in these

conditions.

Proof. Assume by way of a contradiction that a composite theory U of T after S
exists. Consider the term:

s(t(a, b), t(c, d)).

Then as U is composite and s(t(a, b), t(c, d)) is not a separated term, the separation

axiom of composite theories says that there exist X ` t′ and Γ ` s′x for each x ∈ X
such that:

s(t(a, b), t(c, d)) =U t
′[s′x/x]. (5.2)

As in Counterexample 5.18, we use three substitutions: two to establish an upper

bound on variables appearing in certain terms, and one to establish a contradicting

lower bound. Define the first substitution f1 as follows:

f1(a) = a

f1(b) = b

f1(c) = a

f1(d) = b

Then, using this substitution of variables and assumption (S1):

s(t(a, b), t(c, d)) =U t
′[s′x/x]

⇒ { axiom of substitution }

s(t(a, b), t(c, d))[f1] =U t
′[s′x[f1]/x]

⇒ { applying the substitution on the left hand side }

s(t(a, b), t(a, b)) =U t
′[s′x[f1]/x]

⇒ { assumption (S1): s is idempotent }

t(a, b) =U t
′[s′x[f1]/x].
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We now have two separated terms that are equal to each other, so we can apply

essential uniqueness. This gives us that there are functions g1 : {a, b} → Z and

g2 : X → Z such that:

t[g1] =T t
′[g2] (Proposition 3.4, 3a)

g1(a) 6= g1(b) (Proposition 3.4, 3b)

g1(a) = g2(x)⇔ a =S s
′
x[f1] (Proposition 3.4, 3d)

g1(b) = g2(x)⇔ b =S s
′
x[f1]. (Proposition 3.4, 3d)

By assumption (T3) we must have for all x ∈ var(t′): g2(x) = g1(a) or g2(x) = g1(b),

which means for each s′x:

s′x[f1] =S a or s′x[f1] =S b.

Then using assumption (S2) and the preimage of f1, we conclude that for all s′x:

{a, c} ` s′x or {b, d} ` s′x. (5.3)

We use the same strategy again with our second substitution f2, which is defined

as follows:

f2(a) = a

f2(b) = b

f2(c) = b

f2(d) = a

Using this substitution and assumptions (T1) and (S1):

s(t(a, b), t(c, d)) =U t
′[s′x/x]

⇒ { axiom of substitution }

s(t(a, b), t(c, d))[f2] =U t
′[s′x[f2]/x]

⇒ { applying the substitution on the left hand side }

s(t(a, b), t(b, a)) =U t
′[s′x[f2]/x]

⇒ { assumption (T1): t is commutative }

s(t(a, b), t(a, b)) =U t
′[s′x[f2]/x]

⇒ { assumption (S1): s is idempotent }

t(a, b) =U t
′[s′x[f2]/x].
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Again we have two separated terms that are equal, so we apply essential uniqueness.

This gives us that there are functions g3 : {a, b} → Z and g4 : X → Z such that:

t[g3] =T t
′[g4] (Proposition 3.4, 3a)

g3(a) 6= g3(b) (Proposition 3.4, 3b)

g3(a) = g4(x)⇔ a =S s
′
x[f2] (Proposition 3.4, 3d)

g3(b) = g4(x)⇔ 2 =S s
′
x[f2]. (Proposition 3.4, 3d)

By assumption (T3) we must have for all x ∈ var(t′): g4(x) = g3(a) or g4(x) = g3(b),

which means for each s′x:

s′x[f2] =S a or s′x[f2] =S b.

and so, using assumption (S2) and the preimage of f2, we know that for all s′x:

{a, d} ` s′x or {b, c} ` s′x. (5.4)

We combine the two conclusions (5.3) and (5.4), yielding that for all s′x:

({a, c} ` s′x ∨ {b, d} ` s′x) ∧ ({a, d} ` s′x ∨ {b, c} ` s′x)

⇒ { distributing ∧ over ∨ }

({a, c} ` s′x ∧ {a, d} ` s′x) ∨ ({a, c} ` s′x ∧ {b, c} ` s′x) ∨

({b, d} ` s′x ∧ {a, d} ` s′x) ∨ ({b, d} ` s′x ∧ {b, c} ` s′x)

⇒ { this is only possible if } (5.5)

{a} ` s′x ∨ {c} ` s′x ∨ {d} ` s′x ∨ {b} ` s′x. (5.6)

In other words, each s′x can have at most one variable.

To get a contradiction, we will now find an s′x that must have at least two variables.

This is where we need assumption (S3). We make one more substitution. Define f3

as follows:

f3(a) = a

f3(b) = a

f3(c) = b

f3(d) = b
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Using this final substitution and (T2):

s(t(a, b), t(c, d)) =U t
′[s′x/x]

⇒ { axiom of substitution }

s(t(a, b), t(c, d))[f3] =U t
′[s′x[f3]/x]

⇒ { applying the substitution on the left hand side }

s(t(a, a), t(b, b)) =U t
′[s′x[f3]/x]

⇒ { assumption (T2): t is idempotent }

s(a, b) =U t
′[s′x[f3]/x]

⇒ { making it more obvious that s(a, b) is a separated term }

y[s(a, b)/y] =U t
′[s′x[f3]/x].

Again, we arrive at an equality between two separated terms, allowing us to apply

essential uniqueness. This gives us that there are functions g5 : {y} → Z and

g6 : X → Z such that:

y[g5] =T t
′[g6] (Proposition 3.4, 3a)

g5(y) = g6(x)⇔ s(a, b) =S s
′
x[f3]. (Proposition 3.4, 3d)

By consistency of T, the variable g5(y) appears in t′[g6]. If it did not, we could

define a substitution h mapping g5(y) to any other variable z, and then conclude

z =T g5(y)[h] =T t
′[g6][h] =T t

′[g6] =T g5(y), which proves all variables are equal to

each other in T, which means T is inconsistent. So we know that the variable g5(y)

must appear in t′[g6]. Hence, there is an x0 such that g5(y) = g6(x0). And so:

s(a, b) =S s
′
x0

[f3].

By (S3), s′x0 [f3] must have at least two variables. Which means s′x0 must have at least

two variables. This contradicts Equation (5.6), which claims that each s′x can have

at most one variable. Therefore the assumed composite theory cannot exist.

Example 5.22 (Powerset and Distribution Monad). Consider the terms a ∗ b and

a +
1
2 b in the theories representing the powerset and distribution monads of Exam-

ple 2.32. Since both of these terms are binary, commutative, and idempotent, and

the remaining axioms are satisfied, Theorem 5.20 captures the known results that

there are no distributive laws of type D ◦ P ⇒ P ◦ D [60], P ◦ P ⇒ P ◦ P [34], or

P ◦D ⇒ D ◦ P [61, stated without proof]. In addition, Theorem 5.20 yields the new

result that there is no distributive law of type D ◦D ⇒ D ◦D, completing the picture

for these monads. These results are summarised in the table below:
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P D
P × ×
D × ×

Non-Example 5.23 (Reader Monad). It is well known that the reader monad dis-

tributes over itself. Looking at the presentation of the reader monad given in Exam-

ple 2.32, we see that although it has idempotent terms, there is no commutative term

and hence Theorem 5.20 does not apply.

A natural question to ask with regard to Theorem 5.20 is whether the choice

of binary terms for both s and t is necessary. We thank Prakash Panangaden for

posing this question during an informal presentation of this work [50]. The answer is

that we can generalise to terms with any arities strictly greater than one. Before we

prove this more general statement, we introduce a lemma that will help to establish

the upper bound part of the argument.

Lemma 5.24. Let n,m be strictly positive natural numbers, and σ a fixed-point free

permutation of {1, ...,m}. For distinct variables aji , 1 ≤ i ≤ m, 1 ≤ j ≤ n, the sets:

{a1
i1
, a2

i1
, a3

i1
, . . . , ani1}

{a1
i2
, a2

σ(i2), a
3
i2
, . . . , ani2}

...

{a1
in , a

2
in , a

3
in , . . . , a

n
σ(in)}

have at most one common element. Here, each ik is an element of {i | 1 ≤ i ≤ m},
not necessarily unique.

Proof. We proceed by induction on n. The base case n = 1 is trivially true. For

n = n′ + 1, we consider the first two rows of our table of sets. There are two cases.

1. If i1 = σ(i2), then the first two rows can only agree at their second element,

because each aji is distinct, and from the assumption that σ is fixed-point free

we know that i1 is different from i2 if σ(i2) = i1. The claim follows directly

from this observation.

2. If i1 6= σ(i2) then the first two rows disagree in the second column. Therefore the

elements common to all the sets cannot appear in the second column. We then

remove both row and column 2, and invoke the induction hypothesis for n = n′.
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We then get a more general variant of Theorem 5.20.

Theorem 5.25. Let S and T be two algebraic theories. If there are terms:

n `S s and m `T t,

such that:

(S4) s is idempotent:

{a} ` s[a/xi] =S a.

(S5) For all terms s′ ∈ S, and any variable a:

Γ ` a =S s
′ ⇒ {a} ` s′.

(S6) For all terms s′ ∈ S:

Γ ` s =S s
′ ⇒ ¬

(∨
xi∈Γ

{xi} ` s′
)
.

(T4) t is stable under a fixed-point free permutation σ:

m ` t =T t[σ(x)/x].

(T5) t is idempotent:

{a} ` t[a/xi] =T a.

(T6) For all terms t′ ∈ T:

Γ ` t =T t
′ ⇒ m ` t′.

Then there is no composite theory of T after S.

Remark 5.26. The required properties are generalisations of the binary conditions in

Theorem 5.20. Most are straightforward, but axiom (T4), the analogue of binary

commutativity, is perhaps slightly surprising. Here we only require stability under a

single fixed-point free permutation.

Proof. Assume by way of a contradiction that a composite theory U of T after S
exists. Let aji denote distinct variables, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. We consider

the term

s(t(a1
1, . . . , a

1
m), . . . , t(an1 , . . . , a

n
m)).
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Then as U is composite, the separation axiom of composite theories tells us that there

exist X ` t′ and Γ ` s′x for each x ∈ X such that:

s(t(a1
1, . . . , a

1
m), . . . , t(an1 , . . . , a

n
m)) =U t

′[s′x/x].

We use the same approach as in the proof of Theorem 5.20, using substitutions

to bound the variables that can appear in each of the s′x. Define substitution f1 as

follows:

f1(aji ) = a1
i .

We then have:

s(t(a1
1, . . . , a

1
m), . . . , t(a1

1, . . . , a
1
m)) =U t

′[s′x[f1]/x].

By assumption (S4), idempotence of s:

t(a1
1, . . . , a

1
m) =U t

′[s′x[f1]/x].

We have two separated terms that are equal to each other, so essential uniqueness

tells us that there are substitutions g1 and g2 such that:

t[g1] =T t
′[g2] (Proposition 3.4, 3a)

g1(a1
i ) 6= g1(a1

j)(i 6= j) (Proposition 3.4, 3b)

g1(a1
i ) = g2(x)⇔ a1

i =S s
′
x[f1], (Proposition 3.4, 3d)

and (T6) gives us that:

∀x ∃i : a1
i =S s

′
x[f1].

Then by assumption (S5):

∀x ∃i : {a1
i } ` s′x[f1].

So our first approximation of the variables appearing in s′x is:

∀x ∃i : {a1
i , . . . , a

n
i } ` s′x. (5.7)

Now we define a family of substitutions for 2 ≤ k ≤ n as follows:

fk(a
j
i ) =

{
akσ(i) if j = k

aki otherwise.

If we follow a similar argument as before, using essential uniqueness, (T6), (S5), and

also exploiting assumption (T4), we conclude that:

∀x, k ∃ik : {akik} ` s
′
x[fk].
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And so:

∀x, k ∃ik : {ajσ−1(ik) | j = k} ∪ {ajik | j 6= k} ` s′x. (5.8)

Then we note that by Lemma 5.24, conditions (5.7) and (5.8):

∀x ∃i, j : {aji} ` s′x. (5.9)

This provides an upper bound on the number of variables appearing in the s′x, just like

the first two substitutions did in the proof of Theorem 5.20. To finish the argument,

we define another substitution:

fn+1(aji ) = aj1.

Applying this substitution:

s(t(a1
1, . . . , a

1
1), . . . , t(an1 , . . . , a

n
1 )) =U t

′[s′x[fn+1]/x].

Using assumption (T5):

s(a1
1, . . . , a

n
1 ) =U t

′[s′x[fn+1]/x].

By essential uniqueness and consistency:

∃x0 : s(a1
1, . . . , a

n
1 ) =S s

′
x0

[fn+1].

Then by assumption (S6), s′x0 must contain at least two variables, but this contradicts

conclusion (5.9), and so the assumed composite theory cannot exist.

It is clear that the simpler Theorem 5.20 is a special case of Theorem 5.25. Be-

sides providing greater generality, the main point of Theorem 5.25 is that it clearly

demonstrates that there is nothing special about binary terms. This further clarifies

our understanding of what abstract properties make the original counterexample of

Plotkin work.

5.3.3 Regarding Idempotency

All theorems so far rely heavily on idempotent terms in both theories. The main

advantage idempotent terms provide for our proofs is that they can be reduced to a

variable in a controlled way. Idempotency is, however, not the only algebraic property

with this effect. Compare idempotency:

x ∗ x = x
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to unitality:

x ∗ 1 = x.

Both idempotency and unitality have x as the only variable appearing on either side of

the equation, and both equations reduce a more complicated term to a single variable.

In Section 5.2 we used a property that was slightly more general, namely: “term

s has a substitution f such that for any variable x ∈ var(s), s[f(x′)/x′ 6= x] = x”.

We will use this generalisation of idempotency and unitality once more, leading to

Theorem 5.28. The proof technique used for Theorem 5.20 still works with this more

general assumption, although extra care needs to be taken when substituting a T-

term into an S-term, as this could turn a previously separated term into a term that

is no longer separated. As in the previous proofs, we need extra assumptions such as

commutativity to make the proof go through. Notice that we only generalise one of

the two idempotent terms. For the other term, the current proof method requires the

more specific properties of idempotency.

Remark 5.27. In Theorem 5.28 below we state and prove the theorem for binary

terms. This is to make it easier to see where and how the more general assumption

replaces the assumption of idempotency in the proof. By copying the strategy from

Theorem 5.25, however, it is straightforward to generalise Theorem 5.28 to the case

where s is an n-ary term and t and m-ary term. The more general proof can be found

in the appendix, Theorem B.1.

Theorem 5.28. Let S and T be two algebraic theories. If there are terms:

2 `S s and 2 `T t,

such that:

(S1) s is idempotent:

{a} ` s(a, a) =S a.

(S2) For all terms s′ ∈ S, and each variable a:

Γ ` a =S s
′ ⇒ {a} ` s′.

(S3) For all terms s′ ∈ S:

Γ ` s(a, b) =S s
′ ⇒ ¬({a} ` s′ ∨ {b} ` s′).
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(T1) t is commutative:

{a, b} ` t(a, b) =T t(b, a).

(T2) ′ t has a substitution ft : var(t)→ T such that:

Γ ` t(a, ft(b)) =T a.

(T3) For all terms t′ ∈ T:

Γ ` t(a, b) =T t
′ ⇒ {a, b} ` t′.

Then there is no composite theory of T after S.

Proof. Assume by way of a contradiction that a composite theory U of T after S
exists. Then as U is composite, the separation axiom tells us that there exist X ` t′

and Γ ` s′x for each x ∈ X such that:

s(t(a, b), t(c, d)) =U t
′[s′x/x]. (5.10)

We make the following substitution of variables:

f1(a) = a

f1(b) = b

f1(c) = a

f1(d) = b

This yields:

s(t(a, b), t(a, b)) =U t
′[s′x[f1]/x]

⇔ { s is idempotent }

t(a, b) =U t
′[s′x[f1]/x].

By essential uniqueness and assumption (T3) , we conclude that for all x:

s′x[f1] =S a or s′x[f1] =S b. (5.11)

So, using assumption (S2):

{a, c} ` s′x or {b, d} ` s′x. (5.12)
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We make a second substitution:

f2(a) = a

f2(b) = b

f2(c) = b

f2(d) = a

This yields:

s(t(a, b), t(b, a)) =U t
′[s′x[f2]/x]

⇔ { t is commutative }

s(t(a, b), t(a, b)) =U t
′[s′x[f2]/x]

⇔ { s is idempotent }

t(a, b) =U t
′[s′x[f2]/x].

By essential uniqueness and assumption (T3) , we conclude that for all x:

s′x[f2] =S a or s′x[f2] =S b.

So, using assumption (S2):

{a, d} ` s′x or {b, c} ` s′x. (5.13)

Taking Equations (5.12) and (5.13) together, we conclude for all x, s′x can only contain

a single variable:

{a} ` s′x ∨ {b} ` s′x ∨ {c} ` s′x ∨ {d} ` s′x.

This implies that for each x, s′x is equal to a variable:

� If {a} ` s′x, then s′x[f1] = s′x. From Equation 5.11 we know that s′x[f1] =S a or

s′x[f1] =S b. And so also s′x =S a or s′x =S b.

� If {b} ` s′x, then also s′x[f1] = s′x, and so again s′x =S a or s′x =S b.

� If {c} ` s′x, then s′x[f1][c/a, d/b] = s′x. From Equation 5.11 we know that

s′x[f1][c/a, d/b] =S c or s′x[f1][c/a, d/b] =S d. And so also s′x =S c or s′x =S d.

� If {d} ` s′x, then also s′x[f1][c/a, d/b] = s′x, and so again s′x =S c or s′x =S d.
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We make a final substitution, using the substitution ft from property (T2) ′:

f3(a) = a

f3(b) = ft(b)

f3(c) = c

f3(d) = ft(d)

This yields:

s(t(a, ft(b)), t(c, ft(d))) =U t
′[s′x[f3]/x]

⇒ { property (T2) ′ }

s(a, c) =U t
′[s′x[f3]/x]

⇒ { clarifying that s(a, c) is a separated term }

y[s(a, c)/y] =U t
′[s′x[f3]/x].

Notice that the term t′[s′x[f3]/x] is still separated: since every s′x is just a variable,

the substitution f3 does not break separation, even though it might insert a T term.

We apply essential uniqueness: there are substitutions g1 : {y} → Z, g2 : X → Z such

that:

y[g1] =T t
′[g2]

g1(y) = g2(x)⇔ s(a, c) =S s
′
x.

By consistency of T, we know that there is at least one x such that g1(y) = g2(x). And

hence there is at least one s′x such that s′x =S s(a, c). But this contradicts assumption

(S3), since for all x, s′x is equal to a variable. We conclude that no composite theory

of T after S can exist.

Theorem 5.28 precludes even more distributive laws:

Example 5.29 (Multiset and Powerset Monad: Filling in the Gap). The theory of

commutative monoids, presenting the multiset monad, does not have an idempotent

term. Therefore, it has so far been unaffected by our no-go theorems. It does,

however, have a unital term, bringing it in scope of Theorem 5.28. From Manes and

Mulry [43, Theorem 4.3.4] we know that there are distributive laws M ◦M ⇒M ◦M
and M ◦P ⇒ P ◦M , where M is the multiset monad and P the powerset monad. We

already know that the powerset monad does not distribute over itself, which leaves

the combination P ◦M ⇒ M ◦ P . Theorem 5.28 fills this gap, showing there is no

distributive law of that type.

78



M P
M X X
P × ×

5.3.4 Concerning Commutativity

In Theorems 5.20 and 5.28 we require the special term t to be commutative in order

to establish that no composite theory exists. In Theorem 5.25 this commutativity was

generalised to the weaker requirement of stability under the action of a fixed-point

free permutation. This raises the question of whether commutativity-like axioms

are needed in this type of proof at all. In fact, this is not the case, and a similar

no-go theorem can be established under modified assumptions that make no use of

commutativity.

Theorem 5.30. Let S and T be two algebraic theories. If there are terms:

2 `S s and 2 `T t,

such that axioms (S1), (S2), (S3), (T2), and (T3) hold, and:

(T7) For all terms t′ ∈ T, and each variable a:

Γ ` a =T t
′ ⇒ {a} ` t′.

(T8) For all terms t′ ∈ T:

Γ ` t(a, b) =T t
′ ⇒ ¬(∅ ` t′).

Then there is no composite theory of T after S.

Remark 5.31. Axiom (T7) is the same as axiom (S2), but now we require it to hold

for T as well as S. Axiom (T8) states that the term t(a, b) is not equal to a constant

in T.

Proof. Assume by way of a contradiction that a composite theory U of T after S
exists. Then as U is composite, the separation axiom tells us that there exist X ` t′

and Γ ` s′x for each variable x ∈ var(t′) such that:

s(t(a, b), t(c, d)) =U t
′[s′x/x]. (5.14)

As in previous proofs, we use various substitutions to learn more about the terms

t′ and all s′x. The first substitution reduces the left hand side of Equation (5.14)

79



to a term involving just t(a, b). This allows us to use essential uniqueness to get

information about s′x. Define substitution f1 as follows:

f1(a) = a

f1(b) = b

f1(c) = a

f1(d) = b

Then from Equation (5.14) we conclude:

s(t(a, b), t(c, d)) =U t
′[s′x/x]

⇒ { axiom of substitution }

s(t(a, b)[f1], t(c, d)[f1]) =U t
′[s′x[f1]/x]

⇒ { applying the substitution on the left hand side }

s(t(a, b), t(a, b)) =U t
′[s′x[f1]/x]

⇒ { Assumption (S1) : s is idempotent }

t(a, b) =U t
′[s′x[f1]/x].

We now have two separated terms that are equal to each other, so by essential unique-

ness, there are functions g1 : {a, b} → Z and g2 : X → Z such that:

t[g1] =T t
′[g2], (5.15)

and, for all x ∈ var(t′):

g1(a) = g2(x)⇔ a =S s
′
x[f1]

g1(b) = g2(x)⇔ b =S s
′
x[f1].

By assumption (T3), we must have g2(x) = g1(a) or g2(x) = g1(b), which means:

a =S s
′
x[f1] or b =S s

′
x[f1].

Then using assumption (S2), for all s′x:

{a, c} ` s′x or {b, d} ` s′x. (5.16)

We can now split the set of variables var(t′) into two disjoint subsets:

X1 = {x | {a, c} ` s′x} (5.17)

X2 = {x | {b, d} ` s′x}. (5.18)
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The aim of the rest of the proof will be to show that var(t′) = ∅, which will give a

contradiction with assumption (T8). For this, we will need some more substitutions.

Define a second partial function f2 as follows:

f2(a) = a

f2(b) = a

f2(c) = b

f2(d) = b

Applying this substitution to Equation (5.14):

s(t(a, b), t(c, d)) =U t
′[s′x/x]

⇒ { axiom of substitution }

s(t(a, b)[f2], t(c, d)[f2]) =U t
′[s′x[f2]/x]

⇒ { applying the substitution on the left hand side }

s(t(a, a), t(b, b)) =U t
′[s′x[f2]/x]

⇒ { Assumption (T2) : t is idempotent }

s(a, b) =U t
′[s′x[f2]/x].

This is the same as:

y[s(a, b)/y] =U t
′[s′x[f2]/x].

Again we have two separated terms that are equal, allowing us to use essential unique-

ness. We conclude that there are functions g3 : {y} → Z and g4 : X → Z such that:

y[g3] =T t
′[g4],

and:

g3(y) = g4(x)⇔ s(a, b) =S s
′
x[f2].

By assumption (T7):

{g3(y)} ` t′[g4].

So for all x ∈ var(t′):

s′x[f2] =S s(a, b). (5.19)

That is, under substitution f2, all the s′x are equal to s(a, b). The next step is designed

to negate the effect of substitution f2, and hence fully understand each s′x. We know

from Equation (5.16) that the variables appearing in s′x are different depending on
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whether x ∈ X1 or x ∈ X2, and we therefore need to treat those cases separately.

Starting with x ∈ X1, consider the partial function f3:

f3(a) = a

f3(b) = c

f3(c) = c

f3(d) = d

This substitution will act as an ‘inverse’ for f2, as will become clear in the following

argument. Combining Equations (5.16) and (5.19):

s′x[f2][f3]

= { writing out the substitutions }

s′x[a/a, a/b, b/c, b/d][a/a, c/b, c/c, d/d]

= { ignoring the identity substitutions }

s′x[a/b, b/c, b/d][c/b]

= { x ∈ X1 so {a, c} ` s′x }

s′x[b/c][c/b]

= { the second substitution is the inverse of the first }

s′x.

Since s′x[f2] =S s(a, b) by Equation (5.19), we conclude for all x ∈ X1:

s′x[f2] =S s(a, b)

⇒ { axiom of substitution }

s′x[f2][f3] =S s(a, b)[f3]

⇒ { by the above: s′x[f2][f3] = s′x }

s′x =S s(a, b)[f3]

⇒ { applying f3 }

s′x =S s(a, c). (5.20)

So for x ∈ X1, we know that s′x =S s(a, c). A similar line of reasoning can be followed

for x ∈ X2. To negate substitution f2 for these s′x, we need the following substitution:
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f4(a) = b

f4(b) = d

f4(c) = c

f4(d) = d

The rest of the argument is the same, leading to the conclusion that for all x ∈ X2,

s′x =S s(b, d). We now have all the information about the s′x that we need. We start

working towards a contradiction with yet another substitution. This time, it is a

substitution of terms for variables:

f5(a) = t(a, b)

f5(b) = t(a, b)

f5(c) = t(a, a)

f5(d) = t(b, b)

These terms are chosen in such a way that the left hand side of Equation (5.14) reduces

to t(a, b) after substitution with f5, so that we can use essential uniqueness. On the

right hand side, the substitution creates S-terms with T-terms in them. Separating

these terms into T-terms of S-terms will yield new information, and eventually the

contradiction.

So, starting from Equation (5.14):

s(t(a, b), t(c, d)) =U t
′[s′x/x]

⇒ { axiom of substitution }

s(t(a, b)[f5], t(c, d)[f5]) =U t
′[s′x[f5]/x]

⇒ { applying the substitution on the left hand side }

s(t(t(a, b), t(a, b)), t(t(a, a), t(b, b)) =U t
′[s′x[f5]/x]

⇒ { t is idempotent }

s(t(a, b), t(a, b)) =U t
′[s′x[f5]/x]

⇒ { s is idempotent }

t(a, b) =U t
′[s′x[f5]/x]. (5.21)

Before we can apply essential uniqueness to Equation (5.21), we need to separate the

right hand side of this equation. Remember from Equation (5.20) that s′x =S s(a, c)
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or s′x =S s(b, d), depending on whether x ∈ X1 or x ∈ X2. So, for x ∈ X1:

s′x =S s(a, c)

⇒ { axiom of substitution }

s′x[f5] =U s(a, c)[f5]

⇒ { applying the substitution on the right hand side }

s′x[f5] =U s(t(a, b), t(a, a))

⇒ { substitution: a/c, a/d }

s′x[f5] =U s(t(a, b), t(c, d)[a/c, a/d])

⇒ { Equation (5.14) }

s′x[f5] =U t
′[s′y[a/c, a/d]/y],

where we know from Equation (5.20) that for y ∈ X1, s′y =S s(a, c) and for y ∈ X2,

s′y =S s(b, d). Similarly, for x ∈ X2:

s′x =S s(b, d)

⇒ { axiom of substitution }

s′x[f5] =U s(b, d)[f5]

⇒ { applying the substitution on the right hand side }

s′x[f5] =U s(t(a, b), t(b, b))

⇒ { substitution: b/c, b/d }

s′x[f5] =U s(t(a, b), t(c, d)[b/c, b/d])

⇒ { Equation (5.14) }

s′x[f5] =U t
′[s′y[b/c, b/d]/y],

where we know from Equation (5.20) that for y ∈ X1, s′y =S s(a, c) and for y ∈ X2,

s′y =S s(b, d). And so, continuing from Equation (5.21):

t(a, b) =U t
′[s′x[f5]/x]

⇒ t(a, b) =U t
′[t′[s′y[a/c, a/d]/y]/x ∈ X1,

t′[s′y[b/c, b/d]/y]/x ∈ X2],

where s′y =S s(a, c) for y ∈ X1 and s′y =S s(b, d) for y ∈ X2. We can now apply

essential uniqueness, and use property (T3) to conclude that both:

a =S s
′
y[a/c, a/d] or b =S s

′
y[a/c, a/d] (5.22)

a =S s
′
y[b/c, b/d] or b =S s

′
y[b/c, b/d]. (5.23)
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For y ∈ X1, however:

s′y[b/c, b/d] =S s(a, c)[b/c, b/d]

= s(a, b).

So, to satisfy equation (5.23), we conclude that s(a, b) =S a or s(a, b) =S b. By

property (S2), this means that {a} ` s(a, b) or {b} ` s(a, b). This contradicts property

(S3). And so we must conclude that X1 = ∅. Similarly, for y ∈ X2:

s′y[a/c, a/d] =S s(b, d)[a/c, a/d]

= s(b, a).

In order to satisfy equation 5.22, we must have s(b, a) =S a or s(b, a) =S b. By

property (S2), this means that {a} ` s(b, a) or {b} ` s(b, a), which contradicts

property (S3). And so we must also conclude that X2 = ∅. Therefore:

var(t′) = X1 ∪X2

= ∅ ∪ ∅

= ∅.

However, from Equation (5.15) we know: t[g1] =T t
′[g2], and from property (T8) we

know that:

¬(∅ ` t′[g2]).

So, var(t′) cannot be empty. Contradiction! Hence no composite theory of T after S
can exist.

Example 5.32. If we consider the algebraic theory of an idempotent binary opera-

tion, Theorem 5.30 shows that the induced monad cannot distribute over itself. This

remains true if we add either units or associativity, showing various non-commutative

variants of non-determinism cannot be distributed over themselves.

Similarly, if we denote any of these monads by T , there is no distributive law D ◦
T ⇒ T ◦D, where D is the distribution monad.

Non-Example 5.33 (Reader Monad). The presentation of the binary reader monad

given in Example 2.32 satisfies:

x = (x ∗ y) ∗ (z ∗ x).

However, this theory has no term t satisfying both axioms (T2) and (T3). So as

expected, we cannot apply Theorem 5.30 to the binary reader monad.
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5.4 No-Go Theorems Based on Units

The next and last class of theorems we introduce forms again a set of generalisations

of a specific counterexample, this time showing that there is no distributive law for

the list monad over itself. However, we will not prove this counterexample separately

as we did in previous sections, because its proof is as long and as complicated as its

generalisations. So instead, we advise the reader to keep the list monad in mind when

reading the theorems and proofs of this section for the first time.

The list monad is quite similar to the multiset monad, and we observed in Exam-

ple 2.14 that the “times over plus” law of Equation (2.1) induces a distributive law

for the multiset monad over itself. If we assume this also yields a distributive law for

the list monad over itself, then from one of the multiplication axioms:

λ([[a, b], [c, d]]) = [[a, c], [a, d], [b, c], [b, d]],

whilst from the other:

λ([[a, b], [c, d]]) = [[a, c], [b, c], [a, d], [b, d]].

These two statements are incompatible, so the list monad cannot distribute over itself

in this way. However, not all distributive laws resemble the distributivity of times

over plus, so from this observation alone we cannot yet rule out the possibility of

a distributive law for the list monad over itself. In fact, Manes and Mulry found

three further distributive laws for the non-empty list monad over itself [43, Example

5.1.9], [44, Example 4.10], see also Example 2.15. However, all of these fail to extend

to distributive laws for the full list monad over itself.

The theorems in this section first prove that if there is a distributive law for the

list monad over itself, then it has to be the times over plus law. This is captured in

Theorem 5.37 and the lemmas leading up to this theorem. Proposition 5.1 is once

again a key ingredient in the proofs for these. The observation above then shows

that this distributive law is impossible, and hence no distributive law exists for the

list monad over itself. The general statement and precise argument are presented in

Theorem 5.42.

The algebraic equation central to this section is unitality. In addition, the abides

equation (above-besides, [6]) will be important:

(a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d). (5.24)

We will be looking at theories in which this equation does not hold. This is made

precise in property (T5)b below.
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Throughout this section, we will consider two algebraic theories S and T. For S
we identify the following properties:

(S1) For any two terms s′, s′′:

∅ ` s′ ∧ Γ ` s′ =S s
′′ ⇒ ∅ ` s′′.

(S2) For any term s′ and variable x:

Γ ` s′ =S x ⇒ {x} ` s′.

(S3) S has an n-ary term s (n ≥ 1), for which there is a substitution f : var(s)→ S
such that for any x ∈ var(s):

Γ ` s[f(y)/y 6= x] =S x.

(S4) For any n-ary term s′ (n ≥ 1), there is a substitution f : var(s′)→ S such that

for any x ∈ var(s′):

Γ ` s′[f(y)/y 6= x] =S x.

(S5) S has a binary term s such that:

(a) es is a unit for s:

{x} ` s(x, es) =S x =S s(es, x).

(b) s is idempotent:

{x} ` s(x, x) =S x.

And for T:

(T1) For all terms X ` t′, constant eT, and any variable substitution f : X → Y :

Y ` t′[f ] =T eT ⇒ X ` t′ =T eT.

(T2) For any two terms t′, t′′:

∅ ` t′ ∧ Γ ` t′ =T t
′′ ⇒ ∅ ` t′′.

(T3) For any term t′ and variable x:

Γ ` t′ =T x ⇒ {x} ` t′.
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(T4) T has a constant eT.

(T5) T has a binary term t such that:

(a) et is a unit for t:

{x} ` t(x, et) =T x =T t(et, x).

(b) The abides equation does not hold in T:

Γ ` t(t(x, y), t(z, w)) =T t(t(x, z), t(y, w))

⇒ 3 ` t(t(x, y), t(z, w)).

Remark 5.34 (Interpretation of Axioms). The properties (S1), (S2), (T2), (T3) are

all constraints on the variables appearing in terms. (S1) and (T2) read: “Any term

provably equal to a constant cannot have any variables itself”. This is, for example,

not the case for any theory involving multiplicative zeroes. In the theory of rings,

0 ∗ x = 0, and since the term 0 ∗ x has a variable, it does not satisfy (S1)/(T2).

(S2) and (T3) read: “Any term provably equal to a variable only contains that

single variable”. Idempotent terms are examples of terms that equal a variable,

satisfying this condition. In theories with absorption axioms, such as the equation

x ∨ (x ∧ y) = x from bounded lattices, properties (S2)/(T3) do not hold.

Properties (S3) and (S4) are generalisations of idempotence and unital equations.

They require that terms can be reduced to variables via a suitable substitution. Idem-

potence and unitality are both instances of this. Idempotence requires the substitu-

tion to change all variables to x: s(x, y)[x/x, x/y] = s(x, x) = x, while unitality uses

a substitution of a constant for all but one variable: s(x, y)[es/y] = s(x, es) = x. The

difference between (S3) and (S4) is the quantifier.

Property (T1) is a weaker version of (T2), focussing on the provability of an equal-

ity between a term and a constant, rather than restricting the variables appearing

in that term. It reads: “If a variable substitution of term t′ is provably equal to a

constant, then t′ is already provably equal to that constant.” The usefulness of this

property compared to (T2) is that is allows for equations such as 0 ∗ x = 0, which

were forbidden by (T2).

Notice that property (T2) implies (T1): if t′[f ] = eT then (T2) requires t′[f ] to

contain no variables. Since f is a variable substitution, this means t′ already had no

variables, and hence t′ = t′[f ] = eT, so (T1) is satisfied. This justifies our claim that

one is a weaker version of the other.

Also notice that (S5)a and (S5)b both imply (S3).
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Example 5.35. If a theory S has a presentation in which all operations are either

idempotent or have a unit, then an easy induction shows that S will satisfy (S4).

More precisely, if for every s′ ∈ ΣS, either:

� s′ is idempotent, that is: s′[x/y 6= x] =S x, or:

� s′ has a unit es′ : s
′[es′/y 6= x] =S x,

then S satisfies (S4).

Example 5.36 (Algebraic Properties of Key Monads).

� The list monad, presented by the theory of monoids, satisfies (S1) and (S2).

The monoid multiplication satisfies (S5)a and hence also (S3) and even (S4),

but the theory of monoids does not satisfy (S5)b. The equation (x∗y)∗(z∗w) =

(x ∗ z) ∗ (y ∗ w) holds in the theory of monoids if and only if y = z, and so it

satisfies all of (T1), (T2), (T3), (T4), (T5)a, and (T5)b.

� The powerset monad is presented by the theory of join semilattices, which

satisfies (S5)b in addition to (S1), (S2), (S3), (S4), and (S5)a. However, this

theory does not have property (T5)b as the join is commutative and associative

and so satisfies the abides equation (5.24). Properties (T1), (T2), (T3), (T4),

and (T5)a still hold.

� The exception monad corresponds to an algebraic theory with a signature con-

taining constants for each exception, and no axioms. It satisfies (S1), (S2),

and (S4). It does not satisfy (S3), (S5)a, and (S5)b as there are no binary terms.

Similarly, it satisfies (T1), (T2), (T3), and (T4), but not (T5)a or (T5)b.

5.4.1 The One Distributive Law, If It Exists

Needing just the properties (S3), (T1), and (T4), Proposition 5.1 already greatly

restricts the possibilities for a distributive law between monads S and T . We will

now see that if both S and T have binary terms with units, then in a composite theory,

the binary of S distributes over the binary of T like times over plus in Equation (2.1).

For the monads corresponding to these theories, this means that there is only one

candidate distributive law to consider.
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Theorem 5.37 (Times over Plus Theorem). Let S and T be two algebraic theories,

satisfying (S1), (S2), (S4) and (T2), (T3), (T4) respectively. Assume furthermore

that there are terms:

2 `S s and 2 `T t,

satisfying (S5)a and (T5)a respectively. Finally, let U be a composite theory of T
after S. Then s distributes over t:

s(t(y1, y2), x0) =U t(s(y1, x0), s(y2, x0)) (5.25)

s(x0, t(y1, y2)) =U t(s(x0, y1), s(x0, y2)). (5.26)

We derive this distributional behaviour in three stages, relying as always on sep-

aration and essential uniqueness in a composite theory. Suppose that t′[s′x/x] is a

separated term such that s(t(y1, y2), x0) =U t′[s′x/x], then we derive the following

about t′[s′x/x]:

1. First we prove which variables appear in the terms s′x of the separated term:

var(s′x) = {y1, x0} or var(s′x) = {y2, x0}.

2. Then, we prove that each of the s′x is either equal to s(y1, x0) or to s(y2, x0).

3. Finally, we derive that the separated term t′[s′x/x] has to be equal to t(s(y1, x0), s(y2, x0)).

The proofs of these three stages are quite long. They are separated into lemmas to

help keep track of the main line of reasoning.

Lemma 5.38. Let S and T be two algebraic theories satisfying (S1), (S2), (S4), and

(T2), (T4) respectively. Assume furthermore that there are terms:

2 `S s and 2 `T t,

satisfying (S5)a and (T5)a respectively. Finally, let U be a composite theory of T
after S. Then there is a T-term X ` t′ and there is a family of S-terms s′x, x ∈ X
such that:

s(t(y1, y2), x0) =U t
′[s′x/x],

and for each x ∈ var(t′):

var(s′x) = {y1, x0} or var(s′x) = {y2, x0}.

Moreover, there is an x such that var(s′x) = {y1, x0} and an x such that var(s′x) =

{y2, x0}.
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Similarly, there is a T-term X ′ ` t′′ and there is a family of S-terms s′′x′ , x
′ ∈ X ′

such that:

s(x0, t(y1, y2)) =U t
′′[s′′x′/x

′],

and for each x′ ∈ var(t′′):

var(s′′x′) = {y1, x0} or var(s′′x′) = {y2, x0}.

Furthermore, there is an x′ such that var(s′′x′) = {y1, x0} and an x′ such that var(s′′x′) =

{y2, x0}.

Proof. We only explicitly prove the statements for s(t(y1, y2), x0). The proof for

s(x0, t(y1, y2)) is similar, making the same substitutions and arguments, just having

the variable x0 on the left instead of on the right in the term s, and therefore using

the left rather than the right unital equation to arrive at Equation(5.28).

From the fact that U is a composite of the theories S and T, we know that every

term in U is equal to a separated term. And so, there is a X ` t′ and there is a family

s′x, x ∈ X such that:

s(t(y1, y2), x0) =U t
′[s′x/x]. (5.27)

We substitute x0 7→ es in Equation (5.27). This yields:

s(t(y1, y2), es) =U t
′[s′x[es/x0]/x]

⇒ { es is the unit of s }

t(y1, y2) =U t
′[s′x[es/x0]/x]. (5.28)

By the essential uniqueness property, we conclude that there are functions:

f : {y1, y2} → Z, f ′ : X → Z,

such that:

t(y1, y2)[f ] =T t
′[f ′]. (5.29)

Furthermore, whenever f(y1) = f ′(x) or f(y2) = f ′(x), we have respectively:

y1 =S s
′
x[es/x0] (5.30)

y2 =S s
′
x[es/x0]. (5.31)

Since we assume variables y1 and y2 to be distinct, essential uniqueness also gives us

f(y1) 6= f(y2).
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We analyse Equation (5.29) more closely, comparing the variables appearing in

both t(y1, y2)[f ] and t′[f ′]. First, we show that {f ′(x) |x ∈ var(t′)} ⊆ {f(y1), f(y2)}.
This follows from the following equalities:

et

=T { et is the unit for t }

t(et, et)

=T { substitution }

t(f(y1), f(y2))[et/f(y1), et/f(y2)]

=T { Equation (5.29) }

t′[f ′][et/f(y1), et/f(y2)].

So: et =T t
′[f ′][et/f(y1), et/f(y2)]. Then by assumption (T2):

var(t′[f ′][et/f(y1), et/f(y2)]) = ∅.

Therefore, t′[f ′] can contain no other variables than f(y1) and f(y2). That is:

{f ′(x) |x ∈ var(t′)} ⊆ {f(y1), f(y2)}. (5.32)

Next, we show that both f(y1) and f(y2) need to appear in t′[f ′]. Suppose that f(y1)

does not appear in t′[f ′]. Then from Equation (5.32) we know that for all x ∈ var(t′),

f ′(x) = f(y2). Then:

f(y1)

=T { et is the unit for t }

t(f(y1), et)

=T { substitution }

t(f(y1), f(y2))[et/f(y2)]

=T { Equation (5.29) }

t′[f ′][et/f(y2)]

=T { for all x, f ′(x) = f(y2) }

t′[et/x].

So: f(y1) =T t
′[et/x], but this contradicts assumption (T2), because var(t′[et/x]) =

∅, since every free variable in t′ has been substituted with the constant et, and

var(f(y1)) = {f(y1)} 6= ∅.
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So f(y1) has to appear in t′[f ′]. A similar line of reasoning yields the same

conclusion for f(y2). Therefore, there is an x such that f ′(x) = f(y1) and there is an

x such that f ′(x) = f(y2). In summary, if we define:

X1 = {x ∈ var(t′) | f ′(x) = f(y1)}

X2 = {x ∈ var(t′) | f ′(x) = f(y2)},

then we know that neither X1 nor X2 is empty and that X1 ∪X2 = var(t′).

We finally consider Equations (5.30) and (5.31) to reach a conclusion about the

variables appearing in the terms s′x. Since for all x ∈ X1 : f ′(x) = f(y1), we have by

Equation (5.30) that s′x[es/x0] =S y1. Similarly, for all x ∈ X2, s′x[es/x0] =S y2. By

assumption (S2), we conclude that:

∀x ∈ X1 : {x0, y1} ` s′x (5.33)

∀x ∈ X2 : {x0, y2} ` s′x. (5.34)

In addition, since for any x ∈ X1, y1 =S s′x[es/x0], we would have y1 equal to a

constant if y1 would not appear in s′x, contradicting assumption (S1). Similarly for

y2 and s′x, x ∈ X2. And so:

∀x ∈ X1 : y1 ∈ var(s′x) (5.35)

∀x ∈ X2 : y2 ∈ var(s′x). (5.36)

To prove that x0 ∈ var(s′x) for all x ∈ var(t′), we substitute x0 7→ et in Equa-

tion (5.27):

s(t(y1, y2), et) =U t
′[s′x[et/x0]/x].

By Proposition 5.1, s(t(y1, y2), et) =U et. Therefore we must have that also:

t′[s′x[et/x0]/x] =U et. (5.37)

The left hand side of this equation might not be separated, since we substitute a

T-term inside S-terms. We analyse the terms s′x[et/x0] further to separate them into

T-terms of S-terms. There are two cases: either x0 ∈ var(s′x) or not.

� If x0 ∈ var(s′x), then by property (S4): s′x[et/x0] = et, which is a separated

term.

� If x0 /∈ var(s′x), then s′x[et/x0] = s′x, which is also a separated term.
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We conclude that t′[s′x[et/x0]/x] is separated. It is our goal to show that we must

have x0 appearing in each s′x. To this end, define:

X3 = {x ∈ var(t′) | x0 ∈ s′x}.

We will show that we must have X3 = var(t′). We define:

t′′ = t′[et/x ∈ X3].

Then:

t′′[s′x/x]

=U { definition of t′′ }

t′[et/x ∈ X3, s
′
x/x /∈ X3]

=U { for x ∈ X3 : s′x[et/x0] = et

and for x /∈ X3 : s′x[et/x0] = s′x }

t′[s′x[et/x0]/x]

=U { Equation (5.37) }

et.

So we can apply essential uniqueness to the equation t′′[s′x/x] =U et. We conclude

that there must be a variable substitution g such that t′′[g] =T et. By property (T2)

we conclude that var(t′′[g]) = ∅ and hence also var(t′′) = ∅. Since t′′ = t′[et/x ∈ X3],

we conclude that t′ has no variables that are not in X3. In other words: X3 = var(t′),

and hence for all x ∈ var(t′), x0 ∈ var(s′x).

This, together with Equations (5.33), (5.34), (5.35) and (5.36), proves that for all

x ∈ var(t′):

var(s′x) = {y1, x0} or var(s′x) = {y2, x0}.

The fact that neither X1 nor X2 are empty means that this proves the lemma.

With the first step done, we move on to the second step:

Lemma 5.39. Let S and T be two algebraic theories satisfying (S1), (S2), (S4) and

(T2), (T3), (T4) respectively. Assume furthermore that there are terms:

2 `S s and 2 `T t,
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satisfying (S5)a and (T5)a respectively. Finally, let U be a composite theory of T
after S. Then there is a T-term X ` t′ and there is a family of S-terms s′x, x ∈ X
such that:

s(t(y1, y2), x0) =U t
′[s′x/x],

and for each x ∈ var(t′):

s′x =S s(y1, x0) or s′x =S s(y2, x0).

Moreover, there is an x such that s′x =S s(y1, x0) and an x such that s′x =S s(y2, x0).

Similarly, there is a T-term X ′ ` t′′ and there is a family of S-terms s′′x′ , x
′ ∈ X ′

such that:

s(x0, t(y1, y2)) =U t
′′[s′′x′/x

′],

and for each x′ ∈ var(t′′):

s′′x′ =S s(x0, y1) or s′′x′ =S s(x0, y2).

Moreover, there is an x′ such that s′′x′ =S s(y1, x0) and an x′ such that s′′x′ =S s(y2, x0).

Proof. Again, we only explicitly prove the statements for s(t(y1, y2), x0). The second

half of the claim follows using the same arguments.

As U is a composite theory, we know from the separation axiom that there is a

T-term X ` t′ and a family of S-terms s′x, x ∈ X such that:

s(t(y1, y2), x0) =U t
′[s′x/x].

We substitute y1 7→ et:

s(t(et, y2), x0) =U t
′[s′x[et/y1]/x]

⇒ { et is the unit of t }

s(y2, x0) =U t
′[s′x[et/y1]/x]

⇒ { showing that s(y2, x0) is a separated term }

z[s(y2, x0)/z] =U t
′[s′x[et/y1]/x]. (5.38)

To use essential uniqueness, we need two separated terms. However, t′[s′x[et/y1]/x]

is a T-term built out of S-terms with possibly a T-constant in them. So we need to

separate this term. We use Proposition 5.1 in combination with our knowledge from

Lemma 5.38 about the variables appearing in each s′x to do this. Define:

X1 = {x ∈ var(t′) | var(s′x) = {y1, x0}}

X2 = {x ∈ var(t′) | var(s′x) = {y2, x0}}.
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From Lemma 5.38 we know that neither X1 nor X2 is empty and their union contains

all variables in t′. For each x ∈ X1, we use property (S4) to apply Proposition 5.1,

which tells us s′x[et/y1] =U et. For each x ∈ X2, we know that since y1 does not

appear in s′x, we have s′x[et/y1] =U s
′
x. Therefore:

t′[s′x[et/y1]/x] =T t
′[et/x ∈ X1, s

′
x/x ∈ X2)]. (5.39)

Next, define:

t′′ = t′[et/x ∈ X1].

Then X2 `T t′′. We have:

t′′[s′x/x]

=U { definition of t′′ }

t′[et/x ∈ X1, s
′
x/x ∈ X2]

=U { Equation (5.39) }

t′[s′x[et/y1]/x]

=U { Equation (5.38) }

z[s(y2, x0)/z].

Now we can use the essential uniqueness property, and conclude that there are func-

tions f : {z} → Z, f ′ : X2 → Z such that:

z[f(z)/z] =T t
′′[f ′(x)/x]. (5.40)

Furthermore, we have:

f ′(x) = f(z)⇔ s′x =S s(y2, x0). (5.41)

From Equation (5.40) and assumption (T3) we conclude that {f(z)} ` t′′[f ′(x)/x].

And hence for all x ∈ X2, f ′(x) = f(z). So by Equation (5.41), for each x ∈ X2:

s′x =S s(y2, x0), which gives us half of the desired conclusion about each s′x, x ∈ var(t′).

A similar argument using the substitution y2 7→ et instead of y1 7→ et leads to the

conclusion that for each x ∈ X1, we have s′x =S s(y1, x0).

And finally, we prove the last step, in which we show that s distributes over t.

This yields a proof of Theorem 5.37. We restate the theorem for convenience:
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Theorem 5.37 (Times over Plus Theorem). Let S and T be two algebraic theories,

satisfying (S1), (S2), (S4) and (T2), (T3), (T4) respectively. Assume furthermore

that there are terms:

2 `S s and 2 `T t,

satisfying (S5)a and (T5)a respectively. Finally, let U be a composite theory of T
after S. Then s distributes over t:

s(t(y1, y2), x0) =U t(s(y1, x0), s(y2, x0)) (5.25)

s(x0, t(y1, y2)) =U t(s(x0, y1), s(x0, y2)). (5.26)

Proof. Again, we only explicitly prove the first statement, the proof of the second

statement is similar, using the appropriate parts of Lemmas 5.38 and 5.39.

From the separation axiom of composite theories and Lemma 5.39 we know that

there is a T-term X ` t′ and a family of S-terms s′x, x ∈ X such that either s′x =

s(y1, x0) or s′x = s(y2, x0) and:

s(t(y1, y2), x0) =U t
′[s′x/x].

Define:

X1 = {x ∈ var(t′) | s′x = s(y1, x0)}

X2 = {x ∈ var(t′) | s′x = s(y2, x0)}.

Then, using the substitution x0 7→ es, we get:

t(y1, y2)

=U { es is the unit of s }

s(t(y1, y2), es)

=U { substitution }

s(t(y1, y2), x0)[es/x0]

=U { Lemma 5.39 }

t′[s′x[es/x0]/x]

=U { s′x = s(y1, x0) or s′x = s(y2, x0)

and es is the unit of s }

t′[y1/x ∈ X1, y2/x ∈ X2].

So:

t(y1, y2) =U t
′[y1/x ∈ X1, y2/x ∈ X2]. (5.42)
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We also have:

t′[s′x/x]

=U { Lemma 5.39 }

t′[s(y1, x0)/x ∈ X1, s(y2, x0)/x ∈ X2]

=U { Substitution: term = variable[term/variable] }

t′[y1[s(y1, x0)/y1]/x ∈ X1, y2[s(y2, x0)/y2]/x ∈ X2].

So we conclude:

t′[s′x/x]

=U { by the reasoning above }

t′[y1[s(y1, x0)/y1]/x ∈ X1, y2[s(y2, x0)/y2]/x ∈ X2]

=U { Equation (5.42) }

t(y1, y2)[s(y1, x0)/y1, s(y2, x0)/y2]

=U { applying the substitution }

t(s(y1, x0), s(y2, x0)),

which proves the theorem.

In suitable cases, Theorem 5.37 reduces the search space for distributive laws to a

single possibility. From Proposition 3.7 we know that the action of distributive laws

is determined by the separated terms in the composite theory. And so:

Corollary 5.40. Let S and T be two monads presented by algebraic theories S and

T, having signatures with at least one constant and one binary operation. If for both

theories the constant acts as a unit for the binary operation and the theories further

satisfy (S1), (S2), (S4), and (T2) and (T3) respectively, then any distributive law

S◦T ⇒ T◦S distributes the binary from S over the binary from T as in Equation (2.1).

Example 5.41 (Unique Distributive Laws). Let S be any of the monads tree, list, or

multiset. Then the corresponding algebraic theory S contains only linear equations

(see Example 2.32). Let T be either the multiset or powerset monad. Since the

multiset and powerset monads are commutative monads, we know that there is a

distributive law S ◦ T ⇒ T ◦ S [43, Theorem 4.3.4]. Corollary 5.40 states that this

distributive law is unique. In particular, the distributive law for the multiset monad

over itself mentioned in Example 2.14 is unique.
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5.4.2 Lacking the Abides Property: a No-Go Theorem

With Theorem 5.37 narrowing down the possible distributive laws for two monads,

it is easier to find cases in which no distributive law can exist at all. We identify two

properties that clash with Theorem 5.37, one for T and one for S. In this section we

show that not satisfying the abides equation, property (T5)b, in combination with

Theorem 5.37 prevents the existence of a distributive law. In the next section we do

the same for idempotence, property (S5)b. Both properties are sufficiently common

to cover a broad class of monads.

Theorem 5.42 (No-Go Theorem: Lacking Abides). Let S and T be algebraic theories

satisfying the conditions of Theorem 5.37, and assume that the binary t in T promised

by (T5)a additionally satisfies (T5)b, then there does not exist a composite theory of

T after S.

Proof. Suppose there exists a composite theory U. Given Theorem 5.37, we compute

a separated term equal in U to s(t(y1, y2), t(y3, y4)):

s(t(y1, y2), t(y3, y4))

=U { Substitution }

s(t(y1, y2), x0)[t(y3, y4)/x0]

=U { Equation (5.25) from Theorem 5.37 }

t(s(y1, x0), s(y2, x0))[t(y3, y4)/x0]

=U { Substitution }

t(s(y1, t(y3, y4)), s(y2, t(y3, y4)))

=U { Equation (5.26) from Theorem 5.37 }

t(t(s(y1, y3), s(y1, y4)), t(s(y2, y3), s(y2, y4))). (5.43)

Notice that we made a choice, taking out the right t term in

s(t(y1, y2), t(y3, y4)) =U s(t(y1, y2), x0)[t(y3, y4)/x0],

rather than the left:

s(t(y1, y2), t(y3, y4)) =U s(x0, t(y3, y4))[t(y1, y2)/x0].
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The latter option yields:

s(t(y1, y2), t(y3, y4))

=U { Substitution }

s(x0, t(y3, y4))[t(y1, y2)/x0]

=U { Equation (5.26) from Theorem 5.37 }

t(s(x0, y3), s(x0, y4))[t(y1, y2)/x0]

=U { Substitution }

t(s(t(y1, y2), y3), s(t(y1, y2), y4))

=U { Equation (5.25) from Theorem 5.37 }

t(t(s(y1, y3), s(y2, y3)), t(s(y1, y4), s(y2, y4)). (5.44)

Of course, both computations are equally valid, so the terms in Equations (5.43) and

(5.44) must be equal:

t(t(s(y1, y3), s(y1, y4)), t(s(y2, y3), s(y2, y4)))

=U t(t(s(y1, y3), s(y2, y3)), t(s(y1, y4), s(y2, y4))).

Since these are two separated terms that are equal, we can apply the essential unique-

ness property, stating that there exist functions:

f : {x1, x2, x3, x4} → Z

f ′ : {x5, x6, x7, x8} → Z,

such that:

� Equality in T:

t(t(f(x1), f(x2)), t(f(x3), f(x4)))

=T t(t(f
′(x5), f ′(x6)), t(f ′(x7), f ′(x8))).

� f(xi) = f ′(xj) iff the S-terms substituted for xi and xj in Equations (5.43)

and (5.44) are equal in S.

From the second part of essential uniqueness we get that:

f(x1) = f ′(x5) f(x3) = f ′(x6)

f(x2) = f ′(x7) f(x4) = f ′(x8).
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For readability of the next argument, set:

z1 = f(x1) = f ′(x5) z3 = f(x3) = f ′(x6)

z2 = f(x2) = f ′(x7) z4 = f(x4) = f ′(x8).

Putting this in the equality in T we found under the first bullet point yields:

t(t(z1, z2), t(z3, z4)) =T t(t(z1, z3), t(z2, z4)).

And so by property (T5)b:

# var(t(t(z1, z2), t(z3, z4))) ≤ 3.

So there must be i, j such that i 6= j and zi = zj. Suppose without loss of generality

that z1 = z2. Then by essential uniqueness we must have that s(y1, y3) =S s(y1, y4).

But then we can reason:

y1

=S { es is a unit for s }

s(y1, es)

=S { substitution }

s(y1, y3)[es/y3]

=S { s(y1, y3) = s(y1, y4) }

s(y1, y4)[es/y3]

=S { substitution: no y3 in s(y1, y4) }

s(y1, y4).

We conclude that, by property (S2): {y1} ` s(y1, y4), and so we must have y4 = y1.

Since these variables are assumed to be distinct, we have a contradiction. The same

argument holds for any other i, j pair. Therefore, the existence of a composite theory

leads to a contradiction. In other words, no such composite theory exists.

Example 5.43 (Resolving an Open Question). This finally settles the question

of whether the list monad distributes over itself, posed repeatedly by Manes and

Mulry [43, 44]. The theory of monoids satisfies all the conditions required of both

theories in Theorem 5.42, and hence there is no distributive law for the list monad

over itself.

Note that a distributive law for lists was claimed by King and Wadler [33], al-

though it was subsequently shown to be incorrect by Jones and Duponcheel [31].
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Remark 5.44. Although there is no distributive law for the list monad over itself, the

functor LL does still carry a monad structure. We are very grateful to Bartek Klin

for pointing this out to us. The monad structure on LL can be described as follows:

� There is a distributive law for the list monad over the non-empty list monad

L ◦ L+ ⇒ L+ ◦ L [43].

� There is a distributive law for the resulting monad over the maybe monad

(L+L) ◦ (−)⊥ ⇒ (−)⊥ ◦ (L+L), derived from general principles [43].

� The resulting functor (−)⊥ ◦ (L+ ◦ L) is isomorphic to L ◦ L, and carries a

monad structure. Hence L ◦ L carries a monad structure, but not one that can

be derived from a distributive law L ◦ L⇒ L ◦ L.

Non-Example 5.45 (Multiset Monad). The multiset monad is closely related to

the list monad, with an algebraic theory having just one extra equation compared to

the list monad: commutativity. Because of this equation, the theory does not have

property (T5)b. As we have seen in Example 5.41, there is a unique distributive law

for the multiset monad over itself.

5.4.3 Yet Another No-Go Theorem Caused by Idempotence

In Section 5.3 we saw a no-go theorem that had an idempotent term on one side, and

a unital one on the other: Theorem 5.28. We will now see a second theorem of this

type. Adding idempotence of the binary to the assumptions for S yields yet another

no-go theorem.

Theorem 5.46 (No-Go Theorem: Idempotence and Units). Let S and T be alge-

braic theories satisfying (S1), (S2), (S4) and (T2), (T3), (T4) respectively. Assume

furthermore that there are terms:

2 `S s and 2 `T t,

satisfying (S5)a, (S5)b and (T5)a respectively. Then there exists no composite theory

of T after S.
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Proof. Suppose such a composite theory U exists. Then we have:

t(y1, y2)

=U { (S5)b: s is idempotent }

s(t(y1, y2), t(y1, y2))

=U { Substitution }

s(t(y1, y2), x0)[t(y1, y2)/x0]

=U { Equation (5.25) from Theorem 5.37 }

t(s(y1, x0), s(y2, x0))[t(y1, y2)/x0]

=U { Substitution }

t(s(y1, t(y1, y2)), s(y2, t(y1, y2)))

=U { Equation (5.26) from Theorem 5.37 }

t(t(s(y1, y1), s(y1, y2)), t(s(y2, y1), s(y2, y2)))

=U { (S5)b: s is idempotent }

t(t(y1, s(y1, y2)), t(s(y2, y1), y2)).

So from the essential uniqueness property, we may conclude that there are functions

f : {y1, y2} 7→ Z, f ′ : {y′1, y′2, y′3, y′4} 7→ Z such that:

t(f(y1), f(y2)) =T t(t(f
′(y′1), f ′(y′2)), t(f ′(y′3), f ′(y′4))),

and f(yi) = f ′(y′j) if and only if the S-terms substituted for yi and y′j in t(y1, y2) and

t(t(y1, s(y1, y2)), t(s(y2, y1), y2)) are equal. From this we immediately get:

f(y1) = f ′(y′1)

f(y2) = f ′(y′4).

We know from essential uniqueness that f(y1) 6= f(y2). We show that {f ′(y′2), f ′(y′3)} ⊆
{f(y1), f(y2)}. Since we have:

t(f(y1), f(y2)) =T t(t(f
′(y′1), f ′(y′2)), t(f ′(y′3), f ′(y′4))),
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we also have:

t(f(y1), f(y2))[et/f(y1), et/f(y2)]

=T t(t(f
′(y′1), f ′(y′2)), t(f ′(y′3), f ′(y′4)))[et/f(y1), et/f(y2)]

⇒ { Substitution, and f(y1) = f ′(y′1), f(y2) = f ′(y′4) }

t(et, et) =T t(t(et, f
′(y′2)), t(f ′(y′3), et))[et/f(y1), et/f(y2)]

⇒ { (T5)a: et is the unit of t }

et =T t(f
′(y′2), f ′(y′3))[et/f(y1), et/f(y2)].

So by (T2), var(t(f ′(y′2), f ′(y′3))[et/f(y1), et/f(y2)]) = ∅. We must have:

{f ′(y′2), f ′(y′3)} ⊆ {f(y1), f(y2)}.

But then, by the second part of the essential uniqueness property:

s(y1, y2) =S y1 or s(y1, y2) =S y2.

Both contradict (S2). Therefore, the composite theory U cannot exist.

Example 5.47 (Powerset Monad Again). The theory of join semilattices satisfies

all the axioms required of both theories in Theorem 5.46. Therefore, there is no

distributive law for the powerset monad over itself. This was already shown by Klin

and Salamanca [34] using similar methods as in Section 5.3. Theorem 5.46 gives a

second, independent proof of this fact.

Remark 5.48. Theorems 5.46 and 5.28 both require an idempotent term in theory S,

and a unital term in theory T, to preclude a composite theory of T after S. However,

these theorems are neither equivalent, nor does one imply the other. Theorem 5.28

applies only if the unital term in T is commutative, whereas Theorem 5.46 allows

this term to be non-commutative. Conversely, Theorem 5.46 requires the idempotent

term in S to be unital, where Theorem 5.28 does not have this restriction.

Non-Example 5.49 (Multiset Monad: The Sweet Spot). We come back to the

multiset monad. In Non-Example 5.45 we saw that the algebraic theory presenting

the multiset monad had one extra equation compared to the theory for the list monad:

commutativity. Because of this equation, property (T5)b did not hold, and therefore

Theorem 5.42 did not apply.

There is a similar relation between the multiset monad and the powerset monad.

Compared to the powerset monad, the theory presenting the multiset monad lacks
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just one equation: idempotence, which is exactly what property (S5)b requires. The

lack of this equation in the theory for the multiset monad therefore means that

Theorem 5.46 does not apply to multiset either. So multiset holds a sort of ‘sweet

spot’ in between the two no-go theorems, where a distributive law M ◦M ⇒M ◦M
still can and does exist.

5.5 A Final Generalisation: Stable Universal Sets

To broaden the range of applicability of the theorems presented in this chapter we

can make one more generalisation. Instead of considering the entire set of terms, we

may restrict to a special set of terms which we call a stable universal set. These sets

are defined as follows:

Definition 5.50. For an algebraic theory T, we say that a set of terms T is:

� Universal if every term is provably equal to a term in T .

� Stable if T is closed under substitution of variables for variables.

Example 5.51. Some examples of universal and stable sets:

[1] For any theory, the set of all terms is a stable universal set.

[2] For the theory of real vector spaces, every term is equal to a term in which

scaling by the zero element does not appear. Terms that do not contain the scale

by zero operation are clearly also stable under variable renaming. Therefore the

terms not containing the scale by zero operation are a stable universal set.

[3] In the theory of groups, every term is equal to a term in which no subterm

and its inverse are ‘adjacent’, so not: x ∗ x−1. This set is therefore universal.

It is not stable, as variable renaming may introduce a subterm adjacent to its

inverse: x ∗ y−1[x/y] = x ∗ x−1.

All global properties that we require in the various theorems in Chapter 5 can be

restricted to a stable universal set of terms. For example, instead of requiring: “for

any term t and variable x, Γ ` t = x implies {x} ` t”, we can ask: “for any stable

universal set of terms T , if t ∈ T then Γ ` t = x implies {x} ` t”.

We return to Example 5.22, where we used a non-standard presentation of the

distribution monad with binary operations +p with p in the open interval (0, 1) (see

Example 2.32). We can use the standard presentation of the distribution monad if

we restrict to stable universal sets.
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Example 5.52 (Powerset and Distribution Monads again). We can consider the

distribution monad to be presented by binary operations +p with p in the closed in-

terval [0, 1], and in fact this is the standard formulation. In this case, Theorem 5.20

can still be directly applied, without having to move to the more parsimonious pre-

sentation. We simply note that the terms not involving the operations +1 and +0

form a stable universal set satisfying the required axioms for Theorem 5.20.
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Chapter 6

The Boom Hierarchy: a Case
Study for Distributive Laws

We now pursue a detailed investigation of when distributive laws exist between some

natural families of monads. To do so, we shall combine the techniques developed in

earlier sections with results from the wider literature. Our objectives are to illustrate

that the absence of distributive laws is not at all unusual, to document many useful

examples, and to develop some intuitions via concrete applications.

We shall begin with the Boom hierarchy, a small family of monads considered

in the functional programming literature [47]. Later, to increase our available data

points, we will expand the original Boom hierarchy to include more exotic data struc-

tures. Similar expansions of the Boom hierarchy have been studied by Uustalu [59].

The Boom hierarchy is a simple family of four monads, providing a pleasing con-

nection between commonly used data structures and natural algebraic axioms. The

hierarchy consists of the tree, list, multiset, and powerset monads. Each of these

monads has the same signature, consisting of a constant and a binary operation. If

the only axiom is the unitality axiom, the resulting monad is the binary tree monad.

Adding associativity yields the list monad. Further adding commutativity yields the

multiset monad, and finally adding idempotence results in the finite powerset monad,

as shown in Table 6.1.

Remark 6.1. The Boom hierarchy is named after the Dutch Computer Scientist Hen-

drik Boom. The fact that ‘Boom’ also means ‘tree’ in Dutch is not entirely coinci-

dental. Allegedly, the name was coined by Peter Grogono in a meeting with Stephen

Spackman and Hendrik Boom. Spackman was a MSc student co-supervised by Gro-

gono and Boom, working on this hierarchy of data structures. When Grogono sug-

gested the name for the hierarchy, Boom’s response was “What, because it is about
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trees?”. The name has stuck ever since [57]. Lambert Meertens is the first to mention

this hierarchy in the literature [47], citing an unpublished working paper by Boom [8].

Table 6.1: The Boom hierarchy

theory unit associative commutative idempotent
tree X × × ×
list X X × ×
multiset X X X ×
powerset X X X X

Studying the patterns of distributive laws in the Boom hierarchy provided some of

the original inspiration for the abstract no-go theorems presented in earlier sections.

We now use the same hierarchy, and generalisations of it, to demonstrate both their

scope and limitations, and their relationship to the existing positive results we are

aware of in the literature.

6.1 The Original Boom Hierarchy

For the original Boom hierarchy we have complete knowledge of possible compositions

via distributive laws. An overview is presented in Table 6.2 below.

The negative result for P ◦P ⇒ P ◦P was already shown by [34], and can also be

recovered from both Theorems 5.20 and 5.46. The other negative results follow from

either Theorem 5.42 or Theorem 5.46. Sometimes both theorems can be applied, for

example to preclude a distributive law of type P ◦ L⇒ L ◦ P .

The positive results are due to Manes and Mulry. They show that any monad with

only linear equations in its presentation distributes over any commutative monad1,

via the times over plus distributivity [43, Theorem 4.3.4]. The multiset and powerset

monads are both commutative, and the theories of the tree, list and multiset monads

all have solely linear equations. This yields the six distributive laws indicated in the

table. Theorem 5.37 proves that these distributive laws are in fact the only possible

distributive laws for these monads.

1A commutative monad is a strong monad for which the two possible double strengths coin-
cide [35]. Algebraically, this means that all operations in the signature commute with one another.
This is quite different from the algebraic property of commutativity that we consider in the Boom
hierarchy.
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Table 6.2: Possible compositions in the Boom hierarchy,
with distributive laws of type: row ◦ column ⇒ column ◦ row.

tree list multiset powerset
tree × × X X
list × × X X
multiset × × X X
powerset × × × ×

In this small sample, Manes and Mulry’s theorem is powerful enough to yield

all the possible positive results. However, Table 6.2 is too small to draw general

conclusions. To extract more information, we will expand the Boom hierarchy.

6.2 The Extended Boom Hierarchy

The original Boom hierarchy discussed in Section 6.1 consists of a small number of

well motivated data structures. Unfortunately, this small size means that it provides

limited scope for identifying patterns in distributive law phenomena. To address this,

we now consider an extended hierarchy in which all possible combinations of the

original algebraic axioms appear, rather than the axioms being gradually added in

a fixed order. This yields a total of eight different monads: tree, idempotent tree,

commutative tree (mobile), associative tree (list), idempotent and commutative tree,

idempotent and associative tree (square-free list), associative and commutative tree

(multiset), idempotent commutative and associative tree (powerset). If we addition-

ally consider the non-empty versions of these monads, corresponding algebraically to

removing the constant from the signature, the number of monads doubles to sixteen.

Of course, some of these monads are less natural from a functional programming

perspective, but they provide a convenient range of candidates for investigation.

An overview of these monads is given in Table 6.3 below. We have named the

monads according to the axioms their theories satisfy: U(unitality), A(associativity),

C(commutativity), I(idempotence). For example, multisets are associative and com-

mutative trees with units, so they are denoted UAC in the table, whereas their

non-empty version, which has no unit, is called AC. Note that this convention is

unambiguous as we always impose the unitality axiom when the unit constant is

present.
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Table 6.3: The extended Boom hierarchy

theory unital associative commutative idempotent
non-empty tree × × × ×
I × × × X
C × × X ×
CI × × X X
A × X × ×
AI × X × X
AC × X X ×
ACI × X X X
U (tree) X × × ×
UI X × × X
UC (mobile) X × X ×
UCI X × X X
UA (list) X X × ×
UAI (square-free list) X X × X
UAC (multiset) X X X ×
UACI (powerset) X X X X

Within this extended Boom hierarchy, there are a total of 256 monad compositions

to consider. Some distributive laws arise via Manes and Mulry’s positive general

theorems [43, Theorem 4.3.4] [44, Example 4.9]. Other combinations are known to

have a distributive law because an ad-hoc one has been found, for example for the

non-empty list monad over itself [43, 44]. A large number of the combinations are

proven impossible by theorems from this paper. Our current knowledge about the

existence of distributive laws for this extended Boom hierarchy is given in Table 6.4.

Out of the 256 pairs of monads in Table 6.4:

� The 41 labelled with X have a distributive law between them.

� The 122 labelled with × do not have a distributive law between them.

� The remaining 93 pairs labelled with ? remain to be understood.

That is, almost half of the combinations of monads from the extended Boom hierarchy

do not have a distributive law between them. The bottom right corner of Table 6.4

is especially striking. Every possible combination is understood, and 56 out of 64

combinations do not have a distributive law. This provides further evidence that we

should not assume “most” monads will compose via suitable distributive laws.
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Table 6.4: Distributive laws in the extended Boom hierarchy,
with laws of type: row ◦ column ⇒ column ◦ row.

∅ I C CI A AI AC ACI U UI UC UCI UA UAI UAC UACI

∅ X ? ? ? ? ? X X ? ? ? ? ? ? X X
I ? × ? × ? × ? × ? × × × ? × × ×
C X ? ? ? ? ? X X ? ? ? ? ? ? X X
CI ? × ? × ? × ? × ? × × × ? × × ×
A X ? ? ? X ? X X ? ? ? ? ? ? X X
AI ? × ? × ? × ? × ? × × × ? × × ×
AC X ? ? ? ? ? X X ? ? ? ? ? ? X X
ACI ? × ? × ? × ? × ? × × × ? × × ×
U X ? ? ? ? ? X X × × × × × × X X
UI ? × ? × ? × ? × × × × × × × × ×
UC X ? ? ? ? ? X X × × × × × × X X
UCI ? × ? × ? × ? × × × × × × × × ×
UA X ? ? ? ? ? X X × × × × × × X X
UAI ? × ? × ? × ? × × × × × × × × ×
UAC X ? ? ? ? ? X X × × × × × × X X
UACI ? × ? × ? × ? × × × × × × × × ×

An unsurprising pattern that emerges from Table 6.4 is that the axioms of idem-

potence and units are ‘bad’ properties for monad compositions. Since all of our no-go

theorems require at least one of these properties to hold, this observation does not

lead to any new insights.

In the positive results, the most apparent patterns are the columns ∅, AC, ACI,

UAC, and UACI. These are precisely the cases captured by Manes and Mulry.

For the remaining open cases, we cannot make any meaningful predictions. Our

current techniques in no-go theorems require some way of bringing a term down to a

variable, either via idempotence or via units. Whether this is the key property that

prevents the existence of distributive laws remains an open question. On the other

hand, all general positive results rely on one of the monads being commutative. The

ad-hoc distributive law of the non-empty list monad over itself clearly indicates that

commutativity is not a necessary condition for distributive laws to exist.

One thing is certain: to systematically fill in the gaps in Table 6.4 we will need

additional ideas, supporting either further positive, or negative, theorems. As such,

analysing these hierarchies highlights directions which will deepen our understanding

of distributive laws.
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6.3 Iterated Compositions

Another way to extend the original Boom hierarchy is to add the monads result-

ing from the six distributive laws appearing in Table 6.2. In order to study these

additional monads, we first give concrete presentations for each of them:

Lemma 6.2. The presentations of the composite monads MT , ML, MM , PT , PL,

PM are as follows:

� The composite monad MT is presented by the following theory:

– Signature: ΣMT = {0(0), 1(0),+(2), ∗(2)}.

– Equations: 0 is the unit of +, + is associative and commutative, 1 is the

unit of ∗, 0 is a multiplicative zero:

0 ∗ x = 0 (6.1)

x ∗ 0 = 0, (6.2)

and ∗ distributes over + from both left and right:

x ∗ (y + z) = (x ∗ y) + (x ∗ z) (6.3)

(x+ y) ∗ z = (x ∗ z) + (y ∗ z). (6.4)

� ML has the same signature and equations as MT , with the additional equation

that ∗ is associative.

� MM also has the same signature and equations as MT , with ∗ additionally

being associative and commutative.

� PT , PL, and PM have the same signatures and equations as MT , ML, and

MM respectively, with one additional equation: + is idempotent.

Proof. We prove only that the given presentation for the monad MT is correct, the

others follow similarly. From Corollary 3.10, we know that the composite monad MT

has presentation:

� Signature: ΣMT = ΣM ] ΣT = {0(0), 1(0),+(2), ∗(2)}.

� Equations: EMT = EM ∪ ET ∪ Eλ = {0 is the unit of +, + is associative and

commutative} ∪ {1 is the unit of ∗} ∪ {s[tx/x] =MT t[sy/y] | s, sy terms in M
t, tx terms in T}.
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So all we need to show is that Equations (6.1), (6.2), (6.3), and (6.4) are enough to

prove all equations in Eλ, that is, all equations of form s[tx/x] =MT t[sy/y].

To prove that all equations in Eλ are provable from the four given axioms, it

is enough to show that each term of form s[tx/x] is separable via the given ax-

ioms. Essential uniqueness then does the rest: Suppose that both s[tx/x] =MT t[sy/y]

and s[tx/x] =MT t
′[s′y′/y

′] are in Eλ, and the first of these equations is provable us-

ing Equations (6.1), (6.2), (6.3), and (6.4). Then by transitivity of =MT we know

t′[s′y′/y
′] =MT t[sy/y]. Since this is an equality between two separated terms, essen-

tial uniqueness gives us that it is provable using just the axioms in EM and ET .

So once we have derived one equation in Eλ involving a particular term s[tx/x], we

automatically gain all equations in Eλ involving this term.

To prove that every term of form s[tx/x] is separable using just the axioms Equa-

tions (6.1), (6.2), (6.3), and (6.4), we use induction on the term complexity of s:

Base cases: s is a constant or a variable. In these cases s[tx/x] is already separated.

Induction step: Suppose that s = s1 ∗ s2, and assume that s1[tx/x] and s2[tx/x] are

both separable using the four equations described above. Then we need to show that

s[tx/x] is separable. Let t′1[s′y′/y
′] and t′2[s′y′/y

′] be the terms resulting from separating

s1 and s2 respectively. We need induction on both t′1 and t′2:

� If t′1 is a constant, t′1 = 0, then by Equation (6.1): s[tx/x] = 0 ∗ s2 = 0, and

hence s[tx/x] is separable.

� If t′1 is a variable, t′1 = x1, we use induction t′2:

– If t′2 is a constant, then by Equation (6.2): s[tx/x] = s1 ∗ 0 = 0, and hence

s[tx/x] is separable.

– If t′2 is a variable, t′2 = x2, then s[tx/x] = x1 ∗ x2, which is a separated

term.

– If t′2 is a term of form t′3 + t′4, and we assume (induction hypothesis) that

x1 ∗ t′3 is separable and x1 ∗ t′4 is separable, then s[tx/x] = x1 ∗ (t′3 + t′4).

By Equation (6.3), we can write:

s[tx/x]

= x1 ∗ (t′3 + t′4)

= (x1 ∗ t′3) + (x1 ∗ t′4).

Since both (x1 ∗ t′3) and (x1 ∗ t′4) are separable, this shows that s[tx/x] is

separable.
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� If t′1 is a term of form t′5 + t′6, we may assume (induction hypothesis) that t′5 ∗ t′2
and t′6 ∗ t′2 are separable. By Equation (6.4), we know:

s[tx/x]

= (t′5 + t′6) ∗ t′2
= (t′5 ∗ t′2) + (t′6 ∗ t′2).

Since both (t′5∗t′2) and (t′6∗t′2) are separable, this shows that s[tx/x] is separable.

We conclude that the given presentation does indeed present the monad MT .

Checking these presentations against the various no-go theorems presented in this

paper yields a new table of possible compositions, displayed in Table 6.5. Other than

the six combinations we already discovered in the original Boom hierarchy, we find no

new combinations of monads that compose via a distributive law. The results shown

in the columns of the composite monads MT,ML,MM,PT, PL, PM are covered by

Theorem 5.4, while Theorem 5.10 covers the rows containing these monads.

Table 6.5: Possible compositions in the Boom hierarchy,
with distributive laws of type: row ◦ column ⇒ column ◦ row.

tree list multiset powerset MT ML MM PT PL PM
tree × × X X × × × × × ×
list × × X X × × × × × ×
multiset × × X X × × × × × ×
powerset × × × × × × × × × ×
MT × × × × × × × × × ×
ML × × × × × × × × × ×
MM × × × × × × × × × ×
PT × × × × × × × × × ×
PL × × × × × × × × × ×
PM × × × × × × × × × ×

6.4 Self-Distribution

For our final study of the Boom hierarchy we zoom in on a particular part of Table 6.4,

namely that of self-distribution. In Chapter 4 we observed that only idempotent mon-

ads distribute over themselves via the identity distributive law, but there are plenty

of monads that self-distribute in a non-trivial way. The multiset monad is probably
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the best known example; it self-distributes via the times over plus distributivity. Self-

distribution of monads has been a powerful drive in the discovery of no-go theorems:

Klin and Salamanca focussed on distributing the powerset monad over itself [34],

and my own early research concerned mainly the self-distribution of the probability

distribution monad and the list monad.

Self-distribution is not always a good starting point. When the properties of

two monads/theories under study are the same, it is easy to lose track of which

monad’s/theory’s properties are applied at which point in a proof. This can make a

proof of a specific counterexample harder to generalise: in the proofs of this thesis,

the axioms for each of the two theories are quite different. Such differences are hard

to spot when starting out from a symmetric situation.

The main power of self-distributions seems to be that they point to questions to be

solved. Self-distributions in the Boom hierarchy in particular have been an inspiration

before, and they have a final question for us left. Let us consider self-distributions of

the extended Boom hierarchy:

∅ I C CI A AI AC ACI U UI UC UCI UA UAI UAC UACI

X × ? × X × X × × × × × × × X ×

To get a better picture of the pattern, we visualise this data in a four dimensional

cube. Starting from the top-left-back corner of the outer cube, each direction repre-

sents adding a certain axiom: going right adds associativity, going to the front adds

commutativity, going down adds units, and going to the inner cube adds idempotence.

Monads that self-distribute are printed in green, monads that do not are printed in

red, and monads for which it is currently unknown whether they self-distribute or not

are identified with a ‘?’.

i

ui uai

ai

ci

uci uaci
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∅

u ua

a
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From the theorems of this thesis, we know that idempotence is a ‘dangerous’

equation, which is reflected in the impossibility to distribute any of the monads with

idempotence over themselves: the inner cube is completely red. Unitality is another

dangerous equation, and indeed most of the monads in this hierarchy with units do

not distribute over themselves. But curiously the monad UAC, better known as the

multiset monad, does distribute over itself, breaking the pattern. We have observed

before that the multiset monad seems to walk the fine line between several no-go

theorems.

All monads without units or idempotence seem to distribute over themselves.

However, there is one exception: C, commutative trees or mobiles. It is currently

unknown if this monad distributes over itself. The monad C is not as commonly used

as powerset and list are, so on its own, the question of whether C distributes over

itself is not hugely interesting. However, looking at the patterns in the hypercube, I

believe that it could provide the answer to a much bigger question:

� Are equations such as idempotence and units, where a more complicated term

is reduced to a variable, necessary conditions for no-go theorems?

That is, do two theories automatically distribute over one another if neither theory

has a way to reduce a more complicated term to a variable? We will return to this

question in Section 7.4.

If C does not distribute over itself, then it would be the first monad known to

have this property without having either unitality or idempotence as axioms. The

proof would give us valuable insight in the behaviour of distributive laws, perhaps

even leading to a new method for proving no-go theorems.

If, on the other hand, C does distribute over itself, then it would strengthen our

current belief in the importance of the unitality and idempotence axioms. This would

be the less dramatic, but more realistic, outcome.

Either way, determining whether C distributes over itself will give us another piece

of information about when distributive laws do and do not exist between two monads.
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Chapter 7

The Algebraic Method

The main focus of this thesis has been the application of the algebraic method in

proofs of no-go theorems for distributive laws. We have proven many theorems using

this method, gaining previously inaccessible insights into the behaviour of distributive

laws. In this chapter, we study the method itself. We will compare it to the more

standard categorical approach, and identify its strengths and its limitations.

7.1 The Algebraic Method: Techniques

Our algebraic method starts from the concept of a composite theory, the algebraic

equivalent of a distributive law. The major advantage of working on the algebraic side

is that it allows us to see and manipulate expressions on term level, whereas the more

traditional categorical approach only gives access to equivalence classes of terms. We

use this concreteness in our tactics for finding no-go theorems, which are all proven

by way of contradiction: we assume that a composite theory exists, then we find a

specific term and derive equations from it that are inconsistent with this assumption.

The proofs in Chapter 5 all use the same techniques in roughly the same order to

get to this contradiction. In this section, we summarise these techniques and explain

them in detail. During this analysis, we also explain how we arrive at the specific

axioms in our theorems, some of which may seem unusual to readers unfamiliar with

this type of reasoning.

Our no-go theorems have mostly been inspired by concrete examples: Theo-

rems 5.10 and 5.14 were inspired by the Abelian group monad and the list monad,

Theorem 5.20 was inspired by the probability distribution and powerset monads, and

Theorem 5.42 was again inspired by the list monad. In constructing a general no-go

theorem, we generally start with two concrete theories, and keep track of which of
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their properties we use in the proof. By then including these properties in the ax-

ioms of the theorem, the theorem is transformed from a simple counterexample to

a general no-go theorem that holds for any monad satisfying the stated properties.

We will therefore use two concrete example theories to illustrate our techniques in

proving no-go theorems. These theories are used specifically as an illustration of the

techniques; we do not derive a full no-go theorem for them.

Define S to be the theory consisting of an idempotent binary operator and T the

theory of a unital binary operator with a constant as unit:

ΣS = {s(2)} ΣT = {e(0), t(2)}

ES = {s(x, x) = x} ET = {t(e, x) = x = t(x, e)}

Proving a no-go theorem about the compositionality of these two theories in the order

T after S would typically involve the following steps:

[1] We assume that a composite theory of T after S exists, and call it U. We study

this composite theory in the hope to either derive a contradiction or prove that

the theory is the trivial (inconsistent) theory in which all terms are equal to

each other, which then contradicts Proposition 3.5.

[2] To get started, we choose a particular term. Finding a suitable term involves

some creativity, but there are two main guidelines:

� It should be a non-separated term (‘out of order’), so in the example it

should be a term with t or e inside an s. By the separation axiom of

composite theories, we then know that this term is equal to an as yet

unknown separated term. Much of the proof effort will be to discover

properties of this separated term.

� It should be a simple term, but complicated enough to incorporate useful

properties of the two theories. In our example, both theories have binaries

with special properties, so these binaries should appear in the term, but

only once or twice, and certainly not nested several times. Incorporating

the constant could also be useful.

Based on these criteria, suitable terms for our example theories could be:

s(t(a, b), t(c, d)) or s(e, t(a, b)).
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For the rest of the example, we pick the first of these two. We then know that

this term is equal to some separated term of form t′[s′x/x]:

s(t(a, b), t(c, d)) =U t
′[s′x/x].

[3] We then use substitutions on our chosen term to gradually mould it into a

separated term. In case of the term s(t(a, b), t(c, d)), the substitution c 7→
a, d 7→ b is useful. This substitution, together with idempotence of s, yields:

s(t(a, b), t(c, d))[a/c, b/d] =U s(t(a, b), t(a, b))

=U t(a, b).

The term t(a, b) is indeed separated. The usefulness of having manipulated our

chosen term into a separated term becomes clear in the next step.

[4] We use essential uniqueness. We now have a chain of equations of the form

“known separated term =U chosen term under certain substitutions =U unknown

separated term under the same substitutions”. In our example:

t(a, b) =U s(t(a, b), t(c, d))[a/c, b/d] =U t
′[s′x[a/c, b/d]/x].

Applying essential uniqueness then gives us information about the unknown

separated term. In our example, essential uniqueness gives us two substitutions,

f1, f2, such that:

t(a, b)[f1] =T t
′[f2] (Proposition 3.4, 3a)

f1(a) = f1(b) ⇔ a =S b (Proposition 3.4, 3b)

f2(x) = f2(x′) ⇔ s′x =S s
′
x′ (Proposition 3.4, 3c)

f1(a) = f2(x) ⇔ a =S s
′
x[a/c, b/d] (Proposition 3.4, 3d)

f1(b) = f2(x) ⇔ b =S s
′
x[a/c, b/d]. (Proposition 3.4, 3d)

We immediately see that f1(a) cannot be equal to f1(b). We also gained possible

information about the s′x terms in the unknown separated term: if f1(a) =

f2(x) then we know s′x[a/c, b/d] =S a, and if f1(b) = f2(x), then we know

s′x[a/c, b/d] =S b. However, f2 might not send any x to f1(a) or f1(b), so at this

stage we cannot make any further conclusions.

[5] We add assumptions to our theorem. These allow us to draw useful conclu-

sions from the information we gained from essential uniqueness. The added

assumptions should be properties of S and/or T. Assumptions come in two

flavours:
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� Algebraic properties, such as idempotence, commutativity, or unitality.

These are properties we used earlier to manipulate our chosen term into a

separated term.

� Variable management properties. These are less common properties to

require, but turn out to be vital in our proofs. Some examples are: “if a

term t is equal to the constant e, then t cannot have any variables”, or “if

a term s′ is equal to the binary s, then s′ can have at most two variables”.

When reasoning about specific algebraic theories (or monads), assumptions of

the second kind are rarely mentioned. However, noticing their use explicitly

and adding all such properties that are used in a proof as assumptions to the

theorem turns a no-go theorem from a specific theorem about the theories S
and T into a general theorem, that holds for any pair of theories satisfying the

final list of assumptions.

In our example, we may wish to add the following assumption about T: “for

any term t′ in T, if t′ =T t(a, b), then the only variables that can appear in

t′ are a and b”. Since we know from essential uniqueness that f1(a) 6= f1(b),

we may use this assumption to conclude that the variables of t′[f2] must be

either equal to f1(a) or f1(b). Therefore, for any variable x of t′, f2(x) = f1(a)

or f2(x) = f1(b), and hence we can conclude from the previous step (essential

uniqueness) that s′x[a/c, b/d] =S a or s′x[a/c, b/d] =S b.

[6] The proofs continue using this strategy, either by going back to the chosen term

and executing a different substitution, or by making appropriate substitutions

to other terms. Eventually, the conclusions we draw about terms give a contra-

diction, finishing the proof of the no-go theorem. For this example to become

a finished no-go theorem, we need to add more assumptions and do a few more

substitutions, see for instance Theorem 5.28.

7.2 Comparison to Categorical Methods

We compare the strategies from the categorical methods with our algebraic method.

First, we translate the axioms of monads and distributive laws into algebra. Then

we look at our algebraic methods from a categorical perspective, and at common

categorical methods from an algebraic perspective.
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7.2.1 Monad and Distributive Law Axioms Algebraically

We translate the axioms of monads and distributive laws into algebra.

Monads Algebraically

Recall that a monad is a triple consisting of a functor T , a unit natural transfor-

mation η and a multiplication natural transformation µ. Algebraically these can be

interpreted as follows.

� The functor maps a set of variables X to the set TX of equivalence classes of

all possible terms built from those variables.

� The unit ηX includes every variable x ∈ X as a term in TX.

� The multiplication µX makes substitutions of terms for variables ‘legal’: a term

with terms substituted for its variables t[tx/x] is still a term.

The monad axioms ensure that variables and substitutions behave in the expected

way. To avoid needlessly complicated notation, we ignore equivalence classes, trusting

that the reader can fill in the details if necessary.

µ ◦ Tη = IdT : t[x/x] = t. That is, a term t in which we substitute every
variable with itself, yields just t itself.

µ ◦ ηT = IdT : x[t/x] = t. That is, a variable in which we substitute a term,
yields exactly that term.

µ ◦ Tµ = µ ◦ µT : t[tx[ty/y]/x] = t[tx/x][ty/y]. That is, substitution is associa-
tive (assuming sensible naming of the variables appearing in
t and all of the tx).

Algebraically, these axioms are almost trivial. Yet they ensure that monads are

well-behaved structures, which is vital for their applications.

Distributive Laws Algebraically

We have already seen the intimate connection between distributive laws and compos-

ite theories in Chapter 3. We now look at the axioms for distributive laws from an

algebraic perspective.

The first thing to notice is that applying a distributive law is the categorical

equivalent of separating a term:

λ(s[tx/x]) = t′[s′y/y].
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Of course, there are equivalence classes involved, so in the notation from Chapter 3:

λ[[[s[[[[tx]]]T/x]]]]S = [[[t′[[[[s′y]]]S/y]]]]T.

We first consider the unit axioms of a distributive law. They are again trivial

when seen from an algebraic perspective. We ignore equivalence classes, favouring a

less cluttered notation.

λ ◦ ηST = TηS: x[t/x] = t[y/y], where on both sides of the equa-
tion the shown variables are interpreted as S-terms.
Since we know from above that x[t/x] = t = t[y/y],
this clearly must hold.

λ ◦ SηT = ηTS: s[x/x] = y[s/y], similar to the first axiom, but with
the roles of S and T reversed.

The multiplication axioms are where all the interesting action is. They are the

categorical equivalent of essential uniqueness.

λ ◦ µST = TµS ◦ λS ◦ Sλ: Given a term of form s[sx[ty/y]/x], this law states
that it does not matter whether we view the term
s[sx/x] as a single term s′ and separate s′[ty/y]
directly, or if we first separate each of the terms
sx[ty/y], resulting in terms t′x[s

′
z/z], and then sep-

arate s[t′x/x][s′z/z]. Both methods yield the same
term, up to equivalence.

λ ◦ SµT = µTS ◦ Tλ ◦ λT : Given a term of form s[tx[ty/y]/x], this law states
that is does not matter whether we view the terms
tx[ty/y] as a single terms t′x and separate s[t′x/x]
directly, or if we first separate each of the terms
s[tx/x], resulting in terms t′′[s′z/z][ty/y], and then
separate t′′[s′z/z][ty/y]. Both methods yield the
same term, up to equivalence.

At first sight, these laws seem as trivial as the others. On the algebra side,

separation is just an equality =U between terms in a composite theory U, so separating

along two different paths is just a chain of equalities. Since equality is transitive,

this will of course yield two terms equal to each other. However, on the categorical

side, we are working with equivalence classes. These equivalence classes are not just

equivalence classes of the free model monad U of the composite theory U, they are

equivalence classes of the monad TS, which consist of equivalence classes of T-terms

with equivalence classes of S terms as variables. The equality that the multiplication

axioms require is therefore an equality that must be provable using the axioms of
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S and T alone. That is, it requires equality modulo (S, T ). This is exactly what

essential uniqueness guarantees.

7.2.2 Algebraic Methods Categorically

Part of the beauty of using universal algebra comes from the limited number of options

we have in algebraic reasoning. Recall from Figure 2.1 that the inference rules we

can use are: reflexivity, symmetry, transitivity, substitution, congruence, and any

axiom of the theories we are using. Axioms are specific to the theory and correspond

directly to specific properties of the monads/categorical structure in question. The

other methods are generally applicable. We will now look at how these methods are

used in a categorical setting.

Reflexivity, Symmetry and Transitivity

The basic building blocks of any equational logic are the axioms of an equivalence

relation. These axioms are considered so trivial that their use in proofs is rarely

mentioned, and this thesis is no exception in that regard. Categorically, the uses of

these axioms correspond to diagram chases. Any proof where a diagram is proved

to commute by chaining several known commuting diagrams together, is just proving

an equality using the axioms of reflexivity, symmetry and transitivity. Of course,

the known commuting diagrams are often obtained from axioms or previously proven

theorems/lemmas, but it is not uncommon for a diagram chase to explicitly include

reflexivity.

Substitution

An important tool in algebraic reasoning is substitution. We used substitutions to

manipulate terms, getting them into a specific form so that we can apply axioms or

previous theorems on them. We will discuss two types of substitutions: variables-

for-variables and more complicated terms-for-variables. Algebraically, substituting

variables for variables is just a special case of substituting terms for variables, since

every variable is a term. Categorically, however, there is a significant difference.

Variable-for-Variable Substitutions : Let us first consider variable-for-variable substi-

tutions. If f is such a substitution, then f changes the underlying set of variables

var(t) = X of a term t to var(t[f ]) = Y . We noticed previously that a monad T

maps a set X to the set TX of equivalence classes of terms build out of the variables

appearing in X. A variable for variable substitution f : X → Y is then executed
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categorically by applying the monad to the function f , resulting in Tf : TX → TY .

However, in the categorical case, the variable substitution Tf works on equivalence

classes. This is well-defined because of the algebraic axiom of substitution, which

states that equality of terms is not affected by substitutions:

t =T t
′

t[f ] =T t
′[f ]

Term-for-Variable Substitutions : In a term-for-variable substitution, variables are

substituted with terms, which themselves have variables. A term t with var(t) = X is

hence changed to have variables var(t) = T , where T is a set of terms, and each term

in T has variables in some set Y . The resulting term-of-terms is then interpreted as

a single term t′, with variables var(t′) = Y . Writing this out categorically, we see the

type of a familiar map:

TX 7→ TTY 7→ TY.

It is the Kleisli-extension operator (·)∗ used in the Kleisli formulation of monads,

an equivalent definition of monads commonly used among functional programmers.

Given a multiplication µ of a monad and a function f : X → TX, the extension is

defined by:

f ∗ = µ ◦ Tf.

This is exactly defining a term-for-variable substitution categorically. Again, the

axiom of substitution ensures that this is well-defined on equivalence classes of terms.

Congruence

Congruences are what makes ‘substituting equals for equals’ possible. Its categorical

use is most apparent in string-diagrammatic reasoning. Congruence allows us to

replace part of a bigger diagram with a different diagram which we know is equal to

that part. For instance, when applying one of the monad laws:

=
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7.2.3 Categorical Methods Algebraically

Contrary to universal algebra, the categorical toolbox is vast. There are many axioms

and theorems that are frequently applied, such as naturality, the Yoneda lemma, and

universality, to name just a few. It is almost impossible to mention all methods

available to the category theorist. We have already seen that diagram chasing is

similar to equational reasoning in universal algebra. Here, we consider one other

frequently used categorical method: naturality. This method is of particular interest

because it is the main method used in the proof of Plotkin’s original counterexample,

which showed that nondeterminism does not distribute over probability [60].

Naturality

Let {Xi | i ∈ I} be a family of objects in a category C, and F,G : C → D be two

functors. Then a family of morphisms φXi : FXi ⇒ GXi, behaves ‘naturally’ when

they commute with functions applied to the underlying objects Xi, as shown in the

familiar naturality diagram below:

FXi GXi

FXj GXj

φXi

Ff Gf

φXj

When the functors are monads, and the objects Xi are sets, the objects FXi can

be understood algebraically as the set of terms build from variables x ∈ Xi, and as we

saw in Section 7.2.2 above, the functions Ff and Gf can be interpreted as variable-

for-variable substitutions. Naturality then says that the action of the morphism φ

commutes with variable-for-variable substitutions.

7.3 Regarding the Scope of Theorems

Plotkin’s original proof, showing that non-determinism does not distribute over prob-

ability, uses only the naturality diagram and the unit axioms of a distributive law.

The result therefore also holds for just the pointed endofunctors 〈P, ηP 〉 and 〈D, ηD〉
instead of the full monads 〈P, ηP , µP 〉 and 〈D, ηD, µD〉. The proofs by Klin and Sala-

manca also avoid the use of the multiplication axioms of distributive laws, which

means their proofs apply to pointed endofunctors as well [34].

Categorically, it is trivial to derive the scope of a proof from the axioms that are

used in the proof, as demonstrated in the following flowchart:
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Algebraically, we have seen that many of the axioms of distributive laws are trivial,

and so it is harder to spot where they are used in a proof. The most obvious difference

is the type of substitutions that are used in a proof:

� Multiplications of monads flatten a term of terms to a single term. If substi-

tutions of terms-for-variables are used in a proof, then they implicitly assume

the monad multiplication axioms, hence the result holds for distributive laws

between full monads only.

� Variable-for-variable substitutions do not interact with the multiplications of

monads, but they are involved in both naturality and unit axioms of distributive

laws.

Theorem 5.20 is a direct translation of Plotkin’s original proof, and so this result

should hold for pointed endofunctors as well. We see that indeed the only substitu-

tions required in the proof of Theorem 5.20 are variable-for-variable substitutions1.

Similarly, Theorems 5.25 and 5.28 only require variable-for-variable substitutions.

Therefore, these theorems preclude the existence of distributive laws for pointed end-

ofunctors as well, generalising Klin and Salamanca’s Theorem 2.4 [34].

1Note that the ‘trivial’ term-for-variable substitution x[t/x] is still allowed to appear, since this
case is covered by the unit axioms rather than the multiplication axioms of distributive laws.
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The unit axioms of a distributive law are used every time we change the inter-

pretation of a term t from x[t/x] to t[xi/xi], or that of a term s from s[xi/xi] to

x[s/x]. This change in interpretation is implicitly applied when we reduce part of a

non-separated term to a variable, and then conclude that the resulting term is sepa-

rated. This step is used in every proof in this thesis, and so all of them are restricted

to pointed endofunctors at minimum.

7.4 Regarding the Necessity of Reducing Terms to

Variables in Proofs of No-Go Theorems

The proofs in Chapter 5 have one important thing in common: in all of them, we

reduce a non-separated term to either a variable or a constant, gaining a separated

term. We now consider this vital step in more detail.

Our main proof strategy to prove that no composite theory of theories T after S
exists is briefly summarised as follows:

1. Assume by way of a contradiction that a composite theory U of T after S exists.

2. Start with a non-separated term s[ty/y].

3. By the separation axiom of composite theories, this term is equal to some sep-

arated term: s[ty/y] =U t
′[s′x/x].

4. Manipulate s[ty/y] into a separated term using substitutions, while also applying

these substitutions to t′[s′x/x].

5. Apply essential uniqueness to the resulting equality of two separated terms.

This will yield some useful information about the term t′[s′x/x].

6. Repeat until a contradiction is derived.

In the fourth step of this plan, we need to transform the term s[ty/y] into a separated

term, using only equational logic and the axioms of S and T.

One way to achieve this goal is to reduce either the term s or each of the ty to a

variable, using a substitution f :

s[ty/y][f ] =U y[ty/y],

or s[ty/y][f ] =U s[xi/yi].

Both y[ty/y] and s[xi/yi] are separated terms.
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Another way is to prove the term s[ty/y] (under some substitution f) equal to a

constant of one of the component theories:

s[ty/y][f ] =U eS,

or s[ty/y][f ] =U eT.

Both eS (a constant in S) and eT (a constant in T) are separated terms.

All our proofs use one or both of these methods to complete this fourth step in

the proof plan. An important question remains:

Is the reduction of a term to a variable or constant a crucial step in a

no-go proof for distributive laws?

That is, are there no-go theorems that avoid this step in their proof? Can a non-

separated term be separated using only the axioms of S and T without reducing a

term to variable or constant? Are there no-go theorems that use a completely different

strategy altogether? The answers to these questions are unknown at present.

7.4.1 Conjectures

Relying on the experience I have gained during my time as a DPhil student, I would

like to share the following thoughts on the matter:

� A proof by contradiction seems the most obvious tactic for proving a no-go

theorem, but it is not necessarily the only possible one.

� In a proof by contradiction, the only knowledge we can work with is provided by

the axioms of composite theories, separation and essential uniqueness, and the

axioms of the two theories S and T. A good strategy would therefore start with a

term or terms to which we can apply either separation or essential uniqueness.

Starting with a manipulation by applying axioms from S or T would be less

useful, as we then could equally well start the proof with the term resulting

from these manipulations.

– Our method chooses to apply separation first. After applying separation,

the only option left seems to be working towards a situation in which we

can apply essential uniqueness, which is exactly what our method does.
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– A different approach could be to choose two separated terms that are

known to be equal in the composite theory, starting the proof with an

application of essential uniqueness. However, the two starting terms need

to form a non-trivial equation to allow any meaningful conclusions to be

derived from them. Without the use of the separation axiom before the

application of essential uniqueness, it might not be possible to arrive at

such a non-trivial equation.

In conclusion, I think that our current method is by far the most obvious one,

but not necessarily the only method for proving no-go theorems of this kind. For our

method, I believe that reduction to a variable or constant is indeed a crucial step.

Whether it is a crucial step in all no-go theorem proofs, I cannot say. If it were,

this would imply that there is always a distributive law for two monads presented

by theories in which such reductions are impossible. While this would be a powerful

discovery, the current knowledge about the existence of distributive laws is too sparse

to make an accurate prediction. Since all currently-known examples of non-existing

distributive laws involve monads with either units or idempotence equations, it is

my hope that these are the only cases in which distributive laws fail to exist. I will

therefore conjecture this, to give others the motivation to prove my conjecture, or to

prove me wrong. I am looking forward to either.

Conjecture 1. Any theorem that proves the non-existence of a distributive law will

involve at least one monad that is presented by an algebraic theory S for which the

following axiom holds:

� S has an n-ary term s (n ≥ 2), for which there is a substitution f : var(s)→ S
such that for any x ∈ var(s):

Γ ` s[f(y)/y 6= x] =S x.
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Chapter 8

Conclusion

In this thesis we have adopted an algebraic perspective on monads, using composite

theories to study compositions of monads via distributive laws. This led us to discover

a new and powerful method to prove no-go theorems for distributive laws, showing

that certain monads cannot be composed in this way.

The key observation in this work is that the implications (⇒) in the original defi-

nition of composite theories are in fact bi-implications (⇔), which is a vital property

in many of our proofs.

Using our method, we proved several no-go theorems, which together cover a large

class of monads. Many of our no-go theorems are direct generalisations of concrete

counterexamples, some of which were previously known, such as Counterexample 5.18.

Others, such as Counterexample 5.9, are new.

Perhaps the most surprising theorem is Theorem 5.4, which rules out distributive

laws between monads if one of them is presented by a theory that has more than one

constant, and a few other conditions are met. The proof of this theorem is relatively

simple, yet its implications are far-reaching: any composite monad falls within its

scope if it comes from two structures that each have a constant (and some other

niceness properties apply).

We have given various examples of monads that are shown not to compose via a

distributive law by our theorems, including a large overview of such monads that are

part of the Boom hierarchy. A few noteworthy examples of monads that are shown

not to compose via a distributive law are:

� The Abelian group monad (A) and the list monad (L): There is no distributive

law A ◦ L ⇒ L ◦ A. This finally answers the open question Beck posed in his

original paper on distributive laws in 1969 [5].
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� The list monad (L) with itself: There is no distributive law L◦L⇒ L◦L. This

has been an open question posed by Manes and Mulry in 2007 [43,44].

� The list monad (L) and the exception monad (−+E): There is no distributive

law L(−+ E)◦ ⇒ (−+ E) ◦ L. Manes and Mulry erroneously claimed to have

found a distributive law of this type [44].

� Any iterated composition of the multiset monad (M). There is no distributive

law (M ◦M)◦M ⇒M ◦ (M ◦M) nor is there a distributive law M ◦ (M ◦M)⇒
(M ◦M) ◦M . This is slightly surprising, as the multiset monad is otherwise

very well behaved.

In addition to this main line of research, we have studied a few extreme cases of

distributive laws: the identity natural transformation Id : TT ⇒ TT , and the natural

transformations Tη ◦ µ : TT ⇒ TT and ηT ◦ µ : TT ⇒ TT . We showed that these

natural transformations are distributive laws of type TT ⇒ TT if and only if the

monad T is idempotent. We hence found three new characterisations of idempotent

monads, deepening our understanding of this class of monads.

Coming back to our no-go theorems, we compared the techniques we use in our

algebraic approach to common techniques used in categorical proofs. While most

observations are unsurprising, the comparison highlighted the difference between sub-

stitutions of variables for variables and terms for variables. Algebraically, these are

considered the same and they are captured by a single axiom. Categorically, how-

ever, a substitution of variables for variables corresponds to just an application of

the monad to the substitution function, while a substitution of terms for variables

requires the Kleisli extension of that function. The difference between the two types

of substitutions also affects the scope of the theorems: a proof using just variables-

for-variables substitutions holds for pointed endofunctors as well as monads, whereas

a proof using a terms-for-variables substitution is only valid for monads.

The main advantage of using composite theories is that they allow for manipula-

tions on the term level, whereas traditional categorical methods that work directly

with distributive laws only reach equivalence classes. Equivalence classes can be fid-

dly to work with, allowing small things to be overlooked, as evidenced for example

by the faulty distributive law for the powerset monad over itself in the Handbook

of Algebra [42, pages 78-79]. At term level, functions and variables are much more

straightforward to manipulate, reducing the risk of errors.

Using universal algebra rather than category theory has also shown us which

axioms we use, and when we use them. This allowed us to gain a deeper understanding
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of the mechanics of our proofs, pinpointing exactly which properties and steps in the

proofs are essential. The main conclusion we were able to draw from this analysis was

that all our proofs require a way to reduce a term to a variable. Our overview of the

extended Boom hierarchy illustrates this point beautifully: monads in this hierarchy

need to have either an idempotent term or a unital term for our theorems to apply.

It is currently not known if the reduction of a term to a variable is a crucial step

in every possible no-go theorem. We conjectured that this is indeed the case, and

we see this question as the most important remaining open question about monad

compositions via distributive laws on the category Set.

This brings us to another limitation of our method: the fact that it is restricted

to monads on the category Set. In Set, we have a one-to-one correspondence be-

tween monads and algebraic theories, which is replaced by a correspondence between

monads and Lawvere theories for monads on other categories. There is a concept

of a composite Lawvere theory, due to Cheng [11], which could open a way for our

method to generalise beyond Set. However, our method is based on explicit term

manipulations, which is not possible in Lawvere theories in general. We therefore

propose to find concrete presentations for these monads/Lawvere theories. There is

some work in this direction [16–23,32,54], resulting in interesting and exotic algebraic

theories, where terms may only be well-formed if their variables and operations obey

some order relations. We need a better understanding of these exotic theories before

we can apply our methods beyond Set, so we recommend this as a direction for future

work.
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Appendix A

Notation

X, Y, Z sets
a, b, c, d variables
x, y, z variables

Γ a set of variables
F,G functors
S, T monads
S,T algebraic theories
U a composite algebraic theory

s, t, u terms in an algebraic theory
` indicating variable context

t[sx/x] a substitution of terms sx for the variables x
t[f ] a substitution according to the function f
[[[t]]]T an equivalence class of terms in theory T with representative t
J·Ka interpretation function based on algebra a

f : X → Y a function from X to Y
φ : F ⇒ G a natural transformation from F to G

133



Appendix B

Proofs

Theorem B.1. Let S and T be two algebraic theories. If there are terms:

n `S s and m `T t,

such that:

(S1) s is idempotent:

{a} ` s[a/xi] =S a.

(S2) For all terms s′ ∈ S, and each variable a:

Γ ` a =S s
′ ⇒ {a} ` s′.

(S3) For all terms s′ ∈ S:

Γ ` s =S s
′ ⇒ ¬

(∨
xi∈Γ

{xi} ` s′
)
.

(T1) t is stable under a fixed-point free permutation σ:

m ` t =T t[σ(x)/x].

(T2) t has a substitution ft : var(t)→ T such that for any xi ∈ var(t):

Γ ` t[ft(x)/x 6= xi] =T xi.

(T3) For all terms t′ ∈ T:

Γ ` t =T t
′ ⇒ m ` t′.

Then there is no composite theory of T after S.
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Proof. Assume by way of a contradiction that a composite theory U of T after S
exists. Let aji denote distinct variables, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. We consider

the term

s(t(a1
1, . . . , a

1
m), . . . , t(an1 , . . . , a

n
m)).

Then as U is composite, the separation axiom of composite theories tells us that there

exist X ` t′ and Γ ` s′x for each x ∈ X such that:

s(t(a1
1, . . . , a

1
m), . . . , t(an1 , . . . , a

n
m)) =U t

′[s′x/x].

We use the same approach as in the proof of Theorem 5.25, using substitutions

to bound the variables that can appear in each of the s′x. Define substitution f1 as

follows:

f1(aji ) = a1
i .

We then have:

s(t(a1
1, . . . , a

1
m), . . . , t(a1

1, . . . , a
1
m)) =U t

′[s′x[f1]/x].

By assumption (S1), idempotence of s:

t(a1
1, . . . , a

1
m) =U t

′[s′x[f1]/x].

We have two separated terms that are equal to each other, so essential uniqueness

tells us that there are substitutions g1 and g2 such that:

t[g1] =T t
′[g2] (Proposition 3.4, 3a)

g1(a1
i ) 6= g1(a1

j)(i 6= j) (Proposition 3.4, 3b)

g1(a1
i ) = g2(x)⇔ a1

i =S s
′
x[f1], (Proposition 3.4, 3d)

and (T3) gives us that:

∀x ∃i : a1
i =S s

′
x[f1]. (B.1)

Then by assumption (S2):

∀x ∃i : {a1
i } ` s′x[f1].

So our first approximation of the variables appearing in s′x is:

∀x ∃i : {a1
i , . . . , a

n
i } ` s′x. (B.2)

Now we define a family of substitutions for 2 ≤ k ≤ n as follows:

fk(a
j
i ) =

{
akσ(i) if j = k

aki otherwise.
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If we follow a similar argument as before, using essential uniqueness, (T3), (S2), and

also exploiting assumption (T1), we conclude that:

∀x, k ∃ik : {akik} ` s
′
x[fk].

And so:

∀x, k ∃ik : {ajσ−1(ik) | j = k} ∪ {ajik | j 6= k} ` s′x. (B.3)

Using Lemma 5.24, Equations (B.2) and (B.3), we conclude that for all x, s′x can only

contain a single variable:

∀x ∃i, j : {aji} ` s′x. (B.4)

This implies that for each x, s′x is equal to a variable:

� If for some i, a1
i ` s′x, then s′x[f1] = s′x. From Equation (B.1) we know that

there is an i′ such that s′x[f1] =S a
1
i′ , and so also s′x =S a

1
i′ . Hence s′x is equal to

a variable.

� Otherwise, there is a j 6= 1 and an i such that aji ` s′x. In this case s′x[f1][aji′/a
1
i′ ] =

s′x. From Equation (B.1) we know that there is an i′′ such that s′x[f1] =S a
1
i′′ ,

and so by substitution there is an i′′ such that s′x[f1][aji′/a
1
i′ ] =S a

1
i′′ [a

j
i′/a

1
i′ ] = aji′′ .

Therefore also s′x = aji′′ , proving that s′x is indeed equal to a variable.

To finish the argument, we define another substitution, using the substitution ft

from property (T2):

fn+1(aji ) =

{
aji , if i = 1

ft(a
j
i ), otherwise.

Applying this substitution:

s(t(a1
1, ft(a

1
2), . . . , ft(a

1
m)), . . . , t(an1 , ft(a

n
2 ) . . . , ft(a

n
m))) =U t

′[s′x[fn+1]/x]

⇒ { property (T2) }

s(a1
1, . . . , a

n
1 ) =U t

′[s′x[fn+1]/x].

⇒ { clarifying that s is a separated term }

y[s(a1
1, . . . , a

n
1 )/y] =U t

′[s′x[fn+1]/x].

Notice that the term t′[s′x[fn+1]/x] is still separated: since every s′x is just a variable,

the substitution fn+1 does not break separation, even though it might insert a T term.
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We can hence apply essential uniqueness. This gives us that there are substitutions

g1 : {y} → Z, g2 : X → Z such that:

y[g1] =T t
′[g2]

g1(y) = g2(x)⇔ s(a1
1, . . . , a

n
1 ) =S s

′
x.

By consistency of T, we know that there is at least one x such that g1(y) = g2(x).

And hence there is at least one s′x such that s′x =S s(a
1
1, . . . , a

n
1 ). But this contradicts

assumption (S3), since for all x, s′x is equal to a variable. We conclude that no

composite theory of T after S can exist.
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[64] M. Zwart and B. Coecke: Double dilation 6= double mixing. In: Proceedings of

the 14th International Conference on Quantum Physics and Logic (QPL2017),

2017.

143


	Introduction
	Historical Context
	Personal Context
	Prodding It with the Right Stick
	Acknowledgement of Contributions

	Background
	String Diagrams
	Monads and Distributive Laws
	Monads
	Distributive Laws
	Iterated Distributive Laws

	Algebraic Theories
	Algebras and Algebras
	Algebras for an Algebraic Theory
	Algebras for a Monad
	Algebras are Algebras


	Composite Theories
	The Constructive Connection

	Characterising Idempotent Monads via Distributive Laws
	Idempotent Monads
	The Identity as Distributive Law
	Two Other Extreme Cases of Distributive Laws

	No-Go Theorems for Distributive Laws
	Multiplicative Zeroes
	Inverses and Absorption: Playing with Variables
	No Distribution of Plus over Times
	Generalisations

	No-Go Theorems Based on Idempotence
	The Original Counterexample
	Generalising Plotkin's Counterexample
	Regarding Idempotency
	Concerning Commutativity

	No-Go Theorems Based on Units
	The One Distributive Law, If It Exists
	Lacking the Abides Property: a No-Go Theorem
	Yet Another No-Go Theorem Caused by Idempotence

	A Final Generalisation: Stable Universal Sets

	The Boom Hierarchy: a Case Study for Distributive Laws
	The Original Boom Hierarchy
	The Extended Boom Hierarchy
	Iterated Compositions
	Self-Distribution

	The Algebraic Method
	The Algebraic Method: Techniques
	Comparison to Categorical Methods
	Monad and Distributive Law Axioms Algebraically
	Algebraic Methods Categorically
	Categorical Methods Algebraically

	Regarding the Scope of Theorems
	Regarding the Necessity of Reducing Terms to Variables in Proofs of No-Go Theorems
	Conjectures


	Conclusion
	Notation
	Proofs
	Bibliography

