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Abstract

Recent learning-based approaches have achieved impressive
results in the field of single-shot camera localization. How-
ever, how best to fuse multiple modalities (e.g., image and
depth) and to deal with degraded or missing input are less
well studied. In particular, we note that previous approaches
towards deep fusion do not perform significantly better than
models employing a single modality. We conjecture that
this is because of the naive approaches to feature space fu-
sion through summation or concatenation which do not take
into account the different strengths of each modality. To ad-
dress this, we propose an end-to-end framework, termed VM-
Loc, to fuse different sensor inputs into a common latent
space through a variational Product-of-Experts (PoE) fol-
lowed by attention-based fusion. Unlike previous multimodal
variational works directly adapting the objective function of
vanilla variational auto-encoder, we show how camera local-
ization can be accurately estimated through an unbiased ob-
jective function based on importance weighting. Our model
is extensively evaluated on RGB-D datasets and the results
prove the efficacy of our model. The source code is available
at https://github.com/Zalex97/VMLoc.

Introduction
Visual localization is of great importance to many intelligent
systems, e.g. autonomous vehicles, delivery drones, and vir-
tual reality (VR) devices. Recently, deep learning has shown
its strengths in learning camera pose regression from raw
images in an end-to-end manner. However, a single modal-
ity solution is normally confronted with issues such as en-
vironmental dynamics, changes in lighting conditions, and
extreme weather, when it is deployed in complex and ever-
changing real-world environments. Meanwhile, those intel-
ligent systems are generally equipped with a combination
of sensors (e.g. RGB cameras, depth sensors, and LIDAR)
which can be exploited to improve the robustness of the
systems. Nevertheless, most studies concentrating on sensor
fusion (Liang et al. 2019; Bijelic et al. 2019) directly con-
catenates different feature vectors together without studying
the information contained in different feature vectors. Ef-
fectively exploiting different sensor modalities and studying
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Figure 1: (a) Training process of MVAE. (b) Training pro-
cess of VMLoc. (c) Inference process of VMLoc.

their complementary features will contribute to a more ac-
curate and robust localization system.

Compared with learning-based localization algorithms
using only RGB images, e.g. PoseNet (Kendall, Grimes,
and Cipolla 2015b), Bayesian PoseNet (Kendall and
Cipolla 2016), Hourglass Network (Melekhov et al. 2017),
CNN+LSTM localization neural network (Walch et al.
2017), PoseNet17 (Kendall and Cipolla 2017), etc., multi-
modal localization is far less to be explored. VidLoc (Clark
et al. 2017a) simply concatenates RGB image and depth
map, and processes them together with Convolutional Neu-
ral Networks (CNN) for camera localization. However, this
direct concatenation on the raw data level won’t take advan-
tage of the complementary properties of different modalities.
MVAE (Wu and Goodman 2018) proposes to use variational
inference to learn an invariant space from multimodal fu-
sion which achieved impressive results in several tasks. This
is done by directly optimizing the evidence lower bound
(ELBO) whose representation is simplified (Burda, Grosse,
and Salakhutdinov 2015). However, MVAE is hard to scale
to real-world environments with high-dimensional raw im-
ages and rich scene information (e.g. for visual localization
problem) as the objective function of MVAE cannot give a
tighter estimation of ELBO (Burda, Grosse, and Salakhutdi-
nov 2015).

In order to address the aforementioned problems, we pro-
pose VMLoc (Variational Fusion For Multimodal Camera
Localization), a novel framework to learn multimodal 6-
DoF camera localization, which learns a joint latent repre-

ar
X

iv
:2

00
3.

07
28

9v
4 

 [
cs

.C
V

] 
 1

4 
Ja

n 
20

21



sentation from a pair of sensor modalities (as depicted in
Figure 1 (b) and (c)). Our intuition is that there should exist
a common space from multiple modalities that is useful and
suitable for solving the task at hand. By using Product-of-
Experts (PoE), we combine the individual latent spaces of
each modality while at the same time enforcing each modal-
ity to concentrate on the specific property that is more useful
for the task. We then propose unbiased objective function
based on importance weighting to provide the framework
with a tighter estimation of ELBO. The main contributions
of this work can be summarized as follow:

• We introduce VMLoc, a novel deep neural network
framework to combine a pair of sensor modalities, e.g.
vision and depth/lidar, for camera localization problem.

• We propose a PoE fusion module to learn the common
latent space of different modalities by using an unbiased
objective function based on importance weighting.

• Extensive experiments on indoor and outdoor scenarios
and systematic research into the robustness and ablation
demonstrate the effectiveness of our proposed framework.

Related Work
Sensor Fusion and Multimodal learning
Because of the complementary properties of different sen-
sors, an effective and suitable fusion strategy plays a vital
role in learning from multiple sensor modalities in diverse
fields, e.g., (Misra et al. 2016), (Valada, Mohan, and Bur-
gard 2019), and (Mees, Eitel, and Burgard 2016).

However, to date, limited research has considered sensor
fusion in the context of visual localization, e.g., (Biswas and
Veloso 2013) and (Chen et al. 2019). Nevertheless, existing
frameworks have very limited performances and they could
not provide a better result than state-of-the-art approaches
based on monomodal. Learning a joint representation and
studying the respective contribution from different modali-
ties are also the focus of multi-modal learning. Among them,
some works propose to learn an explicit joint distribution
of all modalities, e.g., Joint Multi-modal Variational Auto-
encoder (JMVAE) (Suzuki, Nakayama, and Matsuo 2016)
and PoE (Wu and Goodman 2018). However, both JM-
VAE and PoE are only tested in simple, simulated datasets,
such as MNIST (LeCun et al. 1998) or Fashion MNIST
(Xiao, Rasul, and Vollgraf 2017). Other works propose to
learn the individual subspace and to achieve cross infer-
ence among modalities, e.g., mixture-of-experts (MoE) mul-
timodal variational autoencoder (MMVAE) (Shi et al. 2019)
and symbol-concept association network (SCAN) (Higgins
et al. 2017b). Compared with them, our work introduces im-
portance weighting strategy into the multimodal variational
model to improve its modelling capacity and to reduce the
training variance. Meanwhile, we incorporate the geometric
loss into the inference process to encourage useful features
for pose estimation.

Camera Localization
Camera localization methods can be categorized into the
conventional, structure-based models (Sattler et al. 2015;

Sattler, Leibe, and Kobbelt 2016; Cavallari et al. 2019;
Brachmann et al. 2017; Brachmann and Rother 2018) and
deep learning-based models (Kendall, Grimes, and Cipolla
2015a; Walch et al. 2017; Ding et al. 2019).

Conventional Approaches Conventional, structure-based
camera localization typically employs Perspective-n-Point
(PnP) algorithm (Hartley and Zisserman 2003) applied on
2D-to-3D correspondences. The algorithm consists of find-
ing the correspondences between image features (2D) and
world space points (3D) and generating multiple camera
pose hypotheses based on the correspondences. The outliers
rejection method is then used to cull the multiple hypothe-
ses into a single, robust estimation. (Williams, Klein, and
Reid 2011) employed randomized lists classifier to recog-
nize correspondences and use them along with RANSAC to
determine the camera pose. (Sattler et al. 2015) finds locally
unique 2D-3D matches and employed them to generate reli-
able localization based on image retrieval techniques. (Sat-
tler, Leibe, and Kobbelt 2016) emphasized that it is impor-
tant to fuse 2D-to-3D and 3D-to-2D search to obtain accu-
rate localization. However, structure-based models usually
require large memory and space to save the 3D model and
the descriptors (Sattler et al. 2015). This leads to the devel-
opment of efficient ”straight-to-pose” methods based on a
machine learning algorithm.

Deep Learning-based Approaches Instead of basing on
3D-geometry theory to tackle the problem (Chen et al. 2011;
Guzman-Rivera et al. 2014; Zeisl, Sattler, and Pollefeys
2015), deep learning models directly learn useful features
from raw data (Radwan, Valada, and Burgard 2018; Walch
et al. 2017) to regress 6-DoF pose, e.g., PoseNet (Kendall,
Grimes, and Cipolla 2015b), PoseNet++ (Melekhov et al.
2017). Further works propose to implement new constraint
or new neural network structure to improve the performance,
e.g., (Brachman and Schmolze 1985), (Kendall and Cipolla
2017), (Clark et al. 2017b) and (Walch et al. 2017). To date,
deep localization has largely considered a single modality as
input. However, our work proposes a fusion framework that
can effectively use the data from several different sensors to
solve the camera localization problem.

Methodology
Problem Formulation
This work is aimed at exploiting multimodal data to achieve
more robust and accurate pose estimation y = (p,q), which
consists of a location vector p ∈ R3 and a quaternion based
orientation vector q ∈ R4. The multimodal data are the dif-
ferent observations of an identical scene, but complementary
to each other. For example, RGB images contain the appear-
ance and the semantic information of the scene, while depth
maps or point cloud data capture the scene structure. Intu-
itively, these sensor modalities reflect a spatial sense of the
scene, and hence a common feature space that is useful for
solving the task at hand should exist.

Given two sensor modalities x1 and x2, we aim to learn
their joint latent representation z. As shown in Figure 1, this
problem is formulated as a Bayesian inference model, which



is to maximize the posterior probability conditioned on input
data:

z = argmax
z

[p(z|x1,x2)]. (1)

Based on this intermediate representation z, the target value
y is obtained by

y = argmax
y

[p(y|z)]. (2)

The problem becomes how to recover the joint distribu-
tion of two modalities. Our work mainly considers a pair of
modalities, although the proposed method can be naturally
extended to the usage of three or more modalities.

VMLoc
We introduce VMLoc framework to tackle this multimodal
learning problem. Our proposed method leverages the varia-
tional inference models (Kingma and Welling 2013) to find
a distribution qφ(z|x1,x2), approximating the true posterior
distribution p(z|x1,x2) with the aid of the corresponding
geometric information. Algorithm 1 demonstrates the de-
tailed algorithmic description of our proposed VMLoc.

Multimodal Variational Inference Unlike conventional
Variantional Auto-Encoders (VAE) (Kingma and Welling
2013), VMLoc reconstructs a target value y in a different
domain, i.e. 6-DoF pose in our case, instead of the original
domain data. Similar to the cross-modality VAE (Yang et al.
2019), VMLoc produces the target value y via a joint latent
variable z of two modalities x1 and x2, by maximizing the
ELBO as follow:

log p(y) ≥ Ez∼qφ(z|x1,x2)[log
pθ(y|z)p(z)
qφ(z|x1,x2)

]

= Ez∼qφ(z|x1,x2)[pθ(y|z)]− KL(qφ(z|x1,x2)|p(z))
= ELBO(y;x1,x2)

(3)

where p(y) is the distribution of target value, p(z) is the
prior distribution of latent space, qφ(z|x1,x2) is the in-
ference model to approximate the posterior distribution
p(z|x1,x2), and pθ(y|z) is the decoder network.

Inspired by MVAE (Wu and Goodman 2018), the infer-
ence problem of p(z|x1,x2) can be simplified as learn-
ing two conditional distributions p(z|x1) and p(z|x2) sepa-
rately. This is under the assumption that two modalities are
conditionally independent given the latent representation.
Based on that, we can apply the Product-of-Experts (PoE)
technique to estimate the joint latent distribution p(z|x1,x2)
via:

p(z|x1,x2) =
p(z|x1)p(z|x2)

p(z)
. (4)

Here, PoE works to combine several simple distributions by
producing their density functions (Hinton 1999). In our case,
it allows each modality to specialize in their specific prop-
erty to contribute to the final pose estimation, rather than
forcing each modality to recover the full-dimensional infor-
mation to solve the problem.

As the distribution p(z|x1) can be approximated with an
inference network q(z|x1) ≡ q̃(z|x1)q(z), Equation 4 is
further developed as

p(z|x1,x2) = q̃(z|x1)q̃(z|x2)q(z). (5)

Thus the learning process can be summarized as: it
first learns two individual latent distributions p(z|x1) and
p(z|x2); then combines two distributions to obtain the final
joint distribution. In practice, we assume that both the prior
distribution and the posterior distribution are Gaussian dis-
tributions. With the mean vector and the variance matrix, we
can sample from the learned distribution to obtain the joint
latent representation of the input modalities.

Importance Weighting Strategy However, directly opti-
mizing ELBO as the objective function can only provide a
simplified representation. As shown in Figure 1 (a), in the
normal variational model, e.g. MVAE, the representation is
only re-sampled once from the latent distribution. In this
way, the capability of variational inference has not been fully
exploited and our latter experiments in Table 3 support this
argument. Therefore, we introduce the importance weight-
ing strategy into the framework. As Figure 1 (b) illustrates,
instead of only depending on one sample, this strategy re-
samples from learned distribution for multiple times to ap-
proximate the posterior distribution, which allows the net-
work to model more complicated posterior distribution. In
doing so, it provides a strictly tighter log-likelihood lower
bound (Burda, Grosse, and Salakhutdinov 2015) through:

E[log
1

k

k∑
i=1

wi] ≥ E[log
1

k − 1

k−1∑
i=1

wi], (6)

where wi = p(y, zi)/q(zi|x1,x2); k is the number of sam-
ples; zi is the i-th point sampled independently from the la-
tent distribution. Thus, the objective function is rewritten as:

log p(y) = logE[w]

≥ E[log
1

k

k∑
i=1

wi]

= ELBO(y;x1,x2).

(7)

It can be noticed from the above analysis that the larger num-
ber of samples leads to a tighter log-likelihood lower bound.
With this new objective function, our model uses multiple
samples instead of one to approximate the posterior, which
then improves its capability to learn more complex posterior.
Although by increasing the number of samples we can find
a tighter bound, it counter-intuitively leads to a higher vari-
ance for gradient estimation in the training process (Rain-
forth et al. 2018). The gradient for φ in Equation 7 are cal-
culated via:

5φLk = Eε1:k [
k∑
i=1

wi∑
j wj

(
∂ logwi
∂zi

∂zi
∂φ

− ∂

∂φ
log qφ(zi|x1,x2))].

(8)
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Figure 2: Our framework consists of feature encoders, a fusion module, an attention mechanism module and a pose regressor.

According to (Rainforth et al. 2018), the second item
(score function) in Equation 8 can be eliminated, so as to
reduce the variance of the gradients. However, they fail to
show that eliminating this item is unbiased. To address this
concern, (Tucker et al. 2018) eliminates the score function
by rewriting Equation 8 as:

5φLk = Eε1:k [
k∑
i=1

(
wi∑
j wj

)2
∂ logwi
∂zi

∂zi
∂φ

]. (9)

Through Equation 9, we mitigate the side effects of in-
creasing k and ensure the gradients of the inference net-
work are unbiased. Instead of directly computing wi =
p(y, zi)/q(zi|x1,x2) as in Equation 9, in practice, we
rewrite it as follow:

wi = elogwi

= elog p(y|zi)+log p(zi)−log q(zi|x1,x2)
(10)

We further replace the first logarithm likelihood item in
Equation 10 with the negative geometric loss which calcu-
lates the distance between the predicted pose and the target
pose in the pose estimation task.

Geometric Learning To encourage VMLoc to extract
useful features for pose estimation, we propose to incor-
porate geometric information into the optimization objec-
tive. We incorporate a learnable geometric loss (Clark et al.
2017b; Brahmbhatt et al. 2018) into the loss function:

Lp(y,y
∗) = ||p−p∗||e−β +β+ || logq− logq∗||e−γ +γ

(11)
where y∗ = (p∗,q∗) is the ground truth pose, while β and
γ are weights that balance the position and the rotation loss.
The β and the γ are optimized during the training process
with the initial value β0 and γ0. The log q is the logarithmic
form of a unit quaternion q, which is defined as:

logw =


v

||v||
cos−1 u, if ||v|| 6= 0

0, otherwise
(12)

where u denotes the real part of a unit quaternion and v is
the imaginary part (Wang et al. 2019). In general, the gra-
dient for the inference network φ and the decoder network

θ (also known as the pose regression network) can be ex-
pressed as follow:

5φLk = Eε1:k [
k∑
i=1

(
wi∑
j wj

)2
∂ logwi
∂zi

∂zi
∂φ

]; (13)

5θLk = Eε1:k [
k∑
i=1

wi∑
j wj

5θ logwi]; (14)

wi = e−Lp(y,y
∗)+λ(log p(zi)−log q(zi|x1,x2)); (15)

where λ is the hyperparameter introduced by (Higgins
et al. 2017a) to balance the prediction accuracy and the la-
tent space capability. The complete learning algorithm can
be found in Algorithm 1.

Algorithm 1 VMLoc algorithm
Require: x1, x2 and y

Initialize parameters φx1 , φx2 , θ, β and γ
for episode=1, N do

Encode x1 and x2 with qφx1 (z|x1) and qφx2 (z|x2)
Compute the joint distribution via Equation 5
Sample k points zi from joint distribution
Decode zi with pθ(y|z)
Update the parameters β and γ with loss function
Lp(y,y

∗) in Equation 11
Update the parameters φx1 , φx2 with gradient 5φLk
in Equation 13
Update the parameters θ with gradient5θLk in Equa-
tion 14

end for

Framework
Now we come to introduce the detailed framework and the
training strategy of VMLoc. Figure 2 illustrates the struc-
ture of proposed VMLoc, including an RGB image encoder,
a depth map encoder, a fusion module, an attention mod-
ule, and a pose regressor. These two encoders separately en-
code the RGB images and the depth maps into their own
latent space, followed by fusing the multiple individual la-
tent spaces into one joint latent space through PoE. Then,



the latent representation sampled from the joint latent space
is re-weighted by a self-attention module. Finally, the re-
weighted latent features are taken as the input for the suc-
cessive pose regressor to predict the 6-DoF camera pose.

Feature Encoders The feature encoders in our framework
include an image encoder qφimg (z|ximg) and a depth en-
coder qφdep(z|xdep), which separately learn the latent dis-
tribution of RGB image and that of depth map. In learning
point cloud feature, we transform the lidar data into a image
using the cylindrical projection (Chen et al. 2017). CNN has
already shown its strengths in the task of visual localization
(Brahmbhatt et al. 2018). Among them, the ResNet model
has been widely applied in different tasks, e.g., (Brahmbhatt
et al. 2018; Wang et al. 2019). Based on these concerns, in
our model, we also adopt the ResNet34 structure to construct
our RGB image encoder and depth map encoder. To acceler-
ate the convergence speed, the ResNet34 in our model was
initialized by the weights of model trained on the Image-Net
(He et al. 2016). For both RGB image encoder and depth
map encoder, the second last average pooling layer is re-
placed by the adaptive average pooling layer and is followed
by two parallel fully connected layers with the same dimen-
sion D = 1024, which separately output the mean vector
µ ∈ RD and the diagonal vector of the variance matrix
σ ∈ RD of the learned latent distribution.

Fusion Module After we learned the mean vector and the
variance matrix for the latent distribution of the RGB im-
age and the depth map, we compute corresponding parame-
ters for the joint distribution via Equation 5. Rather than di-
rectly sampling from the joint distribution which isn’t differ-
entiable, the reparameterization trick (Kingma and Welling
2013) is applied. Given the mean vector µ and the vari-
ance matrix σ, we first sample the noise ε ∼ N (0, I).
Then the point of joint latent distribution can be computed
as z = εµ+ σ.

Attention Module Considering that certain parts of the
features extracted by the model may be useless to the pose
regression, we would like to enable our framework to fo-
cus on certain representations that are useful to the task.
We implement the non-local style self-attention (Wang et al.
2018) in our attention module, which can capture the long-
range dependencies and global correlation of the image fea-
tures (Wang et al. 2019). The computation process of atten-
tion module can be summarized as the following two steps.
Given a feature vector z ∈ RD, we firstly calculate its self-
attention as follow:

a = Softmax(zTW T
θ Wφz)Wgz, (16)

where Wθ, Wφ and Wg are the learn-able weights. Then,
the residual connection will be added to the linear embed-
ding of the self-attention vectors:

Att(z) = α(a) + z, (17)

where the α(a) = Wαa and the Wα is a learnable weight
which will be optimized during the training process.

(a) MapNet (b) VMLoc

Figure 3: The generated trajectories of LOOP1 (Top) and
FULL1 (Bottom) with proposed VMLoc (b) and the base-
lines MapNet (a). The yellow star denotes the starting point.
The ground truth trajectories are shown in black lines, while
the red lines are the predicted trajectories.

Pose Regressor Finally, the re-weighted latent vector is
taken as input into the pose regressor to estimate 6-DoF
pose. The pose regressor consists of two parallel networks
sharing the same structure. Each network contains two suc-
cessive fully connected layers connected by a ReLU activa-
tion function. Among them, one network predicts the posi-
tion vector p, while another network predicts the quaternion
based rotation vector q.

Training Strategies In order to force our model to learn
from all input modalities and to improve the robustness
during the corrupted input conditions, a data augmentation
method for multimodal learning is introduced. This data
augmentation method can be formulated as follow:

(x1,x2) =


(x1,x2), with p1

(x1, None), with p2

(None,x2), with p3,

(18)

where the sum of p1, p2 and p3 is 1. In our experiments,
p1 = 3

5 , p2 = 1
5 and p3 = 1

5 .

Experiments
Datasets
Our proposed VMLoc framework is evaluated on two com-
mon public datasets: 7-Scenes (Shotton et al. 2013) and Ox-
ford RobotCar (Maddern et al. 2017). 7-Scenes Dataset was
collected by a Kinect device, consisting of RGB-D image se-
quences from seven indoor scenarios. The ground truth was
calculated by KinectFusion algorithm. We split the data as
training and testing set according to the official instruction.
Oxford RobotCar Dataset contains multimodal data from
car-mounted sensors, e.g., cameras, lidar, and GPS/IMU. We
use the same data split of this dataset named LOOP and
FULL as in (Brahmbhatt et al. 2018) and (Wang et al. 2019).
As there is no depth map in the original Oxford Robot Car
dataset, the depth map is obtained by projecting the sparse
lidar to the RGB image as shown in Figure 2.



Table 1: The camera localization results from 7-Scenes Dataset. We report the median error of the position and orientation.
Hourglass, PoseNet+, MapNet, and Atloc are only based on RGB image (V), while VMLoc and VidLoc use RGB and depth
images (V,D).

Scene Hourglass(V) PoseNet+(V) VidLoc(V,D) MapNet(V) AtLoc(V) VMLoc(V,D)
Chess 0.15m, 6.17◦ 0.13m, 4.48◦ 0.16m,NA 0.08m, 3.25◦ 0.10m, 4.07◦ 0.10m, 3.70◦
Fire 0.27m, 10.8◦ 0.27m, 11.3◦ 0.19m,NA 0.27m, 11.7◦ 0.25m, 11.4◦ 0.25m, 10.5◦

Heads 0.19m, 11.6◦ 0.17m, 13.0◦ 0.13m,NA 0.18m, 13.2◦ 0.16m, 11.8◦ 0.15m, 10.8◦
Office 0.21m, 8.48◦ 0.19m, 5.55◦ 0.24m,NA 0.17m, 5.15◦ 0.17m, 5.34◦ 0.16m, 5.08◦

Pumpkin 0.25m, 7.01◦ 0.26m, 4.75◦ 0.33m,NA 0.22m, 4.02◦ 0.21m, 4.37◦ 0.20m, 4.01◦
Red Kitchen 0.27m, 10.2◦ 0.23m, 5.35◦ 0.28m,NA 0.23m, 4.93◦ 0.23m, 5.42◦ 0.21m, 5.01◦

Stairs 0.29m, 12.5◦ 0.35m, 12.4◦ 0.24m,NA 0.30m, 12.1◦ 0.26m, 10.5◦ 0.24m, 10.0◦
Average 0.23m, 9.53◦ 0.23m, 8.12◦ 0.23m,NA 0.21m, 7.77◦ 0.20m, 7.56◦ 0.19m, 7.01◦

Table 2: The camera localization results for Oxford Robot-
Car Dataset. We report the mean error of the position and
orientation for MapNet, AtLoc, and VMLoc.

Scene MapNet(V) AtLoc(V) VMLoc(V,D)
LOOP1 8.76m, 3.46◦ 8.61m, 4.58◦ 7.70m, 3.23◦
LOOP2 9.84m, 3.96◦ 8.86m, 4.67◦ 7.76m, 3.16◦
FULL1 41.4m, 12.5◦ 29.6m, 12.4◦ 19.5m, 4.32◦
FULL2 59.3m, 14.8◦ 48.2m, 11.1◦ 35.2m, 8.99◦
Average 29.8m, 8.68◦ 23.8m, 8.19◦ 17.5m, 4.92◦

Training Details
Our approach is implemented by using PyTorch. The model
is trained and tested with an NVIDIA Titan V GPU. During
the training process, both RGB images and depth maps are
taken as the input, which are rescaled with the shortest side
in the length of 256 pixels and normalized into the range of
[−1, 1]. In the case of VMLoc, the sampling number k is set
to be 10. The batch size is set to be 64 and the Adam opti-
mizer is used in the optimization process with the learning
rate 5×10−5 and the weight decay rate 5×10−5. The train-
ing dropout rate is set to be 0.5 and the initialization balance
weights are β0 = −3.0 and γ0 = 0.0. All experiments have
been conducted for 5 times to guarantee the reproducibility.

Baseline and Ablation Study
We use the recent state-of-the-art pose regression models
as our baseline. Five representative learning-based models,
i.e. Hourglass (Melekhov et al. 2017), PoseNet+ (Kendall
and Cipolla 2017), VidLoc (Clark et al. 2017a), MapNet
(Brahmbhatt et al. 2018), and AtLoc (Wang et al. 2019)
are compared with our proposed method. AtLoc depends
on single-image to realize accurate pose estimation. MapNet
uses a sequence of images for localization which generally
performs better than single image localization. We compared
with MapNet to show the high accuracy achieved by our sin-
gle image localization algorithm.

To prove the effectiveness of each module in VMLoc, we
compare our model with the image-VMLoc which takes a
single RGB image as its input while keeping the importance
weighting and the unbiased objective function. To verify the
performance of our fusion mechanism, we compare VMLoc
with attention-VMLoc which uses attention without PoE
and importance weighting, and PoE-VMLoc which uses the
MVAE to fuse different distribution without using impor-
tance weighting and proposed unbiased objective function.

Finally, to prove the robustness of our model, we test the
performance of our model under different data degradation
conditions.
Table 3: The ablation study of camera localization results
with Oxford RobotCar Dataset. We report the mean error
of the position and orientation for image-VMLoc, attention-
VMLoc, PoE-VMLoc and VMLoc.

Scene image
VMLoc

attention
VMLoc

PoE
VMLoc VMLoc

LOOP1 8.60m, 4.57◦ 9.16m, 4.96◦ 8.57m, 3.98◦ 7.70m, 3.23◦
LOOP2 8.50m, 3.90◦ 9.78m, 5.66◦ 8.99m, 3.79◦ 7.76m, 3.16◦
FULL1 30.1m, 10.8◦ 31.2m, 6.04◦ 30.0m, 7.54◦ 19.5m, 4.32◦
FULL2 48.1m, 9.61◦ 46.5m, 10.1◦ 45.9m, 10.5◦ 35.2m, 8.99◦
Average 23.9m, 7.22◦ 19.3m, 5.35◦ 18.7m, 5.16◦ 17.5m, 4.92◦

Table 4: The robustness study against corrupted input in Ox-
ford RobotCar Dataset.

Corrupt. AtLoc(V) attention
VMLoc

PoE
VMLoc VMLoc

No 48.2m, 11.1◦ 46.1m, 9.50◦ 45.8m, 11.50◦ 35.2m, 8.99◦

RGB
lvl = 1 314.3m, 53.1◦ 229.1 m, 46.7◦ 235.5m, 41.5◦ 241.9m, 48.9◦
lvl = 2 − 484.7m, 85.8◦ 478.0m, 85.2◦ 464.7m, 85.5◦

LIDAR
lvl = 1 − 47.9m, 9.6◦ 49.7m, 12.1◦ 36.5m, 8.95◦
lvl = 2 − 53.9m, 9.29◦ 87.1m, 36.3◦ 38.7m, 9.70◦

The Performance of VMLoc in Indoor Scenarios
We first evaluate our model on the 7-Scenes dataset to
demonstrate its effectiveness in fusing RGB and depth data
in indoor scenarios. Table 1 shows the comparison between
VMLoc and the competing approaches. The results are re-
ported in the median error (m). VMLoc and VidLoc use
both RGB images and depth data, while others are based on
RGB images only. Our proposed VMLoc outperforms the
other five baseline algorithms in terms of both the position
and orientation error. Compared to AtLoc, VMLoc shows a
5.0% improvement upon the position accuracy and a 7.3%
improvement in the rotation. In particular, in the Stairs sce-
nario, VMLoc can reduces AtLoc position error from 0.26m
to 0.24m and the rotation error from 10.5◦ to 10.0◦. This
because Stairs is a highly texture-repetitive scenario and the
structure information captured by the depth map can help to



Figure 4: Input images and input projections of lidar with
different levels of corruption.

improve the network performance. The improvements made
in this case match our expectations and are mainly because
of the introduction of depth maps which provide external in-
formation for the pose estimation.

Performance of VMLoc in the Driving Scenarios
We further evaluate our models on the Oxford RobotCar out-
door dataset. Table 2 summarizes the results of this experi-
ments. Compared to AtLoc, VMLoc generates 26.5% and
40.0% improvement in position and rotation accuracy re-
spectively. We notice that the overall improvement is due
to a large increase in rotation estimation as the projection of
point cloud can better capture the structural information of
the scene which can largely help estimating more accurate
orientation. While the improvements in the position accu-
racy are less evident than that in rotation accuracy, the main
reason may be that the point cloud in the Oxford Robot-
Car dataset is relatively sparse which can only provide lim-
ited complementary geometric information for position es-
timation. The visualization of MapNet and VMLoc trajec-
tories for LOOP1 and FULL1 are shown in Figure 3. VM-
Loc yields a closer prediction w.r.t. the ground truth and a
smoother trajectory than MapNet.

Ablation Studies of VMLoc
To further verify the performance of the fusion mecha-
nism, the ablation studies are conducted on Oxford Robot
Car Dataset. The result is shown in Table 3. With the help
of variational learning and importance weighting, image-
VMLoc performs better than MapNet and AtLoc as the
variational learning learns the latent distribution of input
module, which can better deal with the variation of differ-
ent scenes. By directly concatenating the features of dif-
ferent modalities, attention-VMLoc does not provide a bet-
ter performance which indicates that the concatenation is
not an effective fusion module. By fusing RGB and depth
features through PoE, PoE-VMLoc performs better than
image-VMLoc, while the slight increase indicates that PoE-
VMLoc also does not make full use of the lidar inputs. The
best performances in all 4 scenes are achieved by VMLoc
which indicates that it is a more effective fusion mechanism
than attention-VMLoc and PoE-VMLoc. Moreover, com-
pared with the performance in LOOP1 and LOOP2, a larger
increase is yielded in FULL1 and FULL2. Since FULL1
and FULL2 are more complicated than LOOP1 and LOOP2

(Maddern et al. 2017), the model cannot regress precise po-
sition only with the help of lidar.

Computational Complexity
The usage of importance weighting may raise concerns
about the computational complexity of our algorithm. Nev-
ertheless, during inference, VMLoc requires almost the
same GPU time and the same FLOPS as attention-VMLoc
and PoE-VMLoc. As the importance weighting is only used
in the objective function in the training process, VMLoc has
no appreciable difference compared with PoE-VMLoc dur-
ing inference. With regards to the training process, when the
importance weighting is set to 10 and VMLoc, attention-
VMLoc and PoE-VMLoc share the same latent feature
dimension of each module, TVMLoc ≈ 1.23TPoE ≈
1.02Tattention where T represents the running time. We can
see that the importance weighting does not greatly increase
the computational complexity, as the importance sampling
mainly influences the pose regressor part of VMLoc which
only accounts for less than 5% of the number of parameters.

Robustness Evaluation
To demonstrate the robustness of VMLoc in the case of
missing input, we test our models in the condition where in-
put modules are degraded or missing. We adapt the data cor-
ruption method from (Chen et al. 2019). In order to describe
different data corruption conditions, we define the data cor-
ruption level from lvl = 0, 1, 2. lvl = 0 means that there is
no corruption; lvl = 1 means that there is mask of dimen-
sions 128 × 128 pixels overlaying the input; lvl = 2 means
that the input is totally missing (see Figure 4).

Table 4 shows the performance of different fusion mech-
anisms under these corruption conditions. It is clear that
when either lidar or image input is corrupted, the perfor-
mances of all fusion mechanisms deteriorate. This indicates
that all three learning-based fusion mechanisms make use
of all inputs to regress the position and the deterioration
of any input would affect their performance. However, in
most cases, VMLoc performs better than attention-VMLoc,
PoE-VMLoc, and AtLoc, which verifies the effectiveness of
our fusion mechanism. Meanwhile, we also notice that the
corruption of the image has a larger influence than the cor-
ruption of the lidar signal. This denotes that in this case,
these fusion mechanisms still mainly relies on RGB image to
make the decision which can be due to two reasons. On the
one hand, the lidar signal in the Oxford Robot Car dataset
is relatively sparse. On the other hand, even though the li-
dar signal has a wide viewpoint and is invariant to illumina-
tion, it is less informative (Tinchev, Nobili, and Fallon 2018;
Tinchev, Penate-Sanchez, and Fallon 2019).

Conclusion
Effectively exploiting multimodal data for localization is
a challenging problem due to the different characteristics
among various sensor modalities. In this paper, we have pro-
posed a novel multimodal localization framework (VMLoc)
based on multimodal variational learning. In particular, we
designed a new PoE fusion module by employing unbiased



objective function based on importance weighting, which
is aimed to learn the common latent space from different
modalities. Our experiments have shown that this approach
produces more accurate localization compared to existing
single image or multimodal learning algorithms, either on
benign conditions or when the input data are corrupted.
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