CSP: a practical process algebra

Stephen D. Brookes and A.W. Roscoe
CMU and Oxford

February 12, 2021

Abstract

We recall our work with Tony Hoare in developing the process algebra
form of CSP. The semantics we developed with him, based on sets of
observable linear behaviours, led to a very distinctive style of practical
application using refinement checking, as embodied in the FDR model
checker. We outline the history of FDR, showing how its power has been
enhanced over time, and we showcase some major industrial applications
to demonstrate its versatility. We show that CSP is a process algebra with
firm semantic foundations and a wide range of practical applications. In
doing so we pay tribute to Tony’s profound and continuing influence.

1 Introduction

In this paper we look at how CSP was developed: the language, its semantics, its
implementation, and mechanized verification tools. We show how the refinement
checker FDR evolved, and we survey some examples of the practical applications
these developments have inspired. These include some of the most exciting
industrial and academic applications of formal methods. Overall we want to
demonstrate that the CSP framework combines theory with practice in a natural
manner, and is widely applicable in the real world. This kind of combination,
driven by an interplay between intuition, theoretical investigation, and tool
development, is typical of Tony’s attitude toward science and research.

The first part of the story of CSP and FDR amounts to a re-telling of the
history recounted in Bill’s contribution to Tony’s 60th birthday Festschrift, held
at Oxford in 1994 [56], offered here with the benefit of hindsight. Steve has
added to this account with his own perspective, again tempered with experience
gained by the passing of time. We include some thoughts prompted by memories
of later symposia and events in honour of Tony. Our account may appear a little
revisionistic in places, as we look back over events whose long-term influence,
significance, or place in the overall scheme may not have been so clear at the
time.

CSP in more or less its present form was developed in the late 1970s, as Tony
worked to develop an appropriate abstract framework for modelling patterns of
communication and concurrency. In fact Tony’s own ideas evolved over this

period, as can be seen from his publication record. By “current form” we mean
the process algebra version of CSP described in the journal article [11] and later
in Tony’s and Bill’s books [28, 57, 59]. The name came into existence earlier,
used for an imperative programming language of “communicating sequential
processes”, as outlined in Tony’s CACM paper [26]. By the late 70’s Tony
had been thinking about the nature of concurrency for over ten years: how to
structure it, how to reason about it, and what makes it difficult.

This paper recounts some key stages in the evolution of CSP, from its origins
to its utility, the emergence of later variant forms of CSP, and how it came to
be used in conjunction with formal verification tools, principally FDR. Tony’s
direct day-to-day influence at the start of this story was immense, as we both
became deeply involved in an intensely interactive research collaboration with
him, aiming to put CSP on solid semantic foundations. The prominence of
Tony’s role gradually reduced over the years as more people got involved, so
that by the time when FDR itself was born the tool designers were operating
more or less independently of him. Nevertheless his influence continued to be
felt, both through the decisions made in the creation of CSP and the philosophy
he imparted to it and to us. We have attempted to capture these influences in
this paper, and we have tried to capture the flow of ideas and motivations with-
out providing much mathematical detail. Another paper on FDR’s industrial
impact, with a slightly different emphasis and slightly more technical detail of
some of the stories related here, is [21]. In many ways that paper should be
thought of as a counterpart to this one. For a deeper look at the mathematical
underpinnings one can consult the original journal article known (at least to its
authors) as HBR [11], and Bill’s books.

Tony has summed up his general philosophical attitude in a number of wise
adages, many of which are frequently quoted. Since concurrency and distributed
systems are undoubtedly complex, and abstraction is so evident in his design of
CSP, its theories, and its use, industrial and otherwise, we invite our audience
to recall this one:

In the development of the understanding of complex phenomena,
the most powerful tool available to the human intellect is abstrac-
tion. Abstraction arises from the recognition of similarities between
certain objects, situations, or processes in the real world and the
decision to concentrate on these similarities and to ignore, for the
time being, their differences.

Tony’s persistent search for realistic abstractions, grounded in intuition and
understanding, has been a major driving force in the development of CSP.

2 Prehistory 1978-91

The two of us began doctoral studies at the Oxford University Programming
Research Group (PRG) in 1978. We both began working with Joe Stoy. We
had studied Maths together for the three years before that, as undergraduates

at University College Oxford. In our final undergraduate year we had learned
about the Scott-Strachey approach to denotational semantics, and its domain-
theoretic foundations, in a series of lecture courses taught by Stoy. We were
among the first cohort of students to obtain copies of Stoy’s then new text-
book [66], published in the United States but not yet generally available in the
United Kingdom. Around the same time we studied domain theory in more
depth with Dana Scott, and Steve served as a teaching assistant for Scott’s lec-
tures on the subject!. While Strachey had passed away in 1975, Scott remained
a prominent figure in the small world of Oxford Computer Science, though
his position and office were nominally associated with the Philosophy depart-
ment. Tony’s own academic grounding had been in Classics (known in Oxford
as Greats, a degree which includes philosophy and logic), before his career path
led him into computer science, so between us we covered quite a range. Tony
had already developed an abiding interest in logic, philosophy and computers
arising from his studies and his experience as a scientific translator [33]. At the
time there was a feeling of excitement in the air, concerning denotational seman-
tics and its potential applicability to an ever widening range of programming
language paradigms. Concurrency offered a particularly interesting challenge.

Tony’s journal article titled Communicating Sequential Processes appeared
in 1978, published in the Communications of the ACM. Of course this was
the origin of the acronym CSP. In this usage the name refers to an imperative
language of sequential processes, each with a private internal state, operat-
ing concurrently and communicating by synchronized message passing. This
language design offers an alternative and striking contrast to shared-memory
parallelism, in which processes interact by reading and writing to a shared
global state. Hoare’s language was an elegant generalization of Dijkstra’s non-
deterministic guarded commands, extended with synchronous communication
and concurrency. The syntactic constraint that processes in CSP are sequential
rules out nested parallel composition, but allowed Tony to provide a concep-
tually simpler informal account of program behaviour. Despite this limitation
Hoare’s language was powerful enough to express a number of compelling exam-
ple programs, and the paper argued forcefully for the benefits of a clean, simple
language design. Although the CACM paper did not dwell on semantic issues
in any depth, the combination of imperative features such as assignment with
message-passing and concurrency raised some obvious questions. What kind of
semantic domains would be required to properly account for these features in
combination, using the techniques of denotational semantics?

Before continuing it might be helpful to offer a brief glossary for some tech-
nical terms needed in our account. In the denotational framework one must
define semantic domains whose elements represent abstract meanings for pro-
grams, and then define a syntax-directed semantic function that maps programs
into meanings. The main challenge is to find suitable sets of meanings to serve
as semantic domains: abstract, mathematically tractable, and detailed enough

L After Dana took Steve with him to CMU in 1981, Bill taught domain theory based on
Dana’s information systems for many years at Oxford.

to properly account for program behaviour; furthermore the semantics must be
compositional. The word “suitable” refers to the need for meanings to be “com-
positional”: it must be possible to define the meaning of a program from the
meanings of its syntactic subphrases. This characterization of a basic tenet of
denotational semantics is attributed to Christopher Strachey (quoted in Stoy’s
book), but similar principles date back to Frege and even earlier, albeit in set-
tings far removed from computer science. In contrast, the operational style of
semantic description involves the definition of an abstract machine whose execu-
tions describe program behaviour. One typically defines a set of configurations
for the abstract machine, and a transition relation describing the steps taken by
the machine as it executes the program. There are, arguably, some advantages
to the operational method: there is less need to invent semantic domains, and it
may be quite straightforward to specify step-by-step behaviour. But these two
approaches, denotational and operational, should really be seen as complemen-
tary instead of competitive. We began our foundational investigations with an
open mind, using operational intuitions to guide our denotational quest.

David Park had given a denotational semantics for a simple shared-memory
parallel language, in which processes denote sets of traces built from steps that
describe the state changes made by the atomic actions performed by the process,
allowing for interference by an “environment” of other processes running in par-
allel. Matthew Hennessy and Gordon Plotkin gave a shared-memory semantics
using a semantic domain of “resumptions”. Plotkin also gave an operational
semantics for a version of imperative CSP that allowed nested parallel composi-
tion and included a more flexible mechanism for naming processes, showing that
Hoare’s syntax restrictions, imposed for pragmatic reasons, need not actually
cause semantic complications. But none of these semantic accounts readily fit
the bill for the CSP process algebra. Park’s model is not obviously adaptable for
a communication-based language; the technical details supporting resumption
semantics are rather intricate, involving a recursively defined semantic domain
built with the Plotkin powerdomain construction. Plotkin’s operational model
sheds no light on the kind of denotations that might be suitable for the process
algebra.

Tony was certainly aware of the need for solid semantic foundations. He was
surely aware of the work of Park and Plotkin. We both studied this work care-
fully, as well as Milner’s work on CCS (A Calculus of Communicating Systems).
All of these people were well known to Tony. Park was a frequent visitor to Ox-
ford, at one time sharing an office with us in the Programming Research Group
building on Banbury Road. Robin Milner has spoken eloquently of his deep
personal friendship with Tony, and their long series of wide ranging discussions
on the nature of concurrency. Foundational questions, and concern about the
potential complications that might arise, must have influenced Tony’s decision
to disallow nested parallelism in the original CSP language, and this resulted
in a language for which he felt comfortable giving an intuitive account. He was
able to do this without too much concern for technical foundations, but in a
manner convincing enough that the CACM paper is nowadays seen as a classic
of clear exposition. When he did turn his attention to foundations, he chose to

focus instead on a more abstract process algebra, devoid of assignable variables
and mutable state. For historical reasons, to maintain links with the original
language, the process algebra is still known as CSP; in retrospect, since the pro-
cess algebra does permit nested parallelism, it might have been more accurate
to have chosen the name CPP, for Communicating Parallel Processes.

By late 1978 Tony had already proposed a simple model of communicating
processes, based on prefix-closed sets of finite traces. A trace is a sequence of
events representing the input and output actions in which a process may engage.
There is a very simple intuition behind this trace semantics, and it amounts to
the first step towards our ultimate semantic framework based on observable
linear behaviours. In essence, a sequence of actions is the simplest possible form
of observable behaviour one can imagine. But it quickly became clear that trace
semantics was too simple, as it was impossible to distinguish between a process
that could either communicate or stop, and a process that must communicate.

The two of us recall a series of meetings held in Tony’s office, in which Tony
outlined the traces model and its defects, and the challenge emerged: to de-
velop a more expressive model, capable of accounting for non-determinism and
phenomena such as deadlock, based on Tony’s strong intuitions about concur-
rency. As we recall, we two started to play with sets of traces equipped with
“acceptance sets”, ordered by superset, but after a short while we convinced
ourselves and Tony that it would be more natural to work instead with the
complementary notion of “refusal sets”. We used the term “failure” to refer to
a trace paired with a refusal set, so this was the origin of that nomenclature.

Even before this, Bill’s first efforts under Tony’s supervision had involved
creating a (traditional domain-theoretic) semantics for the nascent CSP process
algebra. In January 1979 Steve implemented this semantics using SIS (Semantic
Implementation System), essentially a giant lambda-calculus reduction engine,
built by Strachey’s former student Peter Mosses, that allowed for test-bedding
of denotational definitions. It soon became clear that this path of exploration
would require computational power far beyond the resources available at the
PRG. Even in the somewhat better equipped Nuclear Physics Laboratory we
found that analysing the behaviour of a simple recursive process for recognizing
palindromes over a two-letter alphabet was impractical. We abandoned that
line of development and looked instead for a more tractable semantics and a
more efficient way to perform analysis.

We feared that to handle the nondeterminism inherent in concurrent execu-
tion we might need to use powerdomains, and perhaps even a recursively defined
domain akin to resumptions. 2 Eventually it became clear that we could in fact
design a denotational model for CSP without resorting to such complexities:
we could manage quite well with sets of suitably generalized traces (failures,
divergences, and so on). Such sets, formulated with appropriate closure prop-
erties, form domains ordered by set inclusion. Equally well, they form domains

2There are three widely known powerdomain constructions: the Hoare, Smyth, and Plotkin
powerdomains. This nomenclature is yet more evidence of Tony’s wide influence. The use of
his name in this context refers not to his work on CSP but to a connection with Hoare Logic
and partial correctness.

when ordered by reverse containment, or “refinement”. Loosely speaking, and
grossly over-simplifying the technical challenges, powersets turned out to be suf-
ficient. This was because Hoare, in paring down to the essence of concurrency,
had stripped CSP of all of the other complexities such as procedure calls, rich
data types and first class functions, namely the features of regular programming
languages that typically require more semantic sophistication.

Subsequently Steve and Bill worked to flesh out a mathematical framework to
validate the overall aim: processes should denote sets of observable behaviours,
where the notion of observability should be closely tied to intuition and capable
of handling deadlock and non-determinism. The realization that it is appropri-
ate to model processes in this manner was driven by two important intuitions,
advocated very strongly by Tony:

1. Processes and specifications are essentially the same thing: sets of ob-
servable behaviours. In the first case this represents the behaviours that
a process might be seen to perform. In the second it is the set of be-
haviours that a specification permits. This leads to a strong focus on
behavioural specifications: assertions about processes that all their indi-
vidual behaviours are correct, rather specifications ones which need to go
beyond this, for instance asserting that a process treats all members of
a set A of events symmetrically. So Tony, in his book, concentrates on
the “satisfies” relationship: every trace of P satisfies some predicate R on
traces. Specifications of this form are termed behavioural.

2. Refinement lies at the core of reasoning about CSP. Refinement P C @ is
interpreted as reverse containment on sets of behaviours: P O . This is
natural under these conditions, making refinement very intuitive and easy
to exploit: a process P satisfies behavioural specification S if and only
if S C P. For every behavioural specification R there is a least refined
process Pr that satisfies R, and we immediately get that a process @
satisfies R if and only it refines Pg.

It is typical of Tony that, having taken inspiration from elegant but poten-
tially Baroque theories he would seek to find his own style, one that was both
simple and intuitively right, without requiring deep background knowledge of
domain theory by way of justification.

Traces alone gave insufficient information to account for deadlock and non-
determinism, so we looked for ways to enhance traces with extra information.
Tony’s instinct was to look for a solution that was just expressive enough, rather
than to go for one that could potentially capture too much detail: search for
the most abstract solution that is just concrete enough to do the job. Hence
the “traces plus” philosophy that has been embodied in the CSP approach
to semantic modelling ever since. In essence what we did was to use richer
collections of behaviours as the need arose.

A major step along the way, indeed the step that paved the way for FDR,
concerns the failures model of CSP. This emerged as the fruit of an intensive
collaborative effort between Tony and the two of us, culminating in the JACM

paper [11]. This paper introduced the concept of modelling concurrent processes
as sets of failures. A failure is a finite trace plus a set of events refused at the end
of it; this coupling of a trace with a refusal set is the minimal way to equip traces
with additional information that allows a compositional treatment of deadlock
and nondeterministism. However, that paper left open some issues that we only
resolved later with the introduction of divergences and divergence strictness.
To begin to understand these notions, first think about the traces model. First
note that trace sets, ordered by set inclusion, form an especially simple kind
of Scott domain — a complete lattice, with both a least element (STOP, the
process with the empty set of traces) and a greatest element (RUN, the process
that has all possible traces). RUN is also the least element under the refinement
ordering. It should come as no surprise that any process algebra term F(p) with
a free process variable p represents a monotone function of the trace set that
is put in place of p: the more traces p has, the more F(p) has. Also note that
monotonicity means the same thing, even if we reverse the ordering.

In denotational semantics one computes the meaning of a recursive term
defined by p = F(p) as a fixed point of the function F: usually the least fixed
point in some ordering on the underlying semantic domain. In the traces model,
as outlined above, there are two obvious choices. The one suggested by the
obvious implementation of recursion — a recursive term is simply unwound —
is the least fixed point with respect to the subset ordering; this fixed point
contains all and only the traces that are in F"(STOP) for some finite number
n, so obtainable by finitely many unfoldings of the recursion. The intuition
behind this is simple: a finite trace of the recursive process always “appears”
in a finite time, so belongs to F™*(STOP) for some n. A recursive process is
deemed to have just those traces that can be proven to exist by unfolding its
definition.

However, taking a specification-oriented view, one might argue instead that
a recursive term should be assumed to have any behaviour it cannot be proved
not to have. This suggests interpreting a recursive process as a least fixed point
with respect to the refinement ordering, or equivalently as a greatest fixed point
with respect to set inclusion. In some ways this attitude might have been closer
to Hoare’s philosophy at the time. In [27] he is a little vague about this, stating
that there is an analogy with BNF grammars, but this idea seems to align more
with the subset-least approach than the refinement-least approach. In any case
it was of no importance for any of the examples in his paper, for in common
with virtually all sensible elementary recursive definitions in CSP, they all have
the unique fized point property, meaning that the greatest and least fixed points
are equal.

With the failures model, presented in [29, 11], we had no such luxury of
choice: the structure of the model meant that there was no subset-least element.
This led us to use instead the refinement-least fixed point. Thus the denotation
of the recursion that unwinds for ever, namely p = p, and some other unguarded
examples, is CHAOS, the process with every trace and every possible refusal
set. This, and the decision to identify any process that could perform an infinite
sequence of hidden actions with CH AOS, seemed to say that a process engaged

in such a divergence can refuse anything, which is a natural idea, and also hints
strongly at divergence strictness. As Tony said, a process that might diverge is
a catastrophe. Incidentally, for guarded recursive definitions the lack of choice
here is irrelevant, because again there is a unique fixed point and thus it must
coincide with the greatest one [28, 54].

Unfortunately the failures model was still not quite what we needed; we no-
ticed some subtle defects, which we spotted in algebraic terms: an intuitively
reasonable law of process equivalence (involving the hiding operator and diver-
gence) was not validated by the semantics. Divergence was interpreted as the
existence of a potentially infinite sequence of invisible actions, and the failures
model did not properly account for this kind of undesirable behaviour. This
made it difficult to reconcile the picture of a process as a set of failures with
operational intuition. These problems were resolved by clearly distinguishing
between stable process states (ones with no invisible action available) and un-
stable process states (where a possible invisible step exists), and by recording
divergence explicitly. More than anything else the key to this resolution was
to understand the relationship between the behaviours recorded in CSP models
and an operational semantics for CSP that we had worked out recently, ex-
pressed in the form of a Labelled Transition System [10, 54, 14]. This LTS style
of operational description was also used for CCS [43, 42].

This series of development steps, gradually incorporating more detail to
overcome problems, culminated in the failures-divergences model [12], in which
divergence is modelled as a catastrophe: any process with the capability of
diverging is equated with the refinement-least process. This form of divergence-
strictness became a key ingredient in the standard theory of CSP.

A feature common to all of these trace-based models of CSP, from (just)
traces to failures and failures+divergences, is the use of prefiz-closed sets of
traces. But why prefix-closure? Again the answer goes back to Tony’s desire to
connect with intuition. If one can observe a sequence of actions, it makes sense
to say that one must also have been able to observe each finite prefix of that
sequence, stage by stage as the sequence evolves. So these semantic models all
deal with traces that represent partial or incomplete program executions.

Looking back, it is now evident that we made a number of design choices,
based on intuitions about program behaviour and the nature of observable be-
haviour. Of course these choices helped to focus our technical investigations and
guided us towards our choice of semantics. Other design choices could have been
made, if we had been motivated to take a different view. For example in a series
of later papers, Brookes shows how to develop a semantic framework based on
complete traces, including infinite traces, noting that it then becomes possible
to reason about liveness properties (something good eventually happens) as well
as safety properties (something bad never happens). Absence of deadlock, and
freedom from divergence, can both be seen as safety properties, so one might
say in retrospect that we chose to focus on safety properties alone. Brookes also
described a denotational semantic model using partial orders (pomsets) rather
than traces (linear orders), embracing ideas from so-called “true concurrency”.

As already mentioned, Milner’s CCS is another prominent process algebra,

developed at Edinburgh during a period of years that overlaps with the gesta-
tion of CSP at Oxford. Milner’s CCS book, published by Springer, appeared
in 1980 before HBR (1981 in draft form as a tech report and in JACM 1984)
and Tony’s CSP book (1985). but after Hoare’s CACM paper (1978). It is
fair to say that the two process algebras emerged independently and grew up
separately. According to Milner, in CCS “There is nothing canonical about the
choice of the basic combinators, even though they were chosen with great at-
tention to economy. What characterises our calculus is not the exact choice of
combinators, but rather the choice of interpretation and of mathematical frame-
work.” The two process algebras are based on very different interpretations and
mathematical foundations. CCS processes were interpreted operationally with
labelled transition systems, using “bisimulation” as the notion of process equiv-
alence; bisimulation analyses the branching behaviour of processes. In CSP
processes denote sets of linear behaviours, and process equivalence is based on
failures and divergences. As a rough and ready comparison, CSP is trace-based,
with a linear-time philosophy, while CCS is tree-based with branching-time.
The identification of CCS and CSP as two halves of this dichotomy should be
taken with a grain of salt, as it over-simplifies the story, but it does serve to
emphasise their differences. Nevertheless these two process algebras have many
shared aims, and each has had major impact in the practical world of mod-
elling, specifying and verifying concurrent systems. For a detailed account of
the relationship between models of CSP and CCS the reader is encouraged to
look at a paper by Brookes[?]. Tools for model-checking based on CCS (and
its successors) and bisimilarity have been successfully deployed in a variety of
industrial settings, a situation that resembles that of CSP and FDR.

As an aside, Tony’s attitude towards operational semantics has always been
broad and not constrained by the convenient “tyranny” of labelled transition
systems. For example, an entirely different approach based on algebraic reduc-
tions to something resembling normal form, as in [61, 30], was used in Tony’s
work on unifying theories [31].

By the time we published the failures+divergences model, CSP and its
semantics were already finding applications, notably through occam and the
Transputer, of which the story is told elsewhere in this volume. CSP, mean-
while, was still largely regarded as a blackboard language, used for developing
high level and generally small illustrative models as experiments, for study-
ing the construction of classes of systems such as routing networks. CSP was
of course ideally suited for this latter role, because of its built-in capacity
for compositional reasoning about properties such as freedom from deadlock:
see [13, 60, 39, 1], for example. As a slight rephrasing of a well known saying,
to justify our evolutionary approach to semantic development, we offer:

Industrial necessity is the mother of invention (Principle A)

Over and over again this principle has driven important innovation in CSP
and related tool development and use. Frequently that innovation has been
theoretical: we were driven to build theory by the need to realise some industrial

need. Reluctance to having to say “that can’t be done” to a user can be a
remarkable motivator. This was first evident in the development of the first
industrially relevant verification tool, the occam transformation system, which
manipulated a language that is essentially the process algebra version of CSP
with the addition of imperative state. This was because of the practical utility
of occam, particularly in the design of the transputer itself where it was treated
as a low level language, meaning that the occam transformation could directly
manipulate hardware designs. It is so much more exciting to develop theories
and tools with an immediate practical objective to test success.
Another saying that may be adapted to our story is

A little theoretical knowledge can be a dangerous thing. (Principle B)

By this we mean that if some theory tells you that if some problem is too hard
to solve, particularly in the worst case, that does not necessarily imply that it
is not worth trying to create a practical solution. The prime example of this in
our tale is as follows: as the need for automated formal methods tools became
apparent during the 1980’s, and model checkers for other notations came onto
the scene, a paper [34] was published which seemed to indicate that there was
no point in trying to do this for CSP: Kannellakis and Smolka established that
equivalence checking between processes over any CSP-style behavioural model
is, in the worst case PSPACE-hard, measured in terms of the state-space size
of processes. This size is the number of states of the corresponding LTS, which
can be exponential in the size of the process description in CSP. PSPACE-
hard is a higher (worse) complexity class than NP-complete, which at least
in the late 1980’s was regarded as an indication of impracticality by many.3
Equivalence checking is of the same complexity as refinement checking. Since it
was apparent that we would likely need a refinement checker to best automate
CSP verification, this negative result put a damper on our ambition to create
one, and certainly delayed its emergence by several years.

3 FDR1 1991-96: Communication, fault toler-
ance and the beginning of time

Fortunately, however, Principle A above rescued Bill and his group from failing
to understand Principle B. While the best known work in its collaboration with
inmos centred on analysis through occam, the modelling of transputers also
involved CSP in various ways, particularly in the group’s work relating to the
H2 or T9000 transputer with its pipelined processor and dedicated multiplexed
link hardware [55]. Geoff Barrett’s analysis of the latter led to him asking us to
build a CSP refinement checker to support this.

3The perception of how intractable NP problems are has changed significantly in the inter-
vening years, thanks to the emergence of SAT-checkers, although PSPACE-hard problems are
still mostly viewed as impractical. Thus in the late 1980’s we thought that “Automating the
analysis of CSP models looks intractable because it is NP-hard.” Nowadays we might have
concluded the same but with NP replaced by PSPACE.

10

Forced to think about the problem, we realised that the obvious algorithm
for checking equivalence or refinement between two automata P and @ in any
CSP model (say failures-divergences) is indeed exponential in the worst case in
the state spaces of each of them, as P,Q are normalised or “determinised” 4,
meaning that for each trace of the input process there is only one state of its
normal form. In the worst case the normal form has exponentially many states
(essentially 2V) compared to the number N of states of the input process. This
is illustrated with FDR examples in [57].

1. In most practical cases the normal forms are much smaller than this bound,
frequently being smaller than the original process.

2. In most cases where P represents a specification process, it is significantly
smaller than the implementation (): often with low single figures of states.

3. To check the refinement P C (@ there is no need to normalise @: in the
worst case the product state space of) and the normal form of P is
explored, using an algorithm quite different from those previously used to
verify automata against LTL formulae and similar.

Roscoe formulated FDR’s refinement checking algorithm with David Jack-
son, a former student of Mike Reed, at a meeting in Auch, France, in summer
1991 that was memorable for many more reasons than that. By that time Mike,
Bill, Michael Goldsmith and others had already created the company Formal
Systems (Europe) Ltd (FSEL) as the vehicle for the continuing collaboration
with inmos, and so it was FSEL that created FDR (standing for Failures Diver-
gence Refinement) in the summer and autumn of 1991. They were excited that
it was able to handle Geoff’s examples, and indeed handle CSP systems with
tens of thousands of states on machines such as the Sun workstations, which
were then ubiquitous in our circles.

FDR has always supported the refinement checking of pairs of finite state
CSP processes in at least the following three models: the traces model and fail-
ures/divergences model as already discussed, plus the stable failures model. The
existence of FDR forced Bill to discover the last (though he was also influenced
by a conversation in MIT with Albert Meyer about his work with Lalita Jate-
gaonkar). This model makes a clear distinction between stable failures, which it
records, namely a trace coupled with a set of events a 7-free (i.e. stable) state
cannot perform, and the non-acceptance from a set of events because a process
is diverging. The stable failures model models a process as its finite traces and
stable failures. Its most obvious use is as a more efficient way of analysing pro-
cesses which are known to be divergence-free so that the expense of calculating
divergence information is wasted. But it has many others.

This was not the only time when industrial necessity caused us to discover a
model that our theoretical expectations had concealed from us: the same thing

4This means determinised in the automata theoretic sense, which does not turn them into
deterministic CSP processes: annotations are used to make individual states nondeterministic
where necessary.

11

happened later with the revivals model [58]. Yet again industrial necessity
removed blinkers that had been placed by our theoretical expectations.

As constructed, FDR could naturally prove the absence of two of the three
fundamental pathologies of concurrency: deadlock and divergence (which can
manifest itself as a network engaging in an infinite series of hidden internal
communications). Their respective absences reduce to simple refinement checks
respectively over stable failures and failures-divergences.

Completing the set of pathologies, FDR has also always been able to calcu-
late whether a process is deterministic in the extensional sense arising from the
failures-divergences model, rather whether its operational semantics is struc-
turally, or intensionally deterministic. In this it reaches firmly back to Tony’s
original instincts about understanding systems. Determinism cannot be ex-
pressed directly as a refinement, but separate cunning reductions to refinement
were discovered by Bill and Ranko Lazié¢: both involve two copies of the object
process P in the check so that you can compare P against itself.

The paper [56] reported on the first version of FDR, which with the benefit
of hindsight we will rename FDR1, with that paper also positing ideas that took
shape in later versions. The most interesting example in that paper illustrated
an “off piste” use of FDR, namely not really examining a concurrent system as
such but a combinatorial system — the game of peg solitaire — reformulated as
one. This shows beautifully how tools of its ilk can solve problems which are
really difficult for humans, and do so reliably. This type of demonstration that
model checkers, at least in some cases transcend what humans can achieve, is
always valuable.

At the time of [56] FDR could handle a version of Solitaire with about 0.5

While with occam we had a practical language that could describe serious
implementations, we built FDR for what was at that point a blackboard lan-
guage with a rather flexible notation, to some extent in terms of what process
operators it allowed, and certainly in the way that process “state”, namely com-
munications introduced by input, by choice constructs and by parameterisation,
and used in constructing data-based communications, were handled. The lan-
guage of FDR1 was an attempt to capture the style of CSP in Tony’s book, and
so had a declarative semantics, both binary and indexed versions of most oper-
ators, and a “script” style of presenting definitions including single and mutual
recursions. Thus a program was a script of channel declarations, definitions
of non-process objects and (typically recursive) processes side by side. It was,
however, clearly just an approximation to what was needed,

Heavily influenced by the style of functional programming represented by
Haskell, in the mid 1990s this developed into a language (mainly developed by
Bryan Scattergood [65]) which could reasonably be described as a Haskell-like
functional language with

1. Essentially no support for character and string handling.

2. Finite sets of sub-process objects as first class objects, because these had
always played a vital role in CSP (for various indexing and selection pur-

12

poses). (The type of sets has no restriction to being finite, but the range
of things one can do with infinite sets is very limited.)

3. An extra construct . (Infix dot) for building compound objects (often
communications), following the event-building conventions that had arisen
in CSP and other process algebras. It typically attaches components to
channel names as in c.2.true, and is overloaded to create complete and
partial objects in user-defined types.

4. A distinguished type representing CSP processes.

5. Notation for describing assertions: properties such as refinement of pro-
cesses that FDR would check.

With only small modifications, this CSPM language remains what FDR uses
today.

FDR quickly became popular among those using CSP and therefore rapidly
“implemented” many small to medium sized examples that had already been
studied in CSP-based papers such as communications protocols, potentially
deadlocking systems and a wide variety of puzzles. The transputer/occam com-
munity, of which we were a part, became frequent users of FDR for experimen-
tation both in academic and industrial circles as is demonstrated by the many
papers that emerged from it in the years roughly 1992-96. Notable users in that
period included IBM UK Labs at Hursley and a commercial and academic group
led by Jan Peleska at Bremen. IBM used it in investigating various concurrent
systems, often in customer-specific work. The Bremen group used it for test
generation in avionics, and they and others have continued to use it for test
generation [50, 51].

However the most interesting project for Roscoe in the early days of FDR was
a collaboration with Charles Stark Draper Labs® of Cambridge Massachusetts [9].
They were building a quadruply replicated processor (for fault tolerance, so
FTP) from transputers and required verification of its properties. Tony had
long before introduced the idea of modelling faulty components in CSP and
analysing the resulting, frequently nondeterministic, systems that are built with
them. From the standpoint of CSP the key insight here was that in order for
multiply redundant systems with voting to work properly, the individual be-
haviours in the absence of faults must be deterministic. If not, a four lane
system might find itself voting between four different but valid answers, or two
pairs of equal ones, even without faults; and that in the case where one had
a fault it would be impossible to distinguish the incorrect answer from three
different but correct alternatives.

The FTP implementation made significant use of measuring the passage
of time, not something incorporated with the CSP of [28] or implemented in
the first versions of FDR. On the other hand, a real time version of CSP had
been developed by Mike Reed and Roscoe [53], but the dense time model it
used meant that it was then far removed from FDR analysis. It was for the

5Most of Bill’s collaborations with Draper were led for them by Neil Brock.

13

FTP work, combined with a challenge from Connie Heitmeyer reported in [25]
(namely the level crossing example) that Roscoe developed the tock-CSP dialect
that includes a special event representing the regular but discrete passage of
time. In this, all timed processes were obliged to synchronise on tock, and
the timing of component processes is captured by the places there they can or
must communicate tock. There are expositions of tock-CSP in [57] and [59], the
second of which compares the two timed versions.

When developed, tock-CSP was seen as a work-around to meet industrial
necessity in place of Timed CSP, and indeed it was used in a wide range of
academic and industrial case studies in that decade. It often then seemed more
popular in practical use than the untimed interpretation of CSP.

The FDRI1 era also saw the beginnings of the application of FDR to security
both at Oxford and elsewhere, requiring the following:

e The descriptions of CSP systems over very complex data and data types,
and the encapsulation of arbitrary attacker behaviour.

e Capturing complex requirements, some of which can be represented be-
haviourally, and some not.

e The latter requires novel forms of abstraction.

These emphasised the shortcomings of the relatively “cheap and cheerful”
machine-readable dialect of CSP supported by FDR1, and pushed forward
CSPM as discussed above.

Applications also highlighted two shortcomings in the core implementation
of FDR: firstly, in common with other model checkers at the time, it performed
very poorly when forced to use virtual memory. That was a big issue because
computers had far less memory than we see today: in the early 1990’s say 8 or
16Mb was typical in a high-end workstation, while hard (magnetic) discs would
be 200Mb or more. The second was the way it recognised that a parallel state
(represented as a packed representation of the enumerated component state)
can perform an action. Specifically, FDR1 recognised the combinations of com-
ponent states that were positively engaged in each top level action. This had
the tendency of exploding in some cases, particularly with many-way synchro-
nisation and/or when many states of a component process can perform that
component’s contribution.

4 FDR2 1994-2007 at FSEL: Protocols, abstrac-
tion and industrial applications

The success of the FDR tool and the known drawbacks convinced us, via Formal
Systems, to create FDR2: a complete rewrite which solved the above problems.
The memory management problem was solved for breadth-first search by the
realisation that we could much more efficiently consider all the successor states
for a given ply together in sorted order rather than individually, meaning that

14

memory access is far from the random pattern seen when storing states in hash
tables, as was then the state of the art hash tables. Initially this was done by
storing states in sorted lists, later these evolved to B-Trees. (Checks involving
divergence were not helped by this, because these use depth first search.) The
second problem was addressed by Bill’s creation of supercombinators® as a novel
implementation technique for CSP and similar languages.

At the same time there was growing realisation of the problems caused by the
state explosion problem whereby the number of states of a concurrent system
(and thus the time and space required to tabulate them) typically grows expo-
nentially with the size of the system. Many approaches to overcoming this were
already being developed for a variety of model checking tools, including com-
pression, data independence, partial order reduction and BDD representations.
FDR2 initially followed the approach of compressions based on CSP models,
and a specialised partial order approach called chase which, with the help of
semantic insight from the user could collapse the state spaces of deterministic
and similar systems involving many 7s.

chase was created for intruder modelling in computer security, as part of
what was probably the most influential use of FDR. Before Gavin Lowe [37]
showed that it was possible to model and analyse cryptographic protocols in
CSP and FDR, analysis tools for these were specialised and narrow. Gavin’s
demonstration that it was possible with general purpose tools triggered an ex-
plosion of research in that area and led to a huge expansion of the understanding
and provability of these protocols. There were many papers and a book [64] on
this approach.

As part of this general project Gavin created Casper [38], a tool which trans-
lates a protocol model in typical notation into a CSP script that checks chosen
properties of the protocol. So effective was this that mediocre students could
produce really impressive-looking work. Casper was the first major exercise in
automatic translation into CSP for verification using FDR, something that has
been repeated for widely different notations since. Indeed most major practical
uses of FDR since have been by this route because, whether we like it or not,
the industrially effective use of verified software engineering are almost always
based on languages that engineers and domain experts already use to describe
and develop systems.

The chase function was introduced to allow crypto protocol intruders — the
processes that accumulate and use in any feasible way the information the can
glean from spying on legitimate parties — to be modelled in CSP for analysis on
FDR. The natural CSP model or the intruder is a sequential process applying
closure under an inference system of everything that has been learned to date.
However, that simple representation creates a component process that is too
large for FDR to model in its usual mode. chase was part of the solution:
dividing the intruder into the parallel composition of small components and
driving all available inferences in arbitrary order. That it was there a valid

6The name supercombinator was inspired by a similar idea used in functional programming
by John Hughes [32].

15

operation comes back to Tony’s concentration on the extensional property of
determinism: the pre-chase intruder is deterministic, so the fact that chase
resolves what look like nondeterministic choices in it is guaranteed not to change
its semantics.

By the mid 1990s Bill’s group were working a lot with a group of researchers
at DRA (later DERA and QinetiQ) on potential uses of FDR in their work,
including security and reliability analysis, led by Colin O’Halloran. Shortly
after developing the chase model of the intruder, Bill was presented by DRA
with a problem which was summarised as representing the reliability and fault
tolerance of the integration of two (then unspecified) legacy systems. Since
much of that analysis was similar to analysing the reactions of an inference
system under a wide variety of changing stimuli, he recognised similarities with
the intruder model and so sketched a solution involving chase. Within a few
weeks two things became clear: first that this suggestion had been a resounding
success and secondly that the pieces of legacy software were those controlling
British nuclear submarines and US cruise missiles (TLAM) [46].

The point of this whole exercise was creating the mandated Release to Service
case of a piece of hardware, an important part of the regulatory framework
around UK defence systems and similar safety-critical arenas. This initiated
a large programme of using CSP and FDR within DRA/DERA/QinetiQ of
release-to-service cases, as reported in [71], including large parts of the avionics
of the Typhoon jet fighter: Figure 1.

Crucial to most of these applications is the ability of CSP to form abstrac-
tions of systems. Abstraction, as explained in the quotation in the Introduc-
tion, means getting rid of the detail you do not need. Tony provided CSP with
abstraction mechanisms through many-to-one renaming and hiding, which he
separated from parallel composition. Roscoe supplemented these with mecha-
nisms such as lazy abstraction, which is usually the correct form beyond the
traces model, mixed abstraction and slow abstraction, the latter being directly
industrially motivated [62].

Translating more languages into CSP

Much of the work on these release to service cases was carried out using tools
for translating other programming notations into CSP. This involved similar
integrations using variations on the chase-based technology, and also verify-
ing systems themselves (as opposed to integrations) using tools for translating
notations such as Statecharts into CSPM.

Even though the logical model of Statecharts, with hierarchies of state ma-
chines and actions, and prioritised actions, and indeed shared variables, is so
different from CSP, it proved possible to translate them into CSP thanks to the
powerful renaming capabilities and multi-way synchronisation Tony had built
into the language. So for example at times when a high priority process can do
nothing, it might perform a no-op action which is renamed to synchronise with
any of the lower priority actions thus enabled [63].

16

Tony suggested in his early writings on CSP that variables, and in par-
ticular shared variables, could be modelled by running them in parallel with
each other and the threads that use them. The system becomes (in CSPM)
Threads [|{|read,writel}|] Vars, where Vars is the interleaving of a sim-
ple process Var(n,i(n)) where n is the name of the variable and i(n) is its
initial value:

Var(n,x) = read?m!n!'x -> Var(n,x)
[1 write?m!n?y -> Var(n,y)

In the case where shared variables are the only means of the threads inter-
acting, Threads\verb can itself be a simple interleaving.

On the surface this coding seems terribly inefficient because the state spaces
of Vars and Threads both multiply up unconstrained. However re-arranging the
system so that each Var(n,i(n)) is grouped with a thread that makes extensive
use of it, and then compressing these groups proves enormously effective as
demonstrated in creating the SVA tool [59] (Chapters 18 and 19): this takes
a pure shared variable program and models it (with many options) in CSP. So
effective is this coding that it models all variables, not just shared ones, in this
way.

One of the keys to the practical industrial use of a tool like FDR is finding
classes of industrial scale systems where the state explosion problem can be
tackled reliably. We need non-specialist engineers to be able to apply the tool
to the systems they develop without needing to be creative in finding new ways
of cutting huge state spaces each time.

This is true of compressing variable-thread combinations as set out above.
It is true of systematic uses of chase and similar over structures where it is pre-
dictably effective. It is also typically true of Statecharts, because though their
semantics seem complex, they impose a deliberately (though intuitively surpris-
ing) sequential behaviour on systems thanks largely to the elaborate priority
rules that we have already referred to.

As reported in [21, 70], two former Oxford students, the father-and-daughter
team of Guy Broadfoot and Philippa Hopcroft, identified the possibility of com-
bining CSP and FDR and existing software engineering approaches [8] to create
a compositional approach to the development of state-machines based embed-
ded control systems. They concentrated on building something that engineers
can use for building reliable systems: they used a fixed, tree-like architectural
style in which components interact with neighbours, expecting responses from
neighbours and seeking a number of standard properties of the resulting systems
such as responsiveness. At the same time each component has a design specifi-
cation and interface specifications. The core of the method is to establish that
each component’s design meets its own interface specification and the standard
specifications. The overall tree structure and these results then guarantee the
overall coherence of the system.

This approach, which was christened Analytical Software Design (ASD), was
based on a tabular notation that was intended to be accessible by engineers.
This notation was based on the Sequence-Based Specification method [52]. The

17

Figure 1: Well established impact: Military release-to-service (Typhoon fighter)
and Verified embedded software (ASML photolithography)

resulting tools could capture designs, generate and interpret the FDR2 checks
of coherence, and generate code implementing the resulting systems. It has
had considerable success in that is was adopted by a number of large compa-
nies (e.g. Philips Healthcare and the photolithography company ASML: see
Figure 1) who developed enormous (hundreds of thousands of lines of code) ver-
ified systems and achieved the improved quality and reduced costs as reported
in [70]. In terms of scale and scalability of verification, it was by some way the
most successful we knew of, representing a form of compositional verification.
This was possible because of the refinement, modelling and abstraction capabil-
ities of CSP and because ASD’s inventors were able to find such a useful class of
systems that was simultaneously tractable to verify and challenging to develop
correctly without verification.

5 FDR2 into academia: exploring implicit check-
ing, and Timed CSP (2007-12)

As we write this, FDR is approaching 30 years old. For its first roughly 10 years,
it was actively developed by FSEL: while sales of the software never came re-
motely close to paying for this work, research-style contracts from organisations
like DERA who wanted further functionality were sufficient. For the next few
years, while the tool itself was having great technical successes, the funding
environment changed and it was no longer possible to fund core development
in the “commercial” environment of FSEL. That, and possibilities for explor-
ing further model checking techniques in the context of FDR, made it logical
to move the tool to what was in many ways its spiritual home, the Computer
Science Department of Oxford University. So from 2007-11 FDR2 development
was supported by an EPSRC grant there [3], covering

e The implementation of Timed CSP. This was reported in [4], though an
important gap has only been filled very recently, as we will see later. The
implementation was possible thanks to the work of Joel Ouaknine who
showed [45] that Timed CSP could be reinterpreted over a discrete time
domain in such a way that satisfaction by the same term of continuous
and discrete properties are closely related. He further showed how the dis-
crete interpretation could be modelled by FDR with some small additions:
modified versions of two operators to give them the correct treatment of
tock.

e Experimentation with several techniques which, in other contexts, had
proved successful in reducing the state explosion problem, including SAT

18

checking [48] based implementations of refinement, CEGAR [47] and Counter
Abstraction [40].

e The implementation of more models of untimed CSP, in addition to the
three discussed above.

The Timed CSP implementation was very successful in terms of coping
with complex implementations, but lacked support for compositional reason-
ing, something only rectified very recently [41].

The SAT checking and CEGAR experiments failed to produce the spectac-
ular results anticipated. In the case of SAT this was despite making the usual
compromise of restricting to bounded depth model checking. Probably this was
because the steps of creating the usual two-layer FDR representation of a sys-
tem plus the normal form specification plus the translation into propositional
calculus created too many variables. The SAT experiment was carried out twice
with similar results.

It became clear that the implementation of additional models is quite com-
plex given the niche user communities they are likely to attract. With the
benefit of hindsight the most significant addition to FDR2 in this dimension
was the priority operator proposed in [59)].

In its final years, including the above, FDR2 had an intractably complex
code base which made natural developments such as multi-core and cluster
parallelisation difficult to realise and support, though a prototype was reported
in [24]. FDR2 had no integrated type-checker for CSPM, as a consequence of
considerable complexities introduced by its treatment of . (infix dot), which
was a major drawback. (There was a separate but slow and cumbersome type-
checker for its last few years.)

6 FDR3 and FDR4: back to basics and into the
cloud (2012-19)

As we have seen, FDR2 was around for many years (about 18) and went through
many versions. At the end it was increasingly in need of a re-write. Fortunately
salvation stepped forward in the person of Tom Gibson-Robinson who essentially
single-handedly took this on, both during his spare time in his unrelated doctoral
project, and later under sponsorship from DARPA found for us by our old
collaborators Draper. The result was FDR3 which thus, like FDR1, arose out of
an industrial collaboration, in this case the use of FDR as part of the “red team”
(attacking, fault finding) activities in the HACMS (high assurance autonomous
vehicle) project.

The key references on the development of FDR3, including more detail and
objective comparisons, are [19]. It did not carry forward some of the less used
features of FDR such as the additional models.

Tom quickly solved the type-checking problem by excluding cases of “.” that
were little or never used. This is, as one might have hoped all along, fully
integrated into the tool.

19

Tom simply re-wrote the entire tool from scratch, producing cleaner imple-
mentations of the same core CSP manipulations and greatly improving on the
B-tree structures used to store bulk states. FDR3 using a single core gives
both speed-up and better memory performance of a factor typically 2-3 over
FDR2 [19].

All versions of FDR have used a two-level implementation strategy for CSP:
the tool identifies the low-level components (generally the sequential compo-
nents) of a system, compiles these into explicit state machines, and devises
recipes for combining these into an overall machine using (since FDR2) super-
combinators and strategies such as compression. The compilation stage was fre-
quently a major hurdle for industrial application of FDR2, but Tom redesigned
this completely and greatly reduced this problem.

Just as the user interface was redesigned completely between FDR1 and
FDR2, so it was again for FDR3. The main impact of this in use was on
debugging (of processes that fail to meet their specifications), where FDR3 gives
much more information in tabular form and is integrated with a CSP simulator.

By the time that FDR3 was created, the hitherto relentless speeding up
and power of a single processing core had substantially levelled off and was
being replaced by multi-core, a phenomenon which itself provided a bridge to
cluster architectures. Not everything that FDR does parallelises readily, but
fortunately

1. FDR frequently spawns off separate tasks such as the compressions of
component processes that can be farmed out to separate cores.

2. The core BFS search used for refinement checks parallelises extremely well
by the simple expedient of choosing a randomising hash function whose
range is the number of cores, making core n responsible for storing and
checking the states with hash value n, and trading states between the
respective cores (e.g. as B-trees) each ply.

The chief hurdle to parallelisation is algorithmic on any checking mode that
requires depth-first search (DFS) or similar activities such as analysing fairness
via analysing strongly-connected components of large directed graphs. Such
activities (e.g. the DFS used for FDR’s divergence check, or algorithms such as
Tarjan’s or Dijkstra’s [68, 17] for finding SCCs, do not seem to parallelise well,
though efforts such as [37] give partial solutions.

The first release of FDR3 implemented this on multi-core systems, frequently
achieving at least linear speed up with the number of cores as described in [20].
FDR3, with all this capability, became a much more capable and professional
tool where, at least in an academic context, the limits of what it could cope
with were problematic much less frequently than before.

Thus there was less burning need to make FDR available on supercomputer
style clusters than the need for extra capacity in previous years. But it was
clearly possible and potentially valuable where a practical check had a huge
number of states. Tom therefore created a version of FDR that runs on MPI
cluster architectures, as was reported in [20]. The result was a version that, for

20

all the clusters we could then easily get our hands on in 2015, namely up to over
1000 cores, we again got close to linear speed up — sometimes a little better,
sometimes a little worse.

Having moved through the thousands to the millions and then the billions
of states processed by FDR, we deliberately created one with nearly 1.2 trillion
explicit states, namely a large version of Lamport’s bakery algorithm generated
by SVA, using its inbuilt compressions, without which there would have been
orders of magnitude more (we estimated 10?°). This ran on the Amazon EC2
cloud (64 times 16 cores) in about 5.7 hours and 6Tb of store, namely about
the same absolute time and very similar memory per state that FDR1 did on
restricted versions of peg solitaire with about 600,000 states 23 years earlier.
We will discuss this further later.

Recall that FDR has long supported the partial order method chase whose
validity is mainly restricted to systems known to have the extensional deter-
minism property. Many other types of partial order methods — rules that al-
low regions of process state spaces to be ignored when searching for potential
counter-examples — have been proposed by the model checking community based
on other, generally more operational restrictions, for example [49]. The stub-
born set partial order reduction [72] implementation was added to FDR and
reported in [22].

Modern approaches to implementing concurrent, generally multi-core sys-
tems frequently depend on shared memory governed by locks or lock-free struc-
tures. Such systems frequently involve structures naturally modelled using
pointer-based cells such as queues, trees and linked lists. These represent a
major problem for the approach SVA and similar front ends to FDR take to
representing state because of the allocation of N cells to N jobs can happen in
N! ways, with there being no difference in how the result behaves. The type
of cell names is symmetric: any permutation of these names results in identical
externally observable behaviour. Tom Gibson-Robinson and Gavin Lowe [23]
developed methods of detecting such symmetry in CSPM and factoring it out
of refinement checks. In effect that means reducing each discovered state to a
symmetry normal form. Where applicable this can reduce the state space by
a factor f up to N!, where N is the size of the symmetric type (typically the
number of cells in the heap model).

Pragmatically this allows us to develop and analyse shared memory programs
with much more interesting data types than SVA, but with otherwise similar
reach.

Both partial order reduction and symmetry reduction are accessed in FDR
by invoking special modes of check. Like all the other modes of implicit model
checking that FDR supports they sometimes work wonderfully and sometimes
get in the way. FDR has always been able to handle explicit checking efficiently
over a powerful and expressive language, and more than anything else this is its
core strength.

In 2016, taking account of the many new capabilities since FDR3 was re-
leased, the FDR4 release was announced.

FDR3 and FDR4 are much superior tools to FDR2, but in terms of industrial

21

Figure 2: Verifying autonomous vehicles: catching snails to prevent disease;
UAV for underwater engineering

applications the period 2012-19 was a period of active evolution rather than
revolution. The paper [21] that we have already identified was written in 2016
and comprehensively describes the range of applications the Oxford group were
in contact with.

The beginning of this period saw the establishment of D-RisQ’ a spin-out
of QinetiQ including most of the team we worked with there, and the end of it
saw the final spin-out of Cocotec® from Oxford. D-RisQ’s product ModelWorks
is looking to broaden the previous work of QinetiQ in translating systems of
state machines described as Statecharts into CSPM. ModelWorks’s applications
include the automotive industry [69, 7] and an autonomous underwater vehi-
cle [18] for carrying out underwater engineering tasks: Figure 2.

Cocotec manages FDR4’s academic licensing and commercial sales: see
https://cocotec.io/fdr/. We will describe more of this company’s work in
the next section.

D-RisQ collaborated with Oxford, Draper and many others in the HACMS
project as reported in [21, 19, 44] and continues to work in autonomous vehicles,
in particular on safety “bubbles” or limiters for the freedom of Al-based control.
It is clear that use of FDR in connection with verifying autonomous systems
is becoming increasingly popular. Similar work is progressing at the University
of York with the tools RoboChart involving FDR analysis, itself with applica-
tions such as a bio-security project described in the following abstract from a
letter from Augusto Sampaio, another former student of Tony and leader of the
thriving research in CSP, FDR and other formal methods in North-East Brazil

I have been working on a project with Ana Cavalcanti and Jim
Woodcock, and their group at York, on the semantics and verifica-
tion of design and simulation of robotic systems. This also entails the
translation of a UML-like graphical notation into CSP and verifica-
tion using FDR. Together with the Laboratory of Immunopathology
(LIKA-UFPE) we are currently applying this in the domain of bio
surveillance. In one of the applications (in the context of public
health) A drone carries a camera to locate schistosomiasis transmis-
sion vectors and has a kind of mechanical arm (or claw) to capture
the snails, in rural areas that make access to public agents difficult.
This is ongoing work.

See Figure ??. The Brazilian group (Augusto is based at UFPE, Recife) also
has projects in more traditional areas such as (ordinary) aerospace.

"https://drisq.com
8https://cocotec.io

22

7 The future: for CSP and beyond (2019-)

The reason we have highlighted the year 2019 is that it marked the full spin-
out from Oxford of Cocotec. It is led by Tom Gibson-Robinson and Philippa
Hopcroft. Cocotec was spun out for the Coco Platform: the integration of
a new language Coco designed for event-driven software and a model checker
Cosmos designed to check Coco programs via translation to a further, interme-
diate language. The Coco Platform generates executable code from the Coco
description.

Cosmos uses a process model which, though based on state machines, is sig-
nificantly different from that used by FDR for CSP. The intermediate language
used by the Coco Platform is without some of the features that make CSP hard
to model, and adds support for others such as imperative state, which are impor-
tant for the creation of real event-driven software. These changes mean that it
is no longer necessary to base the implementation on supercombinators, though
CSP models, abstraction and refinement are still core. Coco itself is a mod-
ern imperative programming language with support for event-driven programs
based on state machines.

By the choice of design language and handling tree-like topologies using
compositional verification, the Coco Platform is able to achieve near infinite
scalability in the number of parallel state machines operating.

Coco is designed to be used directly by engineers or be a target for translation
from dialects of UML and other languages for model-based architectures. Large-
scale trials have been completed successfully with industrial partners. Each
component is checked in the context of the interfaces that its neighbours provide,
ensuring that it in turn provides the interface it is required to offer, and that
pathologies such as deadlock and non-responsiveness do not occur.

By cutting down from the enormous generality of CSP to an architectural
template that corresponds to how many engineers design event-driven systems,
and finding a specification structure that can be resolved without state explo-
sion, the creators of the Coco Platform have hit a real sweet spot. In the enor-
mous multi-dimensional space of system development they have identified an
industrially significant domain where the theories and ideas developed for CSP
can be customised and turned into a potentially important tool for industrial
use.

That is not to say that ideas for using and developing FDR itself have dried
up. There has been a major programme of developing SAT and SMT techniques
based on over-approximating state spaces [1, 2], rooted in collecting and adding
to local information about interactions between components, which unlike the
earlier attempts at using SAT have been very successful.

We see a potential use for both FDR and the Coco platform in the cur-
rently fashionable world of blockchain [67], which is itself a fascinating model of
concurrency. Blockchain actors have complex event-driven behaviours, much of
which seems susceptible to the development environment provided by the Coco
platform. More interestingly to the CSP community is the possibility of using
CSP and FDR to model the protocols that govern consensus mechanisms and

23

similar and their effects on the developments of blockchains. It is clear that
these models will mix

e the characteristics of complex linked structures composed of cells created
from a notional “heap” and so will use symmetry reduction;

e symbolic representations of operations such as hashing and encryption, as
in the usual CSP cryptoprotocol models [38, 37]

e careful modelling of the “bad guy” or attacker, a particular strength of
CSP.

Any need to add further models directly implemented in FDR has been
eliminated by the strange discovery of model shifting [41], a technique using
priority that implements arbitrary CSP in terms of the simplest ones. So for
example this makes it possible to implement refinement checking over the Timed
Failures model and thus do compositional reasoning over Timed CSP with FDR.
The overheads of model shifting are generally small.

8 Reflections on FDR

We now understand that by throwing huge computer resources at FDR we can
get it to resolve huge problems measured in terms of state space, at least over a
large part of what it does. What is new is the guilt factor: doing this consumes
energy so it no longer seems appropriate to do this just to prove it can be done,
for example on supercomputers far larger than the clusters referred to earlier.
However, in honour of this paper, Bill worked with some collaborators in China
to run a variety of large checks on a cluster there, using 64 32-core, 2.5GHz Xeon
processors with 16TB of RAM, so essentially twice the size of EC2 as reported
in [20]. We will report these results in a technical report, but one example is we
were able to verify a 2T state version of the bakery algorithm on this machine
in 7 hours and 13TB of memory.

Perhaps the most noticeable phenomenon in supercomputing in the 6 years
since 2014 has been the Charge of the AI Brigade (i.e. GPUs).

We might note that the advance in capability in the 2014 cluster check was
(assuming the traditional 18 month doubling) well ahead of the Moore’s law
curve implied by the 1992 comparator. Note that between [| in 1994 and [] in
2014, the explicit state capability of FDR increased by about one million: a
factor of 1000 came from parallelisation, the rest from clock speed and better
algorithms. It seems unlikely that much larger clusters of the sorts of cores that
FDR expects to run on will be remotely common in future: if there are genuine
requirements for really large checks in future then it may be necessary to adapt
FDR and its algorithms to work on GPU architectures, as some researchers
have attempted with other model checking paradigms [5, 6] without tremen-
dous success. We are not optimistic that this will be particularly successful for
FDR either. Unfortunately it seems unlikely that model checking will drive the
development of computing platforms in the way that machine learning is doing.

24

The improvements to FDR and the advance in computing power have made
an enormous difference to the complexity of systems that can be modelled and
analysed by the tool. But the state explosion problem has not gone away:
in the common case where the number of states grows exponentially, one will
inevitably reach a point where it is necessary to throw so many extra resources
at the problem to get one more increment that even if one can get them it
does not seem worth it. In most such cases, to verify a realistic sized system
(as opposed to just an interestingly large one) one will need an effective way of
countering state explosion.

Another issue to this is the challenge of modelling successfully in CSP for
regular system designers, especially under the strictures of handling the state
explosion issue discussed above. Despite our hopes and efforts in design and ed-
ucation over the years, this is a huge blockage. Tools such as SVA, ModelWorks
and Casper (all of which integrate FDR), and the Coco Platform (integrating
Cosmos) solve this problem in their own domains by offering pre-digests of the
sorts of systems these tools can represent, creating just the right models and
taking advantage of the character of the systems they analyse to choose the
right modelling approach. They represent the best — perhaps only realistic —
approach to mass adoption.

Of course we believe that CSP theory, FDR and perhaps other tools which
like Cosmos are based on that theory have a big place in the future of verification.
Experience shows that this is most likely to work on systems with some of the
following characteristics:

e Multi-threaded with complex interactions
e Involved but boundable combinatorics
e Interacting state machines

It is not likely to work well in verifying computations over types such as
the integers or reals, where exact computations must be checked over types too
large to enumerate. The current state of the art suggests that SAT and SMT
solvers are best for such systems. We would like to see practical and sound ways
of combining the two.

The reader might have noticed the theme of autonomous vehicles running
through a number of recent applications, including two of our pictures. Since
these frequently have strong safety-critical questions to answer, the use of for-
mal methods such as CSP/FDR that can show unsafe behaviour impossible is
most appropriate, but seems in tension with the popular vision of such vehicles
as being controlled by Al/machine learning. It makes perfect sense for the pa-
rameters within which AT is permitted to act being constrained by a formally
proved framework, in exactly the same way a human driver might be.

In this paper we have concentrated on the FDR style of model checking and
its applications. Model checking is an enormous subject, to the extent that
it has recently acquired a substantial handbook [15]. Bill contributed to the
chapter on model checking in process algebra [16], where the approach we have

25

detailed here is contrasted against ones based on modal logic and bisimulation-
like equivalences, but some of the other chapters are also relevant to the issues
we have raised here.

Looking at that book, we can reflect on the decisions we made about FDR.
We initially concentrated on refinement over the well-known models of CSP
and this, as it turned out, could be done very efficiently, usually linear in the
state space of the process being checked, leading to what seemed to us (i.e. the
team behind FDR) impressive applications. Because FDR was so closely based
on CSP semantics, it never seemed natural to incorporate specification and se-
mantic approaches which did not fit easily with CSP: these included fairness
and bisimulation-based proof techniques. The latter has never been missed in
practical circumstances, because the range of properties achievable using refine-
ment has proved adequate for all practical challenges where infinitary patterns
of behaviour were not involved. In practical examples based on infinite traces,
the lack of support for reasoning about fairness has been an issue. For mix-
ing fairness with the idea of failures was never satisfactory, as failures contain
enough information to make one think was relevant to specifiying what is fair or
not, but not actually enough. To illustrate this, the concept of slow abstraction
introduced, motivated by an industrial example, in [62] shows how FDR can
reason about fairness-related concept of “unstable failures”, namely ones that
arise over divergences where 7 actions happen sufficiently fairly to show tem-
porary acceptance/refusal sets, is anything but compositional: it only makes
sense at the top level. Certainly this is somewhere where CSP theory made us
very late. FDR has, despite experimental introduction, never fully embraced
the rich trace properties such as fairness that can emerge from Biichi, Streett
and similar automata [35], as perhaps it should have done.

In this paper we have already alluded to how other model checking tech-
niques such as SAT/SMT checking and CEGAR of CSP-style properties relate
to FDR, and how continuous-time reasoning relates to it. The integration with
other approaches, such as SAT/SMT analysis of detailed calculation alluded to
above, and perhaps probabilistic model checking [36], seem a worthwhile fu-
ture project. Historically, compatibility with CSP theory has been important
to FDR development rather than our own implementation of semantic concepts
that do not fit so easily with CSP but have been successful elsewhere.

Acknowledgements

The preparation of this paper has been assisted by many of our collaborators
and the major users of FDR. These include Philippa Hopcroft and Tom Gibson-
Robinson, Zhigiang Yang and Liu Han who experimented with the 2048 core
cluster, Augusto Sampaio and Colin O’Halloran.

26

References

[1]

[10]

[11]

Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe. Efficient
deadlock-freedom checking using local analysis and sat solving. In Interna-
tional Conference on Integrated Formal Methods, pages 345-360. Springer,
2016.

Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe. The au-
tomatic detection of token structures and invariants using sat checking.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 249-265. Springer, 2017.

Philip Armstrong, Michael Goldsmith, Gavin Lowe, Joél Ouaknine,
Hristina Palikareva, A.W. Roscoe, and James Worrell. Recent develop-
ments in FDR. In International Conference on Computer Aided Verifica-
tion, pages 699-704. Springer, 2012.

Philip Armstrong, Gavin Lowe, Joél Ouaknine, and A.W. Roscoe. Model
checking timed CSP. In Andrei Voronkov and Margarita Korovina, editors,
HOWARD-60. A Festschrift on the Occasion of Howard Barringer’s 60th
Birthday, pages 13-33. EasyChair, 2014.

Jiff Barnat, Petr Bauch, Lubos Brim, and Milan Ceska. Designing fast
1t] model checking algorithms for many-core gpus. Journal of Parallel and
Distributed Computing, 72(9):1083-1097, 2012.

Jif{ Barnat, Lubos Brim, and Milan Ceska. Divine-cuda-a tool for gpu
accelerated 1tl model checking. arXiv preprint arXiv:0912.2555, 2009.

John Botham, Gunwant Dhadyalla, Antony Powell, Peter Miller, Olivier
Haas, David McGeoch, Arun Chakrapani Rao, Colin O’Halloran, Jaroslaw
Kiec, Asif Farooq, et al. Picassos—practical applications of automated for-

mal methods to safety related automotive systems. Technical report, SAE
Technical Paper, 2017.

Guy H Broadfoot and PJ Hopcroft. Introducing formal methods into in-
dustry using cleanroom and CSP. Dedicated Systems Magazine, 2005.

Neil A Brock and David M Jackson. Formal verification of a fault toler-
ant computer. In [1992] Proceedings IEEE/AIAA 11th Digital Avionics
Systems Conference, pages 132-137. IEEE, 1992.

Stephen D. Brookes. A model for communicating sequential processes. PhD
thesis, Oxford, 1983.

Stephen D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of commu-
nicating sequential processes. Journal of the ACM (JACM), 31(3):560-599,
1984.

27

[12]

[13]

[14]

[17]

[18]

[19]

[20]

[21]

Stephen D. Brookes and A.W. Roscoe. An improved failures model for
communicating processes. In International Conference on Concurrency,
pages 281-305. Springer, 1984.

Stephen D. Brookes and A.W. Roscoe. Deadlock analysis in networks of
communicating processes. Distributed Computing, 4(4):209-230, 1991.

Stephen D. Brookes, A.W. Roscoe, and D.J. Walker. An operational seman-
tics for CSP. Technical report, Oxford University Computing Laboratory,
1986.

Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick
Bloem. Handbook of model checking, volume 10. Springer, 2018.

Rance Cleaveland, A.W. Roscoe, and Scott A Smolka. Process algebra
and model checking. In Handbook of Model Checking, pages 1149-1195.
Springer, 2018.

Edsger Wybe Dijkstra. A discipline of programming. Prentice-Hall Engle-
wood Cliffs, 1976.

Simon David Foster, Yakoub Nemouchi, Colin O’Halloran, Nick Tudor, and
Karen Stephenson. Formal model-based assurance cases in isabelle/sacm:
An autonomous underwater vehicle case study. In Formal Methods in Soft-
ware Engineering (FormaliSE 2020): Proceedings of the 8th International
Conference. ACM, 2020.

Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and
A W. Roscoe. FDR3—a modern refinement checker for CSP. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 187-201.
Springer, 2014.

Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and
A.W. Roscoe. FDR3: a parallel refinement checker for CSP. International
Journal on Software Tools for Technology Transfer, 18(2):149-167, 2016.

Thomas Gibson-Robinson, Guy Broadfoot, Gustavo Carvalho, Philippa
Hopcroft, Gavin Lowe, Sidney Nogueira, Colin O’Halloran, and Augusto
Sampaio. FDR: from theory to industrial application. In Concurrency,
Security, and Puzzles, pages 65-87. Springer, 2017.

Thomas Gibson-Robinson, Henri Hansen, A.W. Roscoe, and Xu Wang.
Practical partial order reduction for CSP. In NASA Formal Methods, pages
188-203. Springer, 2015.

Thomas Gibson-Robinson and Gavin Lowe. Symmetry reduction in CSP
model checking. International Journal on Software Tools for Technology
Transfer, 21(5):567-605, 2019.

28

[24]

[25]

[35]

Michael Goldsmith and Jeremy Martin. The parallelisation of FDR. In
Proceedings of the Workshop on Parallel and Distributed Model Checking,
2002.

Constance L Heitmeyer, Bruce G Labaw, and Ralph D Jeffords. A bench-
mark for comparing different approaches for specifying and verifying real-
time systems. Technical report, Naval Research Lab Washington DC, 1993.

C.A.R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666-677, 1978.

C.A.R. Hoare. A model for communicating sequential process. 1980.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1985.

C.A.R. Hoare, Stephen D. Brookes, and A.W. Roscoe. A theory of com-
municating sequential processes. Oxford University Computing Laboratory,
Programming Research Group, 1981.

C.A.R. Hoare, Ian J. Hayes, He Jifeng, Carol C Morgan, A.W. Roscoe,
Jeff W. Sanders, I Holm Sorensen, J. Michael Spivey, and Bernard A Sufrin.
Laws of programming. Communications of the ACM, 30(8):672-686, 1987.

C.A.R. Hoare and He Jifeng. Unifying theories of programming. Prentice
Hall Englewood Cliffs, 1998.

John Hughes. Graph reduction with super-combinators. Oxford University.
Computing Laboratory. Programming Research Group, 1982.

C.B. Jones and A.W. Roscoe. Insight, inspiration and collaboration. In
Reflections on the Work of C.A.R. Hoare, pages 1-32. Springer, 2010.

Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state
processes, and three problems of equivalence. In Proceedings of the second

annual ACM symposium on Principles of distributed computing, pages 228—
240. ACM, 1983.

Nils Klarlund. Progress measures for complementation omega-automata
with applications to temporal logic. In [1991] Proceedings 32nd Annual
Symposium of Foundations of Computer Science, pages 358-367. IEEE
Computer Society, 1991.

Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Proba-
bilistic symbolic model checker. In International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation, pages 200—
204. Springer, 2002.

Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR. In International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems, pages 147-166. Springer, 1996.

29

[38]

[39]

[49]

[50]

Gavin Lowe. Casper: A compiler for the analysis of security protocols.
Journal of computer security, 6(1-2):53-84, 1998.

JMR Martin, S Jassim, et al. A tool for proving deadlock freedom. In Proc.
of the 20th World Occam and Transputer User Group Technical Meeting,
1997.

Tomasz Mazur and Gavin Lowe. CSP-based counter abstraction for systems
with node identifiers. Science of Computer Programming, 81:3-52, 2014.

David Mestel and A.W. Roscoe. Translating between models of concur-
rency. Acta Informatica, pages 1-36, 2020.

R Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.
Robin Milner. A calculus of communicating systems. Springer-Verlag, 1980.

Colin O’Halloran, Thomas Gibson-Robinson, and Neil Brock. Verifying cy-
ber attack properties. Science of Computer Programming, 148:3-25, 2017.

Joél Ouaknine. Digitisation and full abstraction for dense-time model
checking. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 37-51. Springer, 2002.

Colin O’Halloran. Assessing safety critical COTS systems. In Towards
System Safety, pages 65-74. Springer, 1999.

Hristina Palikareva. Techniques and tools for the verification of concurrent
systems. PhD thesis, Oxford, 2012.

Hristina Palikareva, Joél Ouaknine, and A.W. Roscoe. SAT-solving in CSP
trace refinement. Science of Computer Programming, 77(10):1178-1197,
2012.

Doron Peled. Ten years of partial order reduction. In International Con-
ference on Computer Aided Verification, pages 17-28. Springer, 1998.

Jan Peleska. Test automation for safety-critical systems: Industrial appli-
cation and future developments. In International Symposium of Formal
Methods FEurope, pages 39-59. Springer, 1996.

Jan Peleska. Applied formal methods—from CSP to executable hybrid spec-
ifications. In Communicating Sequential Processes. The First 25 Years,
pages 293-320. Springer, 2005.

Stacy J Prowell and Jesse H Poore. Sequence-based software specification of
deterministic systems. Software: Practice and Ezxperience, 28(3):329-345,
1998.

G.M. Reed and A.W. Roscoe. A timed model for communicating sequential
processes. Theor. Comput. Sci., 58(1-3):249-261, June 1988.

30

[54]

[55]

A.W. Roscoe. A mathematical theory of communicating processes. PhD
thesis, University of Oxford, 1982.

A.W. Roscoe. Occam in the specification and verification of microproces-
sors. Philosophical Transactions of the Royal Society of London. Series A:
Physical and Engineering Sciences, 339(1652):137-151, 1992.

A.W. Roscoe. Model-checking CSP. In A classical mind, pages 353-378.
Prentice Hall International (UK) Ltd., 1994.

A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall
PTR, Upper Saddle River, NJ;, USA, 1997.

A.W. Roscoe. Revivals, stuckness and the hierarchy of CSP models. The
Journal of Logic and Algebraic Programming, 78(3):163-190, 2009.

A.W. Roscoe. Understanding Concurrent Systems. Texts in Computer
Science. Springer, 2010.

A.W. Roscoe and Naiem Dathi. The pursuit of deadlock freedom. Infor-
mation and Computation, 75(3):289-327, 1987.

A.W. Roscoe and C.A.R. Hoare. The laws of occam programming. Theo-
retical Computer Science, 60(2):177-229, 1988.

A.W. Roscoe and Philippa J. Hopcroft. Slow abstraction via priority. In
Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Theories of Pro-
gramming and Formal Methods, pages 326-345. Springer-Verlag, Berlin,
Heidelberg, 2013.

A.W. Roscoe and Zhenzhong Wu. Verifying Statemate Statecharts using
CSP and FDR. In International Conference on Formal Engineering Meth-
ods, pages 324-341. Springer, 2006.

Peter Ryan, Steve A Schneider, Michael Goldsmith, Gavin Lowe, and A.W.
Roscoe. The modelling and analysis of security protocols: the CSP ap-
proach. Addison-Wesley Professional, 2001.

JB Scattergood. Tools for CSP and Timed CSP. PhD thesis, DPhil thesis,
Oxford University, 1997.

Joseph E Stoy. Denotational semantics: the Scott-Strachey approach to
programming language theory. MIT press, 1977.

Melanie Swan. Blockchain: Blueprint for a new economy. O’Reilly Media,
Inc., 2015.

Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146-160, 1972.

31

[69] NJ Tudor and J Botham. Proving properties of automotive systems of
systems under ISO 26262 using automated formal methods. 2014.

[70] Oxford University. Automated software design and verification.
https://impact.ref.ac.uk/casestudies/CaseStudy.aspx?Id=4907.

[71] Oxford University. Automated verification and validation
for defence, aerospace and automated embedded software.
https://impact.ref.ac.uk/casestudies/CaseStudy.aspx?Id=19859.

[72] Antti Valmari. A stubborn attack on state explosion. In International
Conference on Computer Aided Verification, pages 156—165. Springer, 1990.

32

