
Solidifier: bounded model checking Solidity using lazy
contract deployment and precise memory modelling

Pedro Antonino
pedro@tbtl.com

The Blockhouse Technology Limited
Oxford, UK

A. W. Roscoe
awroscoe@gmail.com

The Blockhouse Technology Limited
University College Oxford Blockchain Research Centre
Department of Computer Science, Oxford University

Oxford, UK

ABSTRACT
The exploitation of smart-contract vulnerabilities can lead to
catastrophic losses. Formal verification can be a useful tool
in identifying these vulnerabilities before deployment. We
present an encoding of Solidity and the Ethereum blockchain
using Boogie, an intermediate verification language. Based
on this formalisation, we create Solidifier: a bounded model
checker for Solidity. Distinctive features of our encoding are
precisely capturing Solidity’s unorthodox memory model, a
notion of lazy blockchain exploration, and memory-precise
verification harnesses. Unlike much of the work in this area,
our modus operandi is not matching contracts against specific
known behavioural patterns that might lead to vulnerabilities.
Rather, we provide a tool to find errors/bad states - be
they vulnerabilities or not - that might be reached through
behaviours that might not follow such a pattern.

CCS CONCEPTS
• Software and its engineering → Formal software
verification; Formal language definitions; Software func-
tional properties.

KEYWORDS
Blockchain, Smart contracts, Solidity, Ethereum, Formal
Verification, Bounded model checking, Boogie, Corral

ACM Reference Format:
Pedro Antonino and A. W. Roscoe. 2020. Solidifier: bounded model
checking Solidity using lazy contract deployment and precise mem-
ory modelling. In Proceedings of ACM Conference (Conference’17).
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
c⃝ 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Smart contracts provide a new paradigm for trusted execu-
tion of code [2, 42]. A smart contract is a program that runs
in a trusted abstract machine/execution environment and
has access to trusted data; its behaviour typically involves
managing some digital asset. To achieve this, such a program
is typically run in the context of a blockchain [2, 3, 11], but
other technologies can be used [17, 27, 46]. A blockchain is a
decentralised system where all nodes maintain a consistent
view over its database and transactions are processed in order
to alter the state of this database. Smart contracts can also
be seen as a way to extend the capabilities of a blockchain:
the code of a smart contract can be used to encode some
transaction validation logic that was not originally enforced
by the blockchain [3, 11]. Being a program, it can have vul-
nerabilities that expose the digital assets it manages. When
exploited, these flaws can lead to catastrophic effects such
as the loss of vast sums of money [13]. The ability to reli-
ably write transaction logic using smart contracts, and the
flexibility that comes with it, will play a key role in the dis-
semination and adoption of blockchains and in the realisation
of all their expected/predicted impact in society [19, 26, 41].

Formal methods have been used in many contexts to ensure
that systems behave as expected [12, 14, 15, 18]. Then, it is
only natural for them to be employed for the specification and
verification of smart contracts [8, 9, 16, 21–24, 28, 31, 32, 44,
45]. Most of these approaches focus on the Ethereum Virtual
Machine (EVM) bytecode [2], the low-level language used by
the Ethereum blockchain [2], and on finding specific patterns
of code that might lead to a vulnerability using symbolic
execution or static analysis. In this paper, we propose a
framework to analyse (in our case falsify) semantic properties
of programs in Solidity [6], a high-level language used by
Ethereum smart-contract developers. Like [23, 37, 45], we
advocate the analysis of user-specified semantic properties of
contracts, since their violations can exhibit known but also
unanticipated behavioural patterns leading to a vulnerability.
Furthermore, this can be used to analyse the functional
correctness of smart contracts.

We address the following challenges in formalising and
verifying Solidity smart contracts executing on the Ethereum
blockchain: (1) capturing Solidity’s unorthodox memory model,
(2) dealing with inter-contract calls, (3) devising precise veri-
fication harnesses. In Solidity, the memory space available to
a contract is divided into a persistent part called the storage

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Pedro Antonino and A. W. Roscoe

1 contract Wallet {
2 enum Status { None , Open , Closed }
3 struct Account { uint coins; Status status; }
4 mapping (address => Account) accs;
5
6 ... open , close , deposit functions omitted ...
7
8 function withdraw (uint value) public {
9 require(accs[msg.sender]. status == Status.Open

);
10 require(accs[msg.sender].coins >= value);
11 Account memory acc_mem;
12 acc_mem = accs[msg.sender];
13 acc_mem.coins = acc_mem.coins - value;
14 accs[msg.sender] = acc_mem;
15 msg.sender.transfer(value);
16 }
17 }

Figure 1: Wallet contract example.

and a volatile part called the memory. The behaviour of vari-
able allocation and initialisation, and assignment between
variables, depend on which of these hold the relevant vari-
ables. Ethereum blockchain stores a collection of instances
of different contracts. Contracts can be dynamically created,
and they can interact with one another. Typically, model-
checking frameworks focus on a specific contract instance, but
they create some abstraction to capture the behaviour and
state of the other contracts too. This abstraction is required,
for instance, to capture inter-contract calls. A verification har-
ness drives the behaviour of the blockchain and of the specific
instance being analysed. A harness would allow the execution
of sequences of calls of this instance’s public functions. It
has to account, however, for the possibility of functions of
other contracts being also executed, or even new contracts
being created, in between these calls. Precisely capturing the
behaviour of all the other contracts is infeasible given how
numerous they may be and that each can be an arbitrary
Solidity program. The harness should be as precise as it can
be while making contract verification tractable.
Contributions. We propose a new formalisation of Solidity
using Boogie [15, 30], an intermediate verification language,
that addresses our three challenges. For (1), we propose a
new way to represent the state of the blockchain, which de-
picts the storage associated with each contract instance, as
well as the memory used to execute contracts. Challenge (2)
is addressed by a technique that we proposed called lazy
blockchain exploration. It creates contracts on-the-fly as they
are need in the analysis. As for (3), we propose two memory-
precise verification harnesses. While our contract harness
zero-initialises and precisely executes a specific contract, the
function harness non-deterministically initialises the contract
and executes one of its functions. The function harness allows
errors deep in the execution of a contract to be quickly found.
A key property of our Boogie encoding is that blockchain
exploration (i.e. smart-contract execution) always manipu-
lates a well-formed state, namely, variables are well-typed,
properly allocated, and correctly structured in memory and

storage. Other frameworks do not offer this guarantee and
so are in danger of identifying unrealistic errors. Moreover,
we also introduce Solidifier : a bounded model checker for
Solidity that uses Corral [29], a bounded model checker for
Boogie, to analyse our encoding. It interprets errors and
counterexamples of Corral back into Solidity. Solidifier has
been designed to find bugs, i.e. behaviours falsifying proper-
ties, which should be then fixed by developers and re-verified.
Moreover, our evaluation seems to suggest that not only does
Solidifier (and our Boogie encoding) more faithfully capture
Solidity’s semantics than similar tools, but it also does so
with an arguably insignificant verification speed overhead.
Outline. Section 2 briefly introduces key concepts of Ethereum,
Solidity and Boogie. Section 3 describes our Boogie encod-
ing for Solidity and Ethereum, focusing on introducing our
memory modelling, lazy blockchain exploration, and memory-
precise verification harnesses. We discuss and evaluate Solidi-
fier against other tools in Section 4. We present related work
in Section 5 and our conclusions in Section 6.

2 BACKGROUND
The concept of a blockchain was introduced to prevent dou-
ble spending in the Bitcoin network [35]. Since then it has
been generalised in many ways, including the proposal of
smart contracts as a flexible mechanism to extend its capa-
bilities [2, 11]. A blockchain is a transaction-based system
designed with a fixed set of rules that defines its basic trans-
action logic. These rules are enforced by a consensus protocol
executed by the blockchain nodes; reaching a consensus is, to
a large extent, what prevents nodes from misbehaving and,
consequently, ensures the correct behaviour of a blockchain.
The blockchain’s behaviour emerges from the processing of
transactions and the effects it has on the underlying data-
base. Once the blockchain network is deployed these rules
are fixed and cannot be modified. One way to make the
behaviour of a blockchain more flexible is to allow for trans-
actions that trigger the execution of some function - such
transactions are valid if the underlying computation com-
pletes without raising errors. This mechanism is precisely
what smart-contract-based blockchains implement.

The Ethereum blockchain (or just Ethereum, for short) is
arguably the most widely-known and used smart-contract-
based blockchain [2]. Its database associates addresses with
address cells. Each address has (stored in its corresponding ad-
dress cell) an associated balance of crypto coins and (maybe)
some smart-contract code and persistent state. An address in
Ethereum is either unused, a simple currency-holding address
(which we call a simple address), or a smart-contract instance.
While a simple address has its balance managed by a secret
cryptographic key, a contract address’ assets are managed
by its code. The code of an Ethereum smart contract is ul-
timately represented using EVM bytecode (and executed by
the EVM) but, typically, smart contracts are created using
the high-level language Solidity [6] and later compiled into
bytecode. An Ethereum transaction can be used to deploy a
smart contract to (i.e. create a smart-contract instance at) a

Solidifier: bounded model checking Solidity using lazy contract deployment and precise memory modelling Conference’17, July 2017, Washington, DC, USA

blockchain address. Once deployed, smart contract functions
can be invoked using a contract-execution transaction by
specifying what address is to be called and what function
needs to be executed. We focus on Solidity as it is apparently
the most popular language for creating smart contract.

A Solidity program is composed by a set of smart contract
declarations. A contract is similar to a class in object-oriented
languages. It can declare a set of user-defined types, a set
of member (state) variables, and a set of member functions.
While the member variables capture the (persistent) state of
the contract, the functions describe its behaviour. Functions
have visibility modifiers to specify whether they are part of
the public interface of the contract. For instance, the Solidity
program in Fig. 1, which we use as a running example, has a
single contract Wallet that behaves like a toy bank: addresses
can open and close an account, and deposit and withdraw
money from their accounts; withdraw is the only function that
is relevant to our exposition. For brevity, we only introduce
the Solidity constructs that are relevant for our exposition -
see [6] for a full account of the language.

Like traditional programs, smart contracts are also prone
to flaws. Unlike most traditional programs, however, smart
contracts manage digital assets that can be exposed by such
flaws. For address msg.sender, the function withdraw in Fig. 1
updates the Account associated to it by decrementing its bal-
ance of coins by value. Solidity functions have an implicit
input parameter msg.sender that gives the address of caller.
Without the require statement in Line 10, the subtraction
acc_mem[msg.sender].coins - value in Line 13 could under-
flow causing accs[msg.sender] to hold a balance of coins
much larger than it should be. Honouring this balance would
represent a catastrophic loss for Wallet.

We formalise the behaviour of Ethereum and Solidity using
Boogie [30]: a simple but powerful intermediate verification
language. A Boogie program declares global variables and
procedures. The procedures declare some local variables and
a list of statements describing its behaviour. For instance,
Fig. 3 depicts the Boogie procedure encoding the Wallet
contract’s constructor; we describe in detail this procedure
in the next section. Boogie supports traditional commands
such as while-loop, if-then-else, assignment and procedure
call, and also specification-based statements. While assume
causes the program to fail silently if its condition is not
met, assert generates an error; havoc non-deterministically
assigns a new value to its expression. To simplify our presen-
tation, we extend Boogie to support the Ref type, and both
enumeration and record declaration; they can be easily spec-
ified using Boogie’s built-in constructs. Type Ref contains
(infinite) special values Refi that can be tested for equality.
Type [Ty] Ty′ denotes the set of total mappings from Ty
to Ty′. As expressions, our extended Boogie has left-value
expressions: identifier, mapping access, record access; integer
arithmetic and boolean expressions; quantified expressions;
etc. Roughly speaking, we use Boogie’s global variables to
model the execution state of Ethereum and procedures to
encode the behaviour of Solidity smart contracts.

3 FORMALISING SOLIDITY AND THE
ETHEREUM BLOCKCHAIN

We capture the state of Ethereum addresses using global vari-
able s : [Address] AddressCell, where address cell s[addr]
stores the state of address addr ∈ Address. Address represents
the set of 160-bit unsigned integers. We represent fixed-sized
integers using Boogie’s int,1 and arithmetic expressions on
these integers are encoded using Boogie’s operations on math-
ematical integers with the addition of wrap-around behaviour
to capture overflow or underflow. This choice is based on
the findings in [23]. Address is the Boogie counterpart of So-
lidity’s address. An address cell is a record with 4 elements
type ∈ AddressType, balance ∈ UInt (where UInt gives the
set of 256-bit unsigned integers), members, and storage - the
latter two elements record the state of smart contracts, which
we discuss next. AddressType is an enumeration with values
Unused, SimpleAddress, and contract names, representing un-
used, simple, and contract-instance addresses, respectively.
UInt (Int) is the Boogie counterpart of Solidity’s uint (int).

Solidity functions have an implicit this variable that gives
the contract instance on which the function is applied. Each
Solidity function is encoded as a Boogie procedure with
address this and address msg.sender as input parameters. The
built-in address function addr.transfer(v) transfers money
(v) from address this to addr. Command require(cond) raises
an exception if its cond is false. Exceptions cause the current
call to be reverted, and they are propagated upwards in the
call stack.2 Solidity has also traditional commands such as
while and for loops, if-then-else construct, assignment and
function call. The function transfer is encoded as a Boogie
procedure that carries out the appropriate funds transfer by
manipulating the corresponding addresses’ balances, whereas
require(cond) is encoded as assume bcond, where bcond is the
Boogie translation of cond . Solidity’s while and for loops, and
if-then-else constructs are captured with Boogie’s counterpart
while loops and if-then-elses.

We use Solidity library Verification to introduce verifi-
cation functions Assume(bool b) and Assert(bool b). It sim-
ply brings the corresponding Boogie primitives into Solidity.
While Verification.Assume(cond) ensures that cond holds at
the point in the program in which it appears, expression
Verification.Assert(cond) raises an error if cond is false.

3.1 Solidity’s memory model
Our formalisation supports the following basic Solidity types:
addresses (denoted in Solidity by address), contracts (denoted
by contract names), signed and unsigned 256-bit integers
(denoted by int and uint, respectively), and boolean (bool).
Both address and contract types are 160-bit unsigned integers
that identify an address in the blockchain. A contract type,
however, is an identifier annotated/typed with the type of the
contract that it stores. In addition to these basic types, we
support arrays (denoted by MemberType[]), mappings (denoted

1We use where clauses to bound the int’s its size.
2This propagation can be stopped by command call.

Conference’17, July 2017, Washington, DC, USA Pedro Antonino and A. W. Roscoe

by Domain => Range), and user-defined types (these can be
enums or structs). Recursive types are not supported.

The element storage ∈ [Ref] RefCell (which we call a ref-
erence mapping) of an address cell stores the values of state
variable for the smart-contract instance at this address. Ref-
erence cell storage[r] gives the reference cell that reference r
points to. A reference cell is a record with two elements: type
∈ RefCellType stores the Solidity type of the value stored or
the special value None, and value ∈ RefCellValue the actual
value stored. While type None denotes that the reference has
not been allocated yet, a Solidity type tags the reference cell
with the type of the value stored. We represent this Solidity-
type tag with a Boogie enumeration that lists all types used
in the Solidity program we are encoding. RefCellValue gives
the disjoint union of all the types that can be stored in a
reference cell for the Solidity program being encoded. The
element members ∈ [MemberIds] Ref captures where member
variable values are stored. For member name m ∈ MemberIds,
members[m] gives the reference where m is stored in storage.

In our formalisation, we use a value in RefType(T) to cap-
ture the state of a Solidity variable of type T stored in a
reference mapping. The state of a variable of type uint, int,
or bool is captured using Boogie types UInt, Int, or bool,
respectively. The state of a variable of type address or con-
tract is represented by Address. Enum definitions in a Solidity
program give rise to a corresponding Boogie enumeration
definition, and their state is represented by a value of this
corresponding enumeration. RefType(T[]) gives a record with
members length ∈ UInt and data ∈ [UInt] T ′, if T is a ref-
erence type (i.e. T is a Solidity array or struct) then T ′ is Ref,
otherwise T ′ is RefType(T). In general, reference-type ele-
ments of a composite type are represented by references that
point to reference cells storing the members’ state, whereas
non-reference-type elements are simply represented by their
values. So, a struct is represented by a record where each mem-
ber m of type T gives rise to a member m of type Ref if T is a
reference type, and RefType(T) otherwise. Mapping D => R

is represented by a Boogie total mapping [RefType(D)] R′

where R′ is Ref or RefType(R) according to whether or not
R is a reference type. The domain type of this mapping is
given by RefType(D) as we only allow Solidity mappings to
have a basic domain type.

For instance, Fig. 2 depicts a possible address cell config-
uration for an instance of our Wallet contract. While Ref1
keeps track of the accs variable, Ref2 and Ref3 keep track of
mapped Account structs.

A contract also has at its disposal a block of volatile mem-
ory spaces, called the memory, that can store reference-type
(i.e. structs and arrays) values on demand as the contract
needs more resources to execute; these memory spaces are
disjoint from storage’s. We capture the memory with Boo-
gie global variable memory ∈ [Ref] RefCell. Each blockchain
transaction is processed with a fresh memory.

We capture a Solidity local variable (parameter) of type T
by a Boogie local variable (parameter) of type LocalType(T).
For a reference type T , LocalType(T) = Ref and the reference
value points to a value in RefType(T), whereas, for a value

• type = Wallet;
• balance = 210;
• members = { accs → Ref1 };
• storage = {Ref1 → {type : address => Account,

value : {0 → Ref2, 1 → Ref3, . . .}},
Ref2 → {type : Account,

value : {coins : 10, status : Open}}
Ref3 → {type : Account,

value : {coins : 0, status : Closed}}, . . .}

Figure 2: Address cell example for Wallet.

type T , LocalType(T) = RefType(T). These references will
point to an appropriate cell in memory or storage depending
on their type. In Solidity, variables are initialised to their
default values. Addresses, contracts, and integers have the
integer literal zero as their default values, while false is
the boolean default value. The default value for composite
types is created by having its members set to their default
values. Mutable-sized arrays are initialised to the empty array,
whereas fixed-sized arrays have a constant size - their data
elements are set to their default values.

3.1.1 Variable allocation and initialisation. State variables and
memory pointers also have their values properly allocated
in storage and memory, respectively. We use Boogie code
template Allocate(rm, ref , T), given as follows, to allocate
a single reference cell, where rm is a reference map, ref a
reference expression, and T a Solidity type.

assume rm[ref].type == None;
rm[ref].type := T ;

The template AllocateMany(rm, ref , T) can allocate mul-
tiple references at once. For instance, to allocate all the
Account references pointed to by a address => Account map,
AllocateMany is as follows. ref and rm could be, for instance,
Ref1 and storage, respectively, as per Fig. 2. We use map as a
shorthand for rm[ref].value; it maps addresses to references.

1 assume ∀ a : Address • rm[map[a]]. type == None;
2 assume ∀ a,b : Address • a != b ⇒ map[a] != map[b

];
3 prm := rm;
4 havoc rm;
5 assume ∀ r : Ref • prm[r].type != None ⇒ prm[r]

== rm[r];
6 assume ∀ a : Address • rm[map[a]]. type = Account;

Line 1 ensures that the new references we want to allo-
cate point to unallocated reference cells, whereas Line 2
ensures these new references are not aliased. The prm is a
variable that captures the value of the reference mapping
rm (in Line 3) before it is havoced in Line 4; each Boogie
procedure in our encoding declares an auxiliary variable
preRefMap : [Ref] RefCell for this purpose. Line 5 uses the
prm to ensure that the new havoced value of rm preserves
(pre-havoc) allocated reference cells. Line 6 de-facto allocates
the new references. AllocateMany works similarly for other
dynamically-sized types. Our encoding relies on a similar

Solidifier: bounded model checking Solidity using lazy contract deployment and precise memory modelling Conference’17, July 2017, Washington, DC, USA

1 procedure Wallet_constructor () {
2 var preRefMap : [Ref] RefCell;
3 var this : Address;
4
5 s[this].type := Wallet;
6 s[this]. balance := 0;
7 Allocate(s[this].storage , s[this]. member[accs],

address => Account)
8 AllocateMany(s[this].storage , s[this]. member[accs

], address => Account)
9 Initialise(s[this].storage , s[this]. member[accs],

address => Account)
10 InitialiseMany(s[this].storage , s[this]. member[

accs], address => Account)
11 }

Figure 3: Boogie procedure for Wallet constructor.

strategy to initialise variables to their default values using
counterpart functions Initialise and InitialiseMany .

Lines 7-10 in Fig. 3 depict how we capture in Boogie the
allocation and initialisation of member variable accs by the
implicit constructor of the Wallet contract. While Allocate
allocates the reference storing variable accs, AllocationMany
allocates all the references accs[a] where a is an address.
Initialisation occurs similarly. In Solidity, a contract that
does not define a constructor is given one that zero initialises
its storage and balance. The constructor procedure has this
as a local variable instead of an input parameter like the
other encoded procedures.

State variables are allocated and initialised when the con-
tract is created and memory variables are allocated and
initialised when a memory pointer is declared. Solidity also al-
lows the creation of memory arrays of T with a fixed runtime-
computed size n using construct new T[](n). The declaration
of a memory pointer to an array will trigger the allocation
of an empty array that cannot be enlarged. Hence, the need
for this construct. Unlike memory arrays, storage ones can
have their size dynamically altered. When an array is shrunk,
members no longer in range are reset to their default values.
We encode this resetting behaviour using Boogie’s while loop.

3.1.2 Assignment. A Solidity reference-type value is repre-
sented by either a storage reference, a storage pointer or a
memory pointer. Local variables and parameters of a refer-
ence type are declared with a data location modifier that
states whether they denote a memory or storage pointer. On
the other hand, referencing state variables, accessing their
members, or accessing members of a storage pointer give rise
to storage-reference expressions. For instance, in Fig. 1, Line
11, memory pointer to acc_mem is created, whereas expression
accs[msg.sender] in Line 14 denotes a storage reference.

In Solidity, while an assignment between value-type ex-
pressions results in a simple copy, one between reference-type
expressions can result in deep copying, depending on where
the values of these expressions are stored. Assignments are
used, for instance, to “save” some transient state in memory
into the persistent storage of the contract. Table 1 summarises
the semantics of Solidity assignments involving reference-type

Left-hand side Right-hand side Semantics
Storage reference Any type Deep copy

Memory pointer
Storage reference New deep copy
Storage pointer New deep copy
Memory pointer Shallow copy (Aliasing)

Storage pointer
Storage reference Shallow copy (Aliasing)
Storage pointer Shallow copy (Aliasing)
Memory pointer Disallowed by compiler

Table 1: Assignment semantics for reference types.

expressions. If the left-hand side of the assignment is a mem-
ory pointer, a deep copy is created on a newly allocated
reference tree. On the other hand, deep copying into a stor-
age reference does not create a newly allocated reference - the
existing already-allocated reference tree is used. For instance,
in Fig. 1, the assignment in Line 12 has a left-hand-side mem-
ory pointer and a storage-reference as right-hand side. So, it
creates a new copy of the storage value accs[msg.sender] in
memory for which pointer is stored in variable acc_mem. On
the other hand, the assignment in Line 14 deep copies the
memory value pointed by acc_mem into the storage reference
tree pointed by accs[msg.sender]. It should be noted that an
array deep copying might trigger a resizing of the left-hand-
side expression; elements which become out of bounds are
reset. We take that into account in our encoding.

Solidity has an unusual but deterministic mechanism to “al-
locate” storage references that makes it rather different from
traditional languages. It uses a cryptographic hash function to
decide/locate which reference cells are used to store contract
state variables. Roughly speaking, the member-accessing ex-
pression on a contract state variable is used as an input
to this hash function and it outputs the location of the
reference cell in storage where this member is stored - in
our encoding, we abstract these concrete locations using
Ref. As a consequence, a contract variable and its members
are always stored in the same reference cell, which leads
to unintuitive/unusual aliasings between storage pointers
and storage references. For instance, let us assume that just
before Line 11 in Fig. 1, we had the storage pointer declara-
tion Account storage acc_stor = accs[msg.sender]. In Line
14, the memory value pointed by acc_mem is deep copied
into accs[msg.sender] but, even after Line 14, acc_stor and
accs[msg.sender] are still aliased. In many other languages,
however, Line 14 would make accs[msg.sender] point to a
new reference cell - and turn acc_stor into a dangling/stale
pointer. We capture this unusual behaviour by having storage
references completely allocated when contracts are created
and making sure that assignments do not cause the allocation
of new storage reference cells as per Table 1. In Solidity, ac-
cessing different contract state variable members could lead
to the same hash (and location) but this sort of collision
is assumed not to happen in practice. Hence, in our encod-
ing, we make sure that distinct contract state variables and
their members are allocated in distinct reference cells - this
assumption is also made in other work [22, 23, 45].

Conference’17, July 2017, Washington, DC, USA Pedro Antonino and A. W. Roscoe

1 procedure Wallet_withdraw(this : Address , msg.
sender : Address , value : UInt) {

2 var preRefMap : [Ref] RefCell;
3 var acc_mem : Ref; // Line 11
4
5 if (s[this].type == Unused){
6 s[this].type := Wallet;
7 Allocate(s[this].storage , s[this]. member[accs],

address => Account)
8 AllocateMany(s[this].storage , s[this]. member[

accs], address => Account)
9 }

10 assume s[this].type == Wallet;
11
12 assume s[this]. storage[s[this]. storage[s[this].

members[accs]]. value[msg.sender]]. status ==
Status.Open; // Line 9

13 assume s[this]. storage[s[this]. storage[s[this].
members[accs]]. value[msg.sender]]. coins >=
value; // Line 10

14 Allocate(memory , acc_mem , Account) // Line 11
15 Initialise(memory , acc_mem , Account) // Line 11
16 Allocate(memory , acc_mem , Account) // Line 12
17 memory[acc_mem] := s[this]. storage[s[this].

storage[s[this]. members[accs]]. value[msg.
sender]]; // Line 12

18 memory[acc_mem].value.coins := memory[acc_mem].
value.coins - msg.value; // Line 13

19 s[this]. storage[s[this]. storage[s[this]. members[
accs]]. value[msg.sender]] := memory[acc_mem
]; // Line 14

20 call transfer(this ,msg.sender ,value); // Line 15
21 }

Figure 4: Boogie procedure for Wallet withdraw.

3.2 Contract deployment and function call
An instance of contract C can be created through a blockchain
transaction or a call to Solidity’s command new C - these
are captured in our encoding as a call to C’s constructor
procedure. We add the Boogie code template denoted by
DeployContract(C) to the beginning of the Boogie procedure
capturing C’s constructor. It creates and initialises a new C
instance in the blockchain. In Fig. 3, Lines 5-10 correspond
DeployContract(Wallet).

A Solidity contract function call is translated into a Boo-
gie call of the corresponding procedure. Our Boogie en-
coding proposes lazy contract deployment. A function call
might target a yet uninitialised address. In this case, be-
fore the function is executed, the appropriate contract is
deployed at this address. We use the Boogie code tem-
plate LazyContractDeployment(C) to capture lazy deploy-
ment. Fig. 4 presents a simplified version of the encoding
of Wallet withdraw. Lines 5-9 depict LazyContractDeploy-
ment(Wallet), Lines 12-20 are annotated with comments
pointing to the line in Fig. 1 they are translated from.

Lazy contract deployment ensures that as the verifier ex-
plores Ethereum executions, contracts have properly-allocated
state variables - this guarantees, for instance, that state vari-
ables are not aliased. Note that LazyContractDeployment(C)

deploys an instance of C where the values of member vari-
ables and its balance are non-deterministically initialised,
whereas DeployContract(C) creates an instance with their
default values. Procedures also have a condition that ensures
that memory references are well typed.

We restrict Solidity’s semantics when encoding the be-
haviour of a contract function call. Our encoding uses con-
tract types to validate the expected type of contracts being
called. Solidity, however, executes a function of the called
contract that matches the expected signature, even if the
type of the contract being called is completely different from
what the caller expects. Hence, a function with the same
signature but with a completely different behaviour can be
executed. Even worse than that, in Solidity, if no function
matches a given signature, the fallback function deployed in
the address called is executed. To avoid this sort of behaviour,
each procedure capturing a function of contract C has vali-
dation assume s[this].type == C before its actual behaviour
is executed; Line 10 in Fig. 4 represents such a contract type
validation. This assumption should make verification simpler
as our encoding/formalisation does not have to assume that
any function of any type of contract can be triggered. A
similar assumption is made by VeriSol [45].

3.3 Memory-precise verification harnesses
We use a verification harness to capture relevant executions
of the blockchain and search for smart contract errors. We pro-
pose a contract harness and a function harness. They define a
main procedure, and a callP procedure that captures Solidity’s
low-level call primitive. The expression addr.call(sign) calls
a function with signature sign for the contract instance at ad-
dress addr. Our harnesses use a controlled non-deterministic
reinitialisation of storage and memory to abstract that a se-
quence of blockchain transactions were executed. They are
memory precise in the sense that this reinitialisation preserves
well-formedness for storage and memory, namely, values stored
are well typed, properly allocated, and correctly structured.

For a contract of type C, our contract harness analyses the
behaviour of an instance of C at some non-deterministically
chosen address. This analysis does not assume anything about
other addresses apart from the fact that their storage and
memory have been correctly initialised and are well typed -
this is achieved thanks to the lazy deployment feature of our
encoding. The main procedure creates an instance of C at the
address given by global variable main_contract and executes
an arbitrary sequence of interface functions. This procedure
ensures that the initial non-deterministically-created refer-
ence cells of memory are well typed and that initially storage
records each address as either unitialised or a simple address.
For each new interface function call (the constructor is not an
interface function), it non-deterministically chooses a func-
tion and initialises its arguments. For each new call, it also
havocs the storage and balance of all addresses except for
main_contract: basic values can change but references and
reference-cell types are fixed. These havocings conservatively
simulate the execution of transactions to move funds and

Solidifier: bounded model checking Solidity using lazy contract deployment and precise memory modelling Conference’17, July 2017, Washington, DC, USA

trigger functions for other addresses. The call primitive is
treated as an external/unknown function call. The procedure
callP works similarly to main. It can execute any (finite) se-
quence of interface functions of C on main_contract and it
havocs the storage and balance of other addresses. This simu-
lates the execution of an external function that can call back
into a function of C, i.e. exhibit some reentrant behaviour.

Since this harness precisely (up to abstractions) deploys
and executes the contract C at address main_contract, the
interface functions calls are executed from valid/reachable
states of C, namely, states satisfying C’s invariants.

Our function harness executes a single call to a chosen
function f of C. It analyses the behaviour of f when execution
from a non-deterministically initialised state of a C’s instance.
This analysis also does not assume anything about other
addresses apart from the fact that their storage and memory
have been correctly initialised and are well typed, as per lazy
deployment. The main procedure simply calls the procedure
corresponding to f , whereas callP havocs storage, memory,
and balance (in a way that preserves the well-formedness of
storages and memory) of all addresses to denote that some
arbitrary execution took place.

Unlike the contract harness, the function harness can exe-
cute f from a state that is not reachable by a well-behaved
instance of C, thus possibly reaching actually unreachable
errors. However, this harness can find deep errors that might
not be reachable by our contract harness, given a fixed bound.
While the contract harness examine bounded executions start-
ing in the contract’s initial state, the function harness exam-
ines bounded executions starting from any state.

4 SOLIDIFIER
Solidifier carries out a bounded verification of Solidity pro-
grams looking for failing assertions - our Boogie encoding is
checked by Corral [29], a reachability-modulo-theories verifier.
For an input system, traditional bounded model checkers cre-
ate a symbolic constraint to explore the system states reached
with at most k transitions from its initial state. Corral, on
the other hand, uses counterexample-guided abstraction re-
finement (CEGAR) to (possibly) simplify and incrementally
search this bounded state space. This abstraction process
leads to an intermediate over-approximation of the input
program that might even be sufficient to prove properties
irrespective of the bound k set. Its intended use, however, is
to find property violations.

Solidifier runs the Solidity compiler [5] as an auxiliary
tool to validate the input program and to generate its typed
abstract syntax tree, later parsed by Solidifier. The user of
Solidifier chooses between a contract or function harness.
Solidifier also interprets Corral results and information back
into Solidity. Aside from the verification primitives, functions
prefixed with CexPrint_ and with a single basic-type parame-
ter can be declared in the Verification library. When called,
they inform Solidifier to print the argument’s value at that
point in a counterexample, if one reaching this call exists.
Solidifier outputs either: a counterexample trace leading to a

failing assertion, that no failing assertion can be ever reached
(irrespective of the bound), that no failling assertion could
be reached for the predetermined bound, or it might fail to
produce any output if the underlying solver is unable to solve
the constraints generated by Corral.3

4.1 Evaluation
We illustrate the capabilities of Solidifier by comparing it
against solc-verify [22], VeriSol [7] and Mythril [34] in the
analysis of 23 contracts. In [4], we provide instructions to
build the Docker container that we used for our evalution. It
should provide a convenient way to reproduce our results. The
container contains the Solidifier binary, the Solidity examples
we used, and the tools we compared Solidifier against. We
conducted our evaluation on a MacBookPro with Intel(R)
Core(TM) i7-8559U CPU @ 2.70GHz and 16GB of RAM,
and with Docker Engine 18.09.1. Table 2 depicts our results.4

Comparing checkers for Solidity is not an easy task given
how quickly the language evolves. Between September 2018
and July 2020, Solidity has gone through 3 backward-incompa-
tible language updates - from Solidity 0.4.* to 0.7.*. Our
encoding should be compatible with a core language that has
been reasonably stable across this evolution (at least 0.4.* -
0.6.*) but some features have been discontinued. For instance,
since 0.6.* explicit dynamic-array resizing has been forbidden
by the compiler. However, contracts of previous versions can
still be (and still are) deployed to Ethereum. Different tools
handle different subsets of Solidity and different versions.

We chose to compare our tool against VeriSol and solc-
verify because they are reasonably mature and complete, they
reason about contracts at the Solidity-level, and they are
Boogie-based - albeit, using a different encodings and, in solc-
verify’s case, a different Boogie backend, the Boogie Verifier
[15]. While the former is a bounded model checker, the latter
is an unbounded one. We add Mythril to our comparison as
it is the archetypical tool that uses symbolic execution to
analyse a contract’s EVM bytecode - this comparison should
give a sense of how our tool compares with EVM-based tools.

Our evaluation uses Azure blockchain workbench sam-
ples [1] - which has been used by other papers as a benchmark
too [22, 23, 45] -, Solidity documentation examples [6] (Ope-
nAuction, OpenAuctionWithCall, and Voting), and some ex-
amples created by us. Unlike the situation with tools that look
for a specific behaviour pattern, we cannot simply scour the
Ethereum blockchain looking for vast numbers of contracts
to analyse because in many cases only the EVM bytecode is
available and even when Solidity code is made available, there
is no documentation that we could rely upon to specify what
property the developer of the contract intended to guarantee.

3The use of undecidable theories such as non-linear arithmetic, which
we use to capture the modulo and multiplication operation, might lead
the underlying solver to an inconclusive result.
4The version of VeriSol used here is not the same as the one used
in [45], neither are the properties that we check here and the ones
checked there - they should be similar but note that VeriSol checks for
a notion of compliance to the Azure workflow policies.

Conference’17, July 2017, Washington, DC, USA Pedro Antonino and A. W. Roscoe

We choose these examples because they were either devel-
oped by us or accompanied by informal textual specification
describing what they should achieve.

For each program we give the time taken in seconds to
analyse the contract with the outcome in parenthesis: n×
means that n violations were found (just × denotes a single
violation), ✓ that the properties have been proved, bd rep-
resents that no violation has been found in the portion of
behaviour analysed (within a transition bound, for instance),
Error reports a tool’s internal error, * represents a timeout
in the analysis of the contract, Bug reports a wrong violation
due to a bug in Mythril for RoomThermostat. VeriSol and
Solidifier report as soon as they find a violation, solc-verify
check all functions possibly finding more than one violation
per function, and Mythril explores the contract up to a certain
coverage criterion possibly finding multiple violations. Aside
from assertion violations, the analysis mode under which we
run Mythril also looks for out-of-bound array accesses. We
set a 300 seconds timeout for analysing each program. The
cells with a grey background present a wrong output: they
either state that a violation exists when it does not or that
a property holds when it does not. We refer to precision as
the number of wrong outcomes: the more precise the tool is
the fewer wrong outcomes it provides. Solidifier and VeriSol
use Corral with a fixed recursion bound of 128.

The Azure blockchain workbench samples’ specification
describe high-level transitions for contract states, which we
capture with assertions. We proceeded to fix the contracts
that did not meet their corresponding specification originally.
The properties specified for these contracts mainly restrict
pre- and post-states of functions. Corral’s lazy-inlining over-
approximation [29] is usually sufficient to prove such prop-
erties irrespective of bound. For Stater in PingPongGame,
however, proving the associated property requires deriving a
non-trivial invariant for a recursion.

For OpenAuction(WithCall) we capture the correctness of
refunding someone’s bid, whereas for Voting we capture the
invariant that the number of votes initially available is equal
to the sum of votes still to be cast plus votes already cast
throughout the election process. For Aliasing and StorageDe-
terministicLayout, we use our function harness to analyse
function t. While Aliasing captures properties arising from
Solidity’s memory model and its different aliasing/deep-copy
possibilities, StorageDeterministicLayout captures properties
arising from the deterministic organisation of member vari-
ables in storage. Finally, all the versions of Wallet, based on
Fig. 1, intend to capture (code and properties of) a typical
use of smart contracts to tokenise digital assets, added with
extra memory model intricacies.

These results are entirely consistent with how these dif-
ferent tools operate. As an EVM-bytecode checker, Mythril
should be the most semantically-faithful tool but this faithful-
ness comes at the expense of speed: it should not report any
imprecise result but its analyses take much longer than the
others. solc-verify’s use of a modular (assume-guarantee) ver-
ifier intrinsically over-approximates the behaviour of contract
functions. Without user-input annotations to more precisely

Azure workbench original
Example Solidifier solc-verify VeriSol Mythril

AssetTransfer 2.89 (×) 1.79 (×) 3.01 (×) 53.55 (bd)
BasicProvenance 0.87 (×) 1.42 (2×) 2.03 (×) 8.36 (×)

ItemListingBazaar 2.01 (×) 1.48 (3×) 4.42 (×) 78.58 (3×)
DigitalLocker 1.23 (×) 1.52 (9×) 2.20 (×) 36.20 (8×)

DefectiveComponentC 7.42 (×) 1.50 (×) 5.90 (×) 13.05 (×)
FrequentFlyerRC 0.88 (✓) 1.53 (×) * *
HelloBlockchain 0.99 (×) 1.40 (2×) 1.79 (×) 6.22 (2×)
PingPongGame 1.88 (×) 1.48 (2×) 3.88 (×) 111.54 (×)

RefrigeratedTrans 1.66 (×) 1.45 (3×) 2.23 (×) 71.05 (×)
RefrigeratedTransTime 1.72 (×) 1.44 (3×) 2.27 (×) 90.97 (×)

RoomThermostat 0.77 (✓) 1.39 (✓) 1.81 (×) Bug
SimpleMarketplace 1.06 (×) 1.43 (×) 1.97 (×) 9.01 (×)

Azure workbench fixed
Example Solidifier solc-verify VeriSol Mythril

AssetTransfer 1.58 (✓) 1.49 (✓) 2.44 (bd) 54.91 (bd)
BasicProvenance 0.75 (✓) 1.41 (2×) * 7.50 (bd)

ItemListingBazaar 2.63 (✓) 1.51 (×) * 72.91 (bd)
DigitalLocker 1.15 (✓) 1.51 (×) * 19.49 (bd)

DefectiveComponentC 0.84 (✓) 1.50 (×) * 12.42 (bd)
HelloBlockchain 0.71 (✓) 1.36 (✓) 1.85 (bd) 4.88 (bd)
PingPongGame * 1.50 (×) 34.61 (bd) 108.13 (bd)

RefrigeratedTrans 2.11 (✓) 1.47 (3×) * 69.67 (bd)
RefrigeratedTransTime 2.09 (✓) 1.47 (3×) * 89.45 (bd)

SimpleMarketplace 1.71 (✓) 1.43 (×) * 8.55 (bd)

Others examples
Example Solidifier solc-verify VeriSol Mythril
Aliasing 1.87 (✓) 1.43 (✓) 1.99 (×) 5.52 (bd)

StorageDeterministic 1.90 (✓) 1.43 (×) 1.98 (×) 10.01(bd)
OpenAuction * 1.45 (✓) 2.25 (bd) Error

OpenAuctionWithCall 3.34 (×) 1.54 (3×) Error Error
Voting * 1.58 (×) 2.33 (×) *
Wallet 3.74 (×) Error 2.09 (×) 37.02 (bd)

WalletNoOver * Error 2.12 (×) 29.49 (bd)
WalletNoOverCall 3.97 (×) Error Error 42.98 (bd)

WalletNoOverCallLocking * Error Error 57.93 (bd)

Table 2: Evaluation results.

capture the behaviour of a contract, its functions are gen-
erally analysed as if they were executed from an arbitrary
contract state. Hence, many false errors are reported. Solid-
ifier significantly outperforms VeriSol in terms of precision
and speed. We attribute their difference in precision and
speed to different Boogie encodings of Solidity as well as to
distinct configurations of Corral.

5 RELATED WORK
The semantics of the EVM has been formalised in traditional
interactive theorem provers [10, 25, 36]. The work in [24]
formalises the behaviour of the EVM using the K frame-
work [38], whereas the authors of [21] use F∗ [40] to this
end. These frameworks are designed to prove properties of
systems as opposed to falsifying them. They are very precise
and scalable (as they can establish properties of a complex
system in a reasonable time) but they have a low degree of
automation and require a considerable amount of manual
effort. They are as precise and scalable as the proof engineer
that manually guides the proving effort.

The following tools automatically examine an approxima-
tion of the behaviour of a smart contract to look for specific

Solidifier: bounded model checking Solidity using lazy contract deployment and precise memory modelling Conference’17, July 2017, Washington, DC, USA

behavioural/code patterns that tend to lead to vulnerabilities.
SmartCheck [43] translates Solidity code into a XML-based
intermediate language that is later queried for specific syn-
tactic patterns. Oyente [32], like Mythril [34], use symbolic
execution to examine an under-approximation of some EVM
bytecode; Oyente, in particular, can be fairly ineffective as
far as code-coverage is concerned [44]. EtherTrust [20] and
Securify [44] are based on the generation of some symbolic
constraints that soundly but coarsely over-approximate the
behaviour of EVM bytecode; while EtherTrust uses horn
clauses to represent these constraints, Securify uses a datalog
program. They are intended to prove properties of programs
rather than falsify them.

VerX [37] is a tool that uses symbolic execution and de-
layed predicate abstraction to check temporal (safety) prop-
erties of smart contracts. It is an automated tool that allows
users to specify, using temporal logic [33], functional prop-
erties of smart contracts [39]; sometimes manual input is
required to construct counterexamples.

VeriSol [45] and solc-verify [22, 23] are verifiers based on
a Boogie encoding of Solidity. Our approach significantly
differs from theirs. The solc-verify verifier proposes an un-
bounded model checker for Solidity. Their Boogie encoding is
checked by the Boogie verifier [15]. Given a Solidity program
annotated with pre- and post-conditions, contract and loop
invariants, and assertions, the verifier tries to discharge the
proof obligations derived from the specification. This sort of
modular/assume-guarantee reasoning can be quite precise
and scalable but that intrinsically depends on the ingenuity
of the specifier. The new version of solc-verify (in [22]) relies
on a precise memory model that is similar to ours. They have
slight differences such as ours uses RefCell’s type to allocate
new memory cells whereas solc-verify’s uses a reference count
for that. There is, however, a significant difference between
our encoding and solc-verify’s that is a consequence of their
distinct verification methodologies. A modular verifier checks
functions individually, that is, it conservatively approximates
the behaviour of function calls by their specification as op-
posed to precisely analysing the behaviour of called function.
As solc-verify expects users to manually annotate contracts
with specifications, function calls are modelled as precisely
as users’ manual annotations. Their approach does not pro-
pose a precise way to automatically capture the behaviour of
function calls. We propose the use of bounded model check-
ing instead. This approach tends to be less scalable since
functions calls are precisely analysed as they are explored up
to a certain execution depth. This exploration, however, has
the fundamental advantage of precisely and automatically
capturing the behaviour of function calls. Moreover, it allows
for the implementation of our lazy deployment strategy for
smart contracts. Together with our memory-precise verifica-
tion harnesses, it ensures that function calls are executed with
a well-formed storage and memory. Finally, unlike solc-verify,
our approach provides commands to print out the value of
variables in a counterexample for debugging purposes.

VeriSol also proposes a Boogie encoding that is checked
by Corral. It targets the contracts deployed to the Azure

Blockchain and checks for semantic conformance of contracts
with respect to a workflow policy, which is expressed as
a finite-state machine. VeriSol not only finds conformance
violations but it derives invariants using predicate abstraction
to automatically prove conformance. VeriSol and solc-verify’s
initial version (in [23]) propose a simple memory model that
does not account for memory variables. Therefore, it does
not capture the different nuances of Solidity’s assignment
operator, for instance. Their modelling also does not discuss
whether function calls and verification harnesses give any
well-formedness guarantees for storage and memory like we do.
Moreover, VeriSol does not offer a function harness to quickly
find errors that occur deep in the execution of a contract.

6 CONCLUSION
We have combined bounded model checking with a precise
memory modelling, lazy contract deployment, and memory-
precise verification harnesses to create an innovative verifi-
cation framework for Solidity smart contracts. Our Boogie
encoding accurately captures the semantics of Solidity’s mem-
ory model, and its lazy contract deployment and memory-
precise verification harnesses ensures that contract executions
manipulate well-formed state variables and memory cells. Fur-
thermore, our evaluation suggests that Solidifier provides a
better speed-precision compromise compared to similar tools.

There are some strong arguments in favour of the ap-
proach we propose in comparison to the current state of the
art. Firstly, formalising Solidity directly as opposed to EVM
bytecode creates a cleaner semantic basis for analysing smart
contracts; no need to encode low-level operations and let de-
velopers bridge the compilation gap from Solidity to bytecode.
Secondly, encoding semantic properties, rather than looking
for known vulnerable code patterns, allows the designer of a
smart contract to precisely specify what is expected from the
contract. Their attempted verification might uncover vulnera-
bilities that are reachable by unknown behaviour patterns or
even function errors; neither of which would be found by tradi-
tional tools. Thirdly, bounded model checking systematically,
symbolically, and automatically explores all execution paths
of a contract up to a certain depth, so it is guaranteed to find
any error that can occur within the given bound. This explo-
ration tends to exercise all code paths of a smart contract
but not all execution paths. On the other hand, current ad-
hoc symbolic execution techniques for the analysis of smart
contracts typically either too coarsely over-approximate the
general behaviour of a smart contract instance, leading to
inaccurate violations, or they cover only a small portion of
the smart contract’s code, missing violations.
Acknowledgements. We thank Gabriela Sampaio, Ante
Ðerek, Liu Han and the anonymous reviewers for useful
feedback on this paper.

REFERENCES
[1] [n.d.]. Azure blockchain workbench website. https://

github.com/Azure-Samples/blockchain/tree/master/blockchain-
workbench/application-and-smart-contract-samples.

[2] [n.d.]. Ethereum White Paper. https://github.com/ethereum/
wiki/wiki/White-Paper.

https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

Conference’17, July 2017, Washington, DC, USA Pedro Antonino and A. W. Roscoe

[3] [n.d.]. Hyperledge Fabric website. https://www.hyperledger.org/
projects/fabric.

[4] [n.d.]. Solidifier website. https://github.com/blockhousetech/
research/tree/master/Solidifier.

[5] [n.d.]. Solidity compiler. https://github.com/ethereum/solidity.
[6] [n.d.]. Solidity documentation. https://solidity.readthedocs.io/.
[7] [n.d.]. VeriSol repository. https://github.com/microsoft/verisol.
[8] Wolfgang Ahrendt, Gordon J. Pace, and Gerardo Schneider. 2018.

Smart Contracts: A Killer Application for Deductive Source
Code Verification. Springer International Publishing, Cham, 1–
18.

[9] Leonardo Alt and Christian Reitwiessner. 2018. Smt-based verifi-
cation of solidity smart contracts. In International Symposium on
Leveraging Applications of Formal Methods. Springer, 376–388.

[10] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples.
2018. Towards verifying ethereum smart contract bytecode in
Isabelle/HOL. In Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs. ACM,
66–77.

[11] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christo-
pher Ferris, Gennady Laventman, Yacov Manevich, et al. 2018.
Hyperledger fabric: a distributed operating system for permis-
sioned blockchains. In Proceedings of the Thirteenth EuroSys
Conference. ACM, 30.

[12] Pedro Antonino, Thomas Gibson-Robinson, and A. W. Roscoe.
2019. Efficient Verification of Concurrent Systems Using Synchro-
nisation Analysis and SAT/SMT Solving. ACM Trans. Softw.
Eng. Methodol. 28, 3 (2019), 18:1–18:43.

[13] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A
survey of attacks on ethereum smart contracts (sok). In Interna-
tional Conference on Principles of Security and Trust. Springer,
164–186.

[14] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model
Checking (Representation and Mind Series). The MIT Press.

[15] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K Rustan M Leino. 2005. Boogie: A modular reusable verifier
for object-oriented programs. In International Symposium on
Formal Methods for Components and Objects. Springer, 364–387.

[16] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Four-
net, Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Na-
talia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil
Swamy, et al. 2016. Formal verification of smart contracts: Short
paper. In Proceedings of the 2016 ACM Workshop on Program-
ming Languages and Analysis for Security. ACM, 91–96.

[17] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas
Hynes, Noah Johnson, Ari Juels, Andrew Miller, and Dawn Song.
2019. Ekiden: A platform for confidentiality-preserving, trustwor-
thy, and performant smart contracts. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 185–
200.

[18] Edmund M. Clarke and Jeannette M. Wing. 1996. Formal Meth-
ods: State of the Art and Future Directions. ACM Comput. Surv.
28, 4 (1996), 626–643.

[19] Michael Crosby, Pradan Pattanayak, Sanjeev Verma, Vignesh
Kalyanaraman, et al. 2016. Blockchain technology: Beyond bitcoin.
Applied Innovation 2, 6-10 (2016), 71.

[20] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018.
EtherTrust: Sound static analysis of ethereum bytecode. Tech-
nische Universität Wien, Tech. Rep (2018).

[21] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018.
A semantic framework for the security analysis of ethereum smart
contracts. In International Conference on Principles of Security
and Trust. Springer, 243–269.

[22] Ákos Hajdu and Dejan Jovanović. 2020. SMT-Friendly Formaliza-
tion of the Solidity Memory Model. In Programming Languages
and Systems, Peter Müller (Ed.). Springer International Publish-
ing, Cham, 224–250.

[23] Ákos Hajdu and Dejan Jovanović. 2020. solc-verify: A Modu-
lar Verifier for Solidity Smart Contracts. In VSTTE, Supratik
Chakraborty and Jorge A. Navas (Eds.). Springer International
Publishing, Cham, 161–179.

[24] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xi-
aoran Zhu, Philip Daian, Dwight Guth, Brandon Moore, Daejun
Park, Yi Zhang, Andrei Stefanescu, et al. 2018. KEVM: A com-
plete formal semantics of the ethereum virtual machine. In 2018
IEEE 31st Computer Security Foundations Symposium (CSF).

IEEE, 204–217.
[25] Yoichi Hirai. 2017. Defining the ethereum virtual machine for

interactive theorem provers. In International Conference on Fi-
nancial Cryptography and Data Security. Springer, 520–535.

[26] Marco Iansiti and Karim R Lakhani. 2017. The truth about
blockchain. Harvard Business Review 95, 1 (2017), 118–127.

[27] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Wein-
berg, and Edward W Felten. 2018. Arbitrum: Scalable, private
smart contracts. In 27th USENIX Security Symposium (USENIX
Security 18). 1353–1370.

[28] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma.
2018. ZEUS: Analyzing Safety of Smart Contracts.. In NDSS.

[29] Akash Lal, Shaz Qadeer, and Shuvendu K Lahiri. 2012. A solver
for reachability modulo theories. In International Conference on
Computer Aided Verification. Springer, 427–443.

[30] K Rustan M Leino. 2008. This is boogie 2. manuscript KRML
178, 131 (2008), 9.

[31] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and
Bill Roscoe. 2018. Reguard: finding reentrancy bugs in smart
contracts. In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings. ACM, 65–
68.

[32] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and
Aquinas Hobor. 2016. Making smart contracts smarter. In Pro-
ceedings of the 2016 ACM SIGSAC conference on computer and
communications security. ACM, 254–269.

[33] Zohar Manna and Amir Pnueli. 1995. Temporal verification of
reactive systems - safety. Springer.

[34] B Mueller. [n.d.]. Mythril—Reversing and Bug Hunting Frame-
work for the Ethereum Blockchain.

[35] Satoshi Nakamoto et al. 2008. Bitcoin: a peer-to-peer electronic
cash system (2008).

[36] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grig-
ore Roşu. 2018. A formal verification tool for ethereum vm
bytecode. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, 912–915.

[37] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana
Drachsler-Cohen, and Martin Vechev. 2020. Verx: Safety verifica-
tion of smart contracts. In 2020 IEEE Symposium on Security
and Privacy, SP. 18–20.

[38] Grigore Roşu and Traian Florin Şerbănuță. 2010. An Overview
of the K Semantic Framework. Journal of Logic and Algebraic
Programming 79, 6 (2010), 397–434.

[39] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018. Temporal
Properties of Smart Contracts. In International Symposium on
Leveraging Applications of Formal Methods. Springer, 323–338.

[40] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, An-
toine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cé-
dric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim
Zinzindohoué, and Santiago Zanella-Béguelin. 2016. Dependent
Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL). ACM, 256–270.

[41] Melanie Swan. 2015. Blockchain: Blueprint for a new economy.
"O’Reilly Media, Inc.".

[42] Nick Szabo. 1997. Formalizing and securing relationships on
public networks. First Monday 2, 9 (1997).

[43] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy,
Ramil Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov.
2018. Smartcheck: Static analysis of ethereum smart contracts.
In 2018 IEEE/ACM 1st International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 9–16.

[44] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Ger-
vais, Florian Buenzli, and Martin Vechev. 2018. Securify: Practical
security analysis of smart contracts. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security. ACM, 67–82.

[45] Yuepeng Wang, Shuvendu K. Lahiri, Shuo Chen, Rong Pan, Isil
Dillig, Cody Born, Immad Naseer, and Kostas Ferles. 2020. Formal
Verification of Workflow Policies for Smart Contracts in Azure
Blockchain. In VSTTE. 87–106.

[46] Karl Wüst, Sinisa Matetic, Silvan Egli, Kari Kostiainen, and
Srdjan Capkun. 2019. ACE: Asynchronous and Concurrent
Execution of Complex Smart Contracts. Technical Report. IACR
Cryptology ePrint Archive, 2019: 835, 2019.

https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://github.com/blockhousetech/research/tree/master/Solidifier
https://github.com/blockhousetech/research/tree/master/Solidifier
https://github.com/ethereum/solidity
https://solidity.readthedocs.io/
https://github.com/microsoft/verisol

	Abstract
	1 Introduction
	2 Background
	3 Formalising Solidity and the Ethereum blockchain
	3.1 Solidity's memory model
	3.2 Contract deployment and function call
	3.3 Memory-precise verification harnesses

	4 Solidifier
	4.1 Evaluation

	5 Related work
	6 Conclusion
	References

