Revivals, stuckness and the hierarchy of CSP
models

A.W. Roscoe

Ozford University Computing Laboratory, Wolfson Building, Parks Road, Oxford
0OX1 3QD,UK

Abstract

We give details of a new model for CSP introduced in response to work by Fournet
et al [8]. This is the stable revivals model R alluded to in Reed et al (2007, FAC,
19, 3). We provide the full semantics for CSP in this model, indicate why this
is operationally congruent, and provide proofs of the full abstraction properties
asserted in that paper. We study the place of R in the hierarchy of CSP models,
and show how this generates several extensions of R handling infinite behaviours. In
doing this we discover more about the hierarchy and several known models within
it. This includes results that show that the traces model, failures model and are new
one are somehow “essential” or “Platonic”. We set out a number of conjectures and
challenges for future workers in this area.

Key words: Concurrency, CSP models, Full Abstraction

1 Introduction

The author has long worked on mathematical models for concurrent systems, in par-
ticular Hoare’s CSP [13]. It therefore came as something of a surprise, when studying
the work of Fournet, Hoare, Rehof and Rajamani in [8], for him to realise that there
was a new congruence sitting squarely in the middle of the known ones. This is based
on the idea that we might extend the familiar concept of a failure — a pair (s, X)
where s is a trace and X is a set of events that might be refused indefinitely after
s — by adding an event that the process might accept after this refusal. [8] introduced
this via an equivalence on CCS processes called conformance. In [22] we showed, in
a section of comparisons with [8], that this idea could be turned into a model for
CSP. There we stated the healthiness conditions for the new model, re-christened

Emagl address: Bill.Roscoe@comlab.ox.ac.uk (A.W. Roscoe).
Preprint submitted to Elsevier () 9 October 2008

with the more descriptive name stable revivals, but did not have the space to give a
full semantics or to justify the full abstraction claims that were made.

The purpose of this paper is to make up for these omissions, to study further details
of the model, and to re-examine the hierarchy of CSP models in the light of this new
one. By “CSP” here, we mean the untimed process algebra described in [13] and [23],
using the second of these as our primary reference. So we are studying models for
that language, not the ones for its continuously or discretely timed variants.

The paper is organised as follows: in the first section we summarise the language
of CSP and its established hierarchy of models. In the next we introduce the new
model and give the semantics for CSP over it. We then establish its congruence
with the standard operational semantics of CSP and use that to state formally the
full abstraction properties that this model has with respect to issues discussed in
[21,22,8], and prove them. In essence it is fully abstract with respect to detecting
when some system of processes can fail to make progress despite one or more of them
having unfinished business with other(s), or revealing when a process can offer some
event from a stable state. There is then a section on revivals models that include
representations of divergence and perhaps infinite traces — behaviours that take an
infinite time to observe — together with appropriate full abstraction properties. In
Section 7 we are able to use the results and methods developed in this paper to prove
that our new congruence has an important place in the CSP hierarchy. To be precise
we show that all finite-observation models that are not finite traces, stable failures or
the trivial congruence are refinements of the stable revivals model R.

In the conclusions we discuss the role of additional equivalences like revivals, dis-
cussing their potential impact, both theoretical and practical, as well as setting out
a programme for future work on the algebraic semantics of CSP.

In this paper we rely on the methods and notation of the author’s book [23], where in
Chapters 7-11 the reader can find many of the same calculations being done for some
of the models of CSP known at the time it was written. We provide an appendix of
notation and brief details of the theoretical ideas used from [23], as well as detailed
references to the Internet version of that book.

This paper has been available in draft form since 2005. During the intervening period,
several papers have been published that developed ideas presented here and answered
questions posed in earlier versions. The first of the two most notable is [30], which
reports the embedding of the stable revivals model and its CSP semantics and laws
into a theorem proving environment. This verified many of the claims made in the
present paper as well as revealing several places where our assumptions were not
stated as clearly as they should have been. The present version therefore benefits in
two ways from that paper. The second paper, [28], is by the author and shows how
the structural results of Section 7 can also be proved for divergence-strict models of
CSP over a subtly extended language.

As part of this paper’s contribution to the development of the hierarchy of CSP
models, at various points in this paper we set out conjectures, open questions and
pieces of work still to be done. These are highlighted by the symbol § in the margin.

2 The CSP language

When we discuss congruences, denotational models and full abstraction, we need to
establish what language we are using, since the expressive power of any language has
enormous effects on the results we are able to prove. In this paper we adopt the core
CSP language described in [23], with the addition of two less central operators from
that book (> and A) for reasons that will become clear later.

In the following, 3 is a nonempty set of communications that are visible and can only
happen when the observing environment permits via handshaken communication. The
actions of every process are taken from ¥ U {v',7} where 7 is the invisible internal
action and v" is a signal that processes communicate when they have terminated
successfully.

The constant processes of CSP are

STOP which does nothing — a representation of deadlock.

div which performs (only) an infinite sequence of internal 7 actions — a represen-
tation of divergence or livelock.

CHAOS which can do anything except diverge.

e SKIP which simply terminates successfully by communicating the signal v".

The following operators introduce communication:

e ¢ — P communicates the event o € ¥ before behaving like P. This is prefizing.
e 7z : A — P(z) communicates any event from A C ¥ and then behaves like the
appropriate P(z). This is prefiz choice.

There are three forms of binary choice between a pair of processes:

e P 1 (@ lets the process decide to behave like P or like @): this is nondeterministic
or internal choice.

e P O () offers the environment the choice between the initial ¥-events of P and ().
If the one selected is unambiguous then it continues to behave like the one chosen;
if it is an initial event of both then the subsequent behaviour is nondeterministic.
The occurrence of 7 in one of P and @ does not resolve the choice (unlike CCS +),
and if one of P and) can terminate then so can P O (). This is external choice.

e P > () may choose to offer the visible actions of P but, unless one of these is
followed, must offer the initial choices of (). This is asymmetric or sliding choice
and can be said to give an abstract (and untimed) representation of P timing out,

if none of its initial actions are accepted, and becoming ().

We choose to regard the asymmetric choice operator [> as primitive rather than
deriving it from other operators as has usually been done. It is equivalent to
(POa— @)\ {a} for any event a that does not appear in P or . In this paper
we will always give > the following operational semantics taken from page 169 of
[23], closely analogous to this representation: the first rule says that P can perform
internal actions without resolving the choice

P -5 p
PrQ - PoQ

Any visible action from P decides the choice in its favour

PP

Prgop 7T

while at any moment (as we have no way of modelling time directly in this seman-
tics) the combination can time out and become Q.

PrQ@Q - Q

The first two of these choice operators are commonly applied to indexed families of
processes: the fact that M and O are symmetric and associative makes this unam-
biguous. Since M is also idempotent, it makes sense to apply its generalisation [|

over any nonempty set or indexed family, while [can only be applied to finite in-
dexed families as there are CSP models (those involving acceptance sets) where O
is not idempotent. The reason O is restricted to finite families is to avoid problems
with internal actions. If [] is applied to an infinite set then it introduces unbounded
nondeterminism, a topic we will be discussing in Section 3.2.

Various conditional choice constructs are used within CSP, but these are resolved by
non-process identifiers and are not CSP operators in the same sense as the above,
particularly since non-process identifiers are given a declarative semantics (i.e., there
is no assignment).

We only have a single parallel operator in our core language since all the usual ones
of CSP can be defined in terms of it as discussed in Chapter 2 etc of [23].

e P || @ runs P and Q in parallel, allowing each of them to perform any action in
X

Y — X independently, whereas actions in X must be synchronised between the two.
It terminates when both P and) have, a rule which is equivalent to stating that
V' is synchronised like members of X.

There are two operators that change the nature of a process’s communications.

e P\ X, for X C 3%, hides X by turning all P’s X-actions into 7s.

e P[R] applies the renaming relation R C ¥ x ¥ to P: if (a,b) € R and P can
perform a, then P[R] can perform b. dom(R) must include all visible events used
by P.

We will see that both of these forms are vital to full abstraction and related arguments.

We introduce a new notation for a particular type of renaming: PJa — A] will mean
that whenever P can perform a, the renamed process can perform any member of the
set A C X. Similarly P[A +— a] will be the process that performs a when P performs
a member of A.

There are two operators that allow one process to follow another:

e P; @ runs P until it terminates (v') and then runs . The v* of P becomes a 7.
This is sequential composition.

e P A (@ runs like P but if at any time the environment communicates an initial
visible action of @, then (nondeterministically if that event is also currently offered
by P) P shuts down and the process continues like). This is the interrupt operator.

The final CSP construct is recursion: this can be single or mutual (including mutual
recursions over infinite parameter spaces), can be defined by systems of equations or
(in the case of single recursion) in line via the notation p p.P, for a term P that may
include the free process identifier p.

3 The hierarchy of CSP models

Before we describe our new model it is helpful to understand the hierarchy within
which it sits, particularly since that hierarchy demonstrates the existence of some
sibling models that sit alongside our new one.

CSP models traditionally represent processes by sets of observations which can be
made of a process. This is essentially the same idea as testing equivalences [6].1 By
varying the type(s) of behaviour observed we get different models.

While any particular CSP model is based on a particular alphabet 3, we only consider
those models for which there are analogues for every size of ¥ (perhaps bounded
above by some infinite cardinal in size). If ¥ C ¥’ then the congruence implied by
the corresponding models for processes using events in ¥ should be identical. The

! The significant difference is one of intention: the testing equivalences are defined over
processes whose fundamental definition is operational. It is not essential that they are a
congruence, and in particular there is no need of a fixed point theory for recursions. On the
other hand, CSP models are expected to be potentially stand-alone, and to be capable of
supporting a denotational semantics.

fact that models are congruences under CSP operators such as renaming, prefixing
and hiding implies that they have strong symmetry properties and must, for example,
treat all members of ¥ alike. It is possible that for some small ¥ two different families
of model might co-incide.

We will frequently want to extend the alphabet under consideration to allow for
CSP constructs over events not in a particular ¥. What we will generally do then
is to rename the “old” X as X and to re-base ourselves in some new >y U X;. The
assumptions of the previous paragraph then mean that any equalities proved over this
larger alphabet still hold over .

3.1 Models based on finite observations

Each model consists of one or more sets of observations, with these being restricted
by a number of healthiness conditions that ensure that each point in the model is
“realistic”. For example in the traces model each set of traces must be nonempty and
prefix-closed.

The tradition in CSP is to judge abstract models by means of observations of an
operational semantics and by characterisation in terms of algebraic laws. Firstly, the
set. of processes captured by the healthiness conditions should be equal to, or at
least have as a dense subset, the natural images of labelled transition systems under
the abstraction map that observes a node’s evolving behaviour. Secondly, the value
predicted of a process P in a model by the denotational semantics should equal the
same abstraction of the operational semantic value of P. Thirdly, there should be a set
of (hopefully natural) algebraic laws such as P 11 P = P which, together with a rule to
handle infinitary processes, completely characterises the equivalence. Chapter 7 of [23]
introduces the operational semantics of CSP, Chapter 8 of that book introduces the
traces (7)), stable failures (F), and failures-divergences (N') models of CSP and the
denotational semantics of the language in each. Chapter 9 analyses these semantics,
and in particular Sections 9.3 and 9.4 show how to prove the full abstraction results
and congruence results that relate operational and denotational semantics. Chapter 10
extends the ideas of Chapters 8 and 9 to equivalences with infinite traces, introducing
models Z and U that handle divergences and infinite traces (respectively with finite
traces, and failures), and Chapter 11 shows how to develop an algebraic semantics
based on the systematic transformation of any finitary program to a normal form.

The original and simplest model consists of finite traces 7 [12], in which a process
is represented by the set of finite sequences of visible events it can perform. Because
this model only considers finite traces, all of the observations it makes of processes
can be completed in a finite time. The basic stable revivals model we will be studying
also falls into this category, alongside a number of others?:

2 The forms quoted here are in some cases not precisely those in which they were originally

e In the stable failures model F [23] processes are represented by their finite traces
and stable failures (pairs (s, X) where s is a finite trace and X is a set of events
some implementation state reachable after s can refuse). In our type of LTS with
the signal action v/, a state can refuse a set of events if it is either stable (has no
7 or signal event) or can perform a signal, since the right way to model signals in
failures models is to define that any process that can perform a signal can opt to
do this independently and can therefore refuse all other events. We will call a state
v -stable if it satisfies either of these requirements.

e The stable ready sets model A, adapted from [16], which is the same except that
failures are replaced by pairs (s, A) in which s is a finite trace and A is the precise
set of events offered by some stable state reachable after s. (This is sometimes
called the (stable) acceptance sets model.) The difference between a ready set and
the complement of a refusal set is that the latter is closed under superset, but the
former is not.

e The refusal testing model RT ([15], based on [18]), in which a process is represented
by a finite alternating sequence of the form

<X07 ayp, Xla ai, ..., a’naXn+1>

in which each q; is a visible event and each X; is either a v'-stable refusal observable
at the appropriate time or a marker e to say that no refusal has been observed.
Note that in this notation we could re-cast F with processes having only one set
of behaviours, failures with e being allowed as a “refusal” so that (s, e) would
represent the simple trace s.

These are certainly not the only finite observation models that exist: after all the
purpose of this paper is to introduce another one. It seems reasonable to define a
finite observation model to be any that is defined in terms of behaviours that can be
observed of processes

(i) that take a finite amount of time to observe,
(ii) that only record things that can be seen on a single interaction with the process —
they are linear, and
(iii) that are restricted to what can reasonably be observed of a standard labelled tran-
sition system in which, from one state, one cannot “see ahead” to the range of
behaviours that can follow its initial actions, this would be contrary to the spirit
of “linearity”.

The only things that we can observe are thus the sequence of visible actions that
occur, the stability (and conceivably the instability) of the states from which they
occur and the final state reached, and, in the case of stability, the set of visible actions
offered. In place of such an acceptance set we may instead choose to observe things
like refusals that are deducible from it.

presented. What we do here is strip them down to finite observations only.

Certainly all the models listed above, and any conceivable model of this form, must
give an equivalence that is coarser than observing all sequences of the forms

<A07a17A27---7An—17anaAn> and <A0,a1,A2,---,An—1,an,°,/>

possible for a process, where each a; € A;_;, and A; C ¥ or A; = e. Here, o is
recorded just when the state prior to a visible event is unstable and otherwise A; is
the set of events offered from the stable state from which a;,; occurred.® It seems
highly undesirable to the author to be able to make the particular distinction implied
by observing positively the instability of the state from which an event occurs. One
argument for this is that it would mean that some unlikely pairs of processes would
have to be distinguished. Thus

(a = STOP) > (a — STOP) # a — STOP
(SKIP; STOP) O (a — STOP) # (STOP O a — STOP)

since in each case the left hand side can perform a from an unstable state, unlike
the right hand side. We can conclude from the second of these that SKIP; STOP #
STOP.

Another argument is that observing instability of a state from which some a occurs
implies we can see that a state has 7 actions without following one.

For this reason the author postulates that there is no positive observation of instability,
so that e simply means that our process has not been observed to be stable. Thus,
when any observation of our process of one of the above forms is possible, then so is
the same one with any selection of the A;s replaced by e. The observations possible
of each of the pair of processes displayed above will then be the same: sequences (X)
and (X, a, Y), where X is either @ or {a} and Y is either e or ().

Clearly the set of FL-observations of a process (i.e. those of the two forms above
that can be made of its operational semantics) are nonempty and closed under prefix
(initial subsequence), and whenever (Ag, a1, A1, ..., ar, Ay, ar41, A1) belongs to a
process and A, # e then (Ag, a1, A1, ..., ar, A, b,) also belongs for all elements b of
A,. Here, FL stands for “finite linear”.

If 3 is such a behaviour, and ' is either a proper prefix of 3 or is a prefix of § with
at least one proper acceptance replaced by e then we will write 8’ < . Our postulate
about the non-observability of instability then implies that if # can be observed of a
process, so can all 5’ < 3.

We thus have the representation of an arbitrary CSP process in a new model FL,
whose healthiness conditions are those implied in the previous two paragraphs. We

3 We use round brackets () rather then the usual sequence ones (-) here to distinguish this
class of behaviour from R7T ones visually.

leave the presentation of the full details of this new compositional model for a later
paper.

DEFINITION 3.1 A finite observation model M represents a process as a finite tu-
ple (M, ..., M,) of sets of observed behaviours, where each M; is the image of the
process’s representation in F L under some relation. M must be compositional under
every CSP operator, with the semantics of recursion being given by component-wise
subset-least fixed point.

The relations generating M; must vary homogeneously as Y. varies: if ¥ C Y then the
relations for ¥ are the same as those for X! restricted to the domain of F L-behaviours
over Y, possibly discarding some members of the range where this does not change
the equivalence generated.

An example of discarding some members of the range is removing events in those
refusal sets of processes defined over the alphabet ¥ that intersect with ¥/ — X.

It is interesting to compare the above set of models with the equivalences described
in Von Glabbeek’s papers [9,10], where he describes a hierarchy which extends from
ones based on the sorts of behaviour we have looked at, all the way to bisimulation. In
the first of these papers there are analogues for all the equivalences we have discussed
above, including “ready traces” which corresponds to FL. There is an essential dif-
ference, however, namely that the equivalences of [9] are described over process trees
without T actions. It follows that the issues of actions occurring without stability hav-
ing been observed are irrelevant, and the subtleties (such as o) associated with that
phenomenon in our treatment of all the above models other than 7 are not present.
In [10], where 7 actions are considered, this issue still does not seem to be addressed.
Without proper modelling of this phenomenon, there is no prospect of any model as
fine as RT being a congruence for a CSP-like language involving hiding, and if the
language contains A no model finer than 7 is possible without it.

There is no analogue in [9,10] of the revivals models that are the main topic of this
paper.

3.2 Models involving divergences and other infinite behaviours

The CSP model that is perhaps the most familiar, failures-divergences (A) [4], does
not fall into the finite-observation category because, as well as failures, it also records
a process’s divergences: finite traces after which the process can execute an infinite
unbroken sequence of 7 actions.

This makes a great difference in calculating the semantics of a process for two distinct
reasons; both result in the modelling capacity of N being less than some might like.

e The first problem comes in calculating the divergences of the hiding operator P \ X.
Since N does not represent infinite traces directly, we have to infer infinite sequences
of X-actions that will map to divergence from P’s set of finite traces. This is only
accurate if P has no infinite branching on any X-action or 7 — we can then apply
Konig’s Lemma giving an infinite path through the parts of P’s execution tree
whose trace is a prefix of a chosen infinite trace.

It follows that A (unlike the models recording finite behaviour only) is only a
congruence for finitely nondeterministic CSP — the language with no infinite, or
unbounded nondeterminism []S, and no infinite-to-one renaming or P \ X with X
infinite in the case where the overall alphabet is infinite.

e The second problem is that for two separate reasons — avoiding unbounded nonde-
terminism being created by finitely nondeterministic operators*, and calculating
the correct fixed points for recursions — A has to adopt the principle of divergence
strictness: once a process can diverge on trace s, we have no interest in its other
behaviour on s or extensions s't. Thus, there are healthiness conditions that say
that if s is a divergence then so is s't, and any (s°t, X) is a failure. This means that
N does not in fact record strictly more information than F, as one would think
at first: over A all processes that can diverge immediately are identified with each
other, and this is certainly not the case over F.

A noteworthy feature of A is that, for each operator, the calculation of the diver-
gences of a process is completely independent of the failures per se of its arguments,
depending only on their traces and divergences. This is something we can expect,
since no refusal information is recorded in a divergence, and the refusal at the end
of a failure is the last thing that is observed. Equally, it is clear that if we have two
different models that both contain records of all strict-divergent traces (or indeed any
other sort of observation) then they must agree on them if they are accurate.

We will see in this section that there is, in effect, a two-dimensional structure of CSP
models. On the one hand we can classify a model by the level of detail it records
about a process’s finitely observable behaviour, and on the the other we can do so
based on what is recorded about its infinite behaviour.

From this perspective we can regard N as the divergence-strict extension of F to in-
clude divergences. Similarly there is a divergence-strict extension of 7 that represents
a process as its sets of finite traces and divergence traces. Naturally, the divergences

4 See [26] for an example of how this arises. In effect it is because the infinite sequence
of states a process passes through during a divergence can each have a branch labelled
with the same action z but leading to different results. This is sufficiently close to having
all these actions leading from the same state to cause the same problems as unbounded
nondeterminism. The infinite path through the tree created by Konig’s Lemma may just be
the divergence, and fail to have any z action on it. This does not matter in a divergence-
strict model, because divergence on a prefix of (s \ A4)(z) implies it on this trace itself.
But in a model where we have to know if P \ A can diverge after precisely (s (z)) \ A4, it
is serious.

and finite traces predicted by N for any process are always the same as those pre-
dicted by this second model. We will use the notation MY for this type of extension,

so N = F4

We can similarly extend A to A%. The extension of R7T is more complex since here we
should be interested in what is refused leading up to a divergence: refusal is no longer
final. Here the natural form of a divergence takes the form (Xy, ag, X1, a1, ..., Xpn, ay)
and there are healthiness conditions stipulation that if this is a divergence then so
are all others whose presence can be deduced from this one, for example by pointwise
subset on the refusal arguments. This is in fact the model of [15].

In any case where M observes nothing other than a trace prior to a divergence, MY
is simply formed by adding the set of finite divergence traces and forcing divergence
strictness. In cases like R7T where observations can carry on long enough to observe
divergence after some refusal, acceptance or similar is recorded, it is appropriate to
use more complex “divergences” than just traces. The model F£! is discussed in [28].

The problems highlighted above, restricting N to finite nondeterminism and diver-
gence strictness, have been solved in two steps in the years since N' was developed.
Both solutions complicate the original model.

The solution to the problem of coping with unbounded nondeterminsm is to add
infinite traces to NV, creating a model (U) where processes’ representations have three
components: failures, divergences, and infinite traces. This remains divergence strict.
There is no real conceptual difficulty here, since in many ways it is more natural to
represent infinite traces directly rather than to try to deduce them from the finite
ones. We can now distinguish between the process that nondeterministically chooses
to perform any finite number of as, and the one that has these choices, but can also
choose to perform an infinite number. Note that the the former process, hiding a,
should become STOP since it cannot diverge, while the latter one can diverge whne
the infinite seuqanece of as is hidden.

The complications here arise from the structure of the resulting model, which is no
longer a complete partial order, and establishing the operational congruence result,
which is significantly harder. Alternative methods were developed in [1,25] for proving
the existence of least fixed points despite incompleteness for any CSP-definable recur-
sion, and also in [25] for proving operational congruence and hence full abstraction.

These methods work for all the models in which any refusal information is only at the
end of a trace, meaning that for each of them there is a strict divergence and infinite
trace extension MY%* so that Y = F¥ and T = TV,

For RT, as with divergences, the situation will be more complex since it is natural
to want to know infinite refusal testing information of the form:

(XO, ag, X1, @1y vy Opy Xppr,s - >

The details of RT%, and the necessary proofs, have not been worked out at the
time of writing as far as the author is aware. The work in this paper, particularly in
Section 6.1, offers some guidance on the structure of this model, and we will briefly
discuss it again there.

A way of dispensing with divergence strictness was published relatively recently [26].
As stated above, the need for divergence strictness comes in A from problems with
unbounded nondeterminism and recursion. The issue with unbounded nondetermin-
ism is solved by infinite traces, and cannot be solved without them [26]. Finding the
correct fixed point to model recursions is now a problem, requiring the following pair
of facts to be reconciled and allowed for:

(A) With finitary models like 7 and F, the correct denotation of any recursion is always
the least fixed point with respect to the component-wise subset order. This is easy
to see: any finitely observable behaviour will appear after some finite number of
unwindings of the recursion in the operational semantics. This is closely related to
the fact that all CSP operators are continuous with respect to the subset order in
all known models, guaranteeing that this fixed point is reached in w unwindings:
U{F"(L) | n € N}.

(B) We cannot expect infinite behaviours to appear in a finite number of unwindings,
and the above fixed point does not work for models with infinitary components.
The least fixed point with respect to the superset, or refinement, order does work,
but only if we impose divergence strictness. Some operators are not continuous in
this direction.

(A) and (B) need to be reconciled because together they appear to tell us that the
finitely observable behaviour recorded in infinite observation models can be correctly
calculated by either a least or a greatest fixed point! One of the reasons why divergence
strictness helps in (B) is that, in all known models, one can show that all finite
behaviour none of whose prefixes is divergent is uniquely determined by a recursion,
neatly resolving the paradox of how we can use both least and greatest fixed points
for finite behaviour: wherever a process has not reached divergence, the two are equal.

If we take away divergence strictness, it is fairly easy to see by example that neither
the greatest nor the least fixed point is correct. The term p p.p has every member of
a model as a fixed point, but its correct denotation (the process that just diverges on
the empty trace) is neither refinement minimal nor subset minimal.

As shown in [26], it is possible to calculate the correct value by a non-standard fixed
point process. This is over a model with nearly all divergence strictness removed. Let
M7 be the equivalence determined by the finite behaviours of M, with divergence
and infinite trace information as in M%¥

e without the divergence strictness assumptions, but
e with the assumption that if the infinite non-divergent behaviour u (usually an
infinite trace) has an infinite number of divergent prefixes, then u is present in the

representation whether it is really possible or not. We term this weak divergence
strictness.

The last assumption is necessary: it is shown in [26] (and independently in [14])
that it is impossible to give a denotational fixed point theory over the model with
this assumption removed. These models are very closely related to congruences of
Puhakka and Valmari [19,20], discovered there as the weakest ones that predict all
divergence traces (by themselves, or with deadlock).

The operationally correct fixed point theory involves first calculating the refinement-
least fixed point A of a recursion p = F(p), then stripping away all post-divergence
behaviour to get a value A. The interval between A and A is mapped into itself by F,
and the second stage of the fixed point process involves calculating the subset-least
fixed point in this interval. This construction — called the refiected fixed point — is
similar to one used in related circumstances by Broy in [5].

So for each of the models 7, F, A and conjecturally for R7 and FL with richer
infinite behaviours, we have a family of four:

e The original model M, valid for full CSP but not recording any infinite behaviours.

e The extension MY which adds strict divergences but can only handle finitely non-
deterministic processes.

e The extension M%“ which adds infinite traces so it can handle the full language,
but is still divergence strict.

e The model M# that removes almost all of the divergence strictness assumption.
The main model discussed in [26], there termed SBD, is T*.

Considered as abstractions of an arbitrary LTS, M7 is the finest of the four equiv-
alences, M%"“ is finer than MV, but both of these last two are incomparable with
M.

As CSP congruences, M¥“ and MY are the same, but the richer model allows us to
consider processes with infinite nondeterminism. Thus, for finitely nondeterministic
terms and finitely branching LTSs, the equivalence induced by M%* is exactly the
same as that induced by M?V: every such process takes a value where the infinite
traces etc are all the limits of the finite behaviours.

The choice of which CSP model to use very much depends on two things: whether
unbounded nondeterminism is possible in the processes under consideration, and what
level of detail is required. The majority of practical processes are both divergence free
and finitely nondeterministic, so we might well want to use 7V to establish divergence
freedom, if required, and then use whichever finite observation model is required. We
will return to this question in Section 6.4.

Our new model turns out to be one for which the various extensions only involve
infinite traces and divergence traces, so we can, if we we wish, concentrate on the

finite observations, confident that its three siblings are obtained by adding the same
sets of divergences and infinite traces as with 7 and F.

4 The stable revivals model

Over an alphabet ¥ = ¥ U {V'} of visible events (v' being CSP’s special termi-
nation signal®), the stable revivals model identifies each process P with a a triple
(Tr, Dead, Rev), where

e Tr C X" consists of all P’s finite traces (perhaps ending in v').

e Dead C X* consists of all traces (other than terminated ones) after which P can
deadlock (reach a state from which no further action is possible).

e Rev C ¥* x P(X) x X consists of all P’s revivals. (s, X, a) means that P can
perform s, stably refuse X, and then perform a: therefore we restrict revivals to
those triples such that a ¢ X, since plainly it is impossible for a process to refuse
X in a given stable state and then have the same state perform a member of X.
It is important to note that we have allowed v neither to be the “reviving event”
a nor to appear in the refusal set X. We could have chosen to do either or both of
these things, but, with proper healthiness conditions, this would not have changed
the expressiveness of the model. Because of our interpretation of v, we know that
when P has the trace s°(v') it can definitely choose to offer v' and only v* after
s. Furthermore we know that whenever a process is stably offering a non-v" event
a in the revival (s, X, a), the corresponding state is stable and unable to perform
v'. We do not need to have observations recorded that tell us these things.® Thus
the revivals we record are generated purely by stable states as opposed to v'-stable
states.

The same structure would work if there were more than one signal. The reason
why we are able to take this decision in this model and not in the stable failures
model is because the new model has the separate representation of deadlock. With-
out this, the only way of distinguishing between SKIP and SKIP 1 STOP is to
observe the refusal of sets including v* in the latter process.

® V is treated differently to other events because (i) it is always final in a trace and (ii)
there is no need for other processes to agree to it — they just observe it. We include it, and
the related CSP operations SKIP and P; @, in this paper primarily because one of our
motivations was to permit the development of the ideas in [8] on models of network termi-
nation. Its relationship with refusal sets also provides an excellent prototype for including
more general signal events in the model, should this be desired. The role of v' as a signal
event is discussed in detail in [23], particularly Chapter 6.

6 Note that the presentation here is different — and hopefully cleaner — than the one in [22],
since the latter allowed revivals of the form (s, X,v’) though the healthiness conditions
prevented them from adding extra distinctions between processes.

Not all such triples (7r, Dead, Rev) represent a possible real process, so as with other
CSP models we adopt a set of healthiness conditions. These are:

Tr1l Tr is nonempty and prefix-closed: if st € Tr, then s € Tr.
Deadl Dead C Tr. Every deadlock trace is a trace.
Revl (s,X,a) € Rev = s°(a) € Tr This simply says that every trace implied by a
revival is recorded in 7.
Rev2 (s,X,a) € RevAY C X = (s,Y,a) € Rev This says that the state which refuses
X and accepts a also refuses any subset of X.

We quote three versions of the next healthiness condition. The first one is only suffi-
cient when the overall alphabet ¥ is finite:

Rev3/™ (s,X,a) € RevAb € X = ((5,X,b) € Rev V (5, X U{b},a) € Rev) In other
words, whatever state refuses X and accepts a, either accepts or refuses b.

With a finite alphabet, one can look at all the members of ¥ not in X U{a}, one
after another, to extend X in (s, X, a) to Z such that a ¢ Z and (s, Z,b) € R for
allbeX - Z.7

With an infinite alphabet one cannot step through the whole of it in this way: we
need to adopt the principle we just proved in this restricted case as the healthiness
condition itself. Since earlier drafts of the present paper were restricted to the case
of finite ¥, Samuel et al in [30] proposed their own version of Rev3 to handle
infinite alphabets. This is

Rev3 (s,X,a) € Revand Vb € Y.(s,X,b) € Rev implies (s, X U Y, a) € Rev.

In other words, any revival can be extended by all the events b € Y such that
(s, X, b) is not a revival: the argument for this is that the same state that witnesses
the revival (s, X, a) cannot have any action of Y available.

Setting Z = {b | (s,X,b) & Rev}, we see that X C Z and (s,Z,a) € Rev by
Rev3.

In fact one can deduce [30] that not only is (s, Z, a) € Rev, but actually (s, Z, b) €
Rew for every b € X — Z. For by construction (s, X, b) € Rev and (s, X, b") € Rev
for any b’ € Z. It follows that (s, X U Z,b) = (s, Z,b) € Rev by Rev3.

We can thus deduce that Rev3 proves the following alternative version of the
axiom, which itself easily proves Rev3.

Rev3' (s,X,a) € Rev=3ZCY—{a}.X CZAVbEX—Z.(s,Z,b) € Rev.

As they are equivalent the reader may select either Rev3 or Rev3’.

The reader might want to compare these to the corresponding healthiness conditions
for F discussed on page 212 of [23] (which uses some conditions defined on page 196).

" To demonstrate this, set Zg = X and By = {b} and ¥ — (Zy U By) = {ci,... ¢y }. For each
0<m<nweset Zyit1 = Zy and By11 = By, U{cme1} if (8, Zm, ¢my1) € Rev; otherwise
Zmt1 = ZmI{em+1} and Bp11 = Bp,. We can prove that if b & {cpq1,..., ¢} then b & Z,,
implies (s, Zy,, b) € Rev by induction: in the second case we know that (s, Z,,11,b) € Rev
for all b € B,, by Rev3/.

The stable revivals model R is defined to be the set of all triples satisfying the
above conditions. Following tradition, we define P = (Trp, Deadp, Revp) Cp Q =
(Trg, Deadg, Revg) (Q refines P) if and only if

Trg C Trp and Deadg C Deadp and Revg C Revp

The refinement-minimum element of R is CHAOS, which contains all possible be-
haviours in each of its three components. One CSP representation of CHAOS is

CHAOS = STOP 1 SKIP M M{a — CHAOS | a € S}

Replacing the last clause with ?z : ¥ — CHAOS (which works for F) does not work
in this model, because it would not have any revival of the form (s, X, a) when X
is non-empty. The definition displayed above does work in R7 but not in A, where
the nondeterministic choice would need to be extended to cover all initial acceptance
sets.

The maximum element is the process ({()},?,0}) which corresponds to the process
div, which simply diverges. This strange-seeming phenomenon occurs simply because
we are choosing not to record divergence in our model: all the finite-behaviour models
described in Section 3 map div to their greatest elements. Adding a representation
of divergence, as we will do in the next section, (whether divergence-strictly or not)
will mean that there is no top element: in F, div is more refined than either STOP
or a — STOP, but this is not true in models with representations of divergence and
deadlock, since each of the three processes has a recorded behaviour that neither of
the other two does (respectively immediate divergence, immediate deadlock, and the
trace (a)).

Given that in order to be a complete lattice it is sufficient that a partial order has
greatest lower bound for any subset, and all of the healthiness conditions above are
easily seen to be closed under nondeterministic choice (component-wise union) of
nonempty sets, the statement of the following proposition is its own proof.

PRrROPOSITION 4.1 R is a complete lattice under refinement, with greatest lower
bound given by nondeterministic choice (equivalent to component-wise union), for
nonempty sets, and div is the greatest lower bound of the empty set.

It should be noted that the inclusion of the traces component 77 in R is not always
essential to get a congruence which includes revivals, as can be discerned from the
semantics below. To be precise, as over F (as alluded to in [23], page 239), the
traces component of the model is only forced by the presence of revivals when one
has an operator which has the capability of “switching off” one of its arguments
when the latter might be diverging. The only such operator in CSP is the interrupt
operator P A (), which turns off P as soon as () performs a visible event. Thus if
Q =b— STOP and P = div O a — P, we see that P has arbitrarily long traces,

but no deadlocks or revivals; P A @ has deadlocks (a, a, ..., a,b) for any number of
a’s. We would not be able to discern this unless we recorded P’s traces.

Without this operator we would get a congruence without the trace component, and
R as we have defined it would not be fully abstract with respect to stuckness and
RespondsTo in the sense discussed later. The author believes, however, that except for
very specialised purposes (e.g. getting full abstraction theorems!) models recording
finite behaviour should include traces, as these are the most basic tool in safety
specification. It was to avoid this tension that we have adopted the interrupt operator
as part of the basic CSP language for this paper.

The semantics of CSP

As with all the usual CSP models, it is possible to calculate a process’s semantics in
R in different ways. One is to take the operational semantics as an LTS and perform
“observations” on its value there. Doing this for traces and deadlocks is completely
standard: we formally observe a process P in terms of the sequences of actions and
states (trajectories)

P:P(]&Pl...i)Pn

it can perform, where s = (a; | ¢ € (1...n) A a; # 7). For traces, we record the
sequence

(a; |1 <i<nAa#T)

This trace is observed as a deadlock if P, has no (outgoing) actions at all, and a,, # v'.
Similarly, we can observe the revival (s, X, a) if P, is stable (no 7 or v' actions), P,
has no actions from X, and our trajectory can be extended to

P=P 5 P..P 50
for some ().

For any LTS node N, we can form a natural abstraction ®(N) = (Try, Deady, Revy)
where the three components are the sets of traces, deadlocks and revivals that can be
observed as indicated here of any trajectory of N. It is easy to show that ®(N) € R.

We could take P’s value in a less abstract model such as R7 or A and extract the R
value from that. Over R a process has the revival ((ay, ..., a,), X, a,41) if and only
if it has the refusal trace (e a;,®, ... a,, X, a,.1,e). Over A, it has (s, X, a) if and
only if it has a trace/ready set combination (s, Y) where a € ¥ and Y N X =).

The way that really characterises R as a CSP model is to calculate the value directly
by means of a denotational semantics: clauses which show how to derive the value of
any CSP operator, or recursion, applied to simpler term(s).

traces(STOP) = {()}
traces(SKIP) = {(),(v)}
traces(div) = {(}
traces(a — P) = {(} U{(a)’s | s € traces(P)}
traces(?z : A — P) = {)YU{(a)s | a € A A s € traces(Pla/z])}
traces(P T Q) = traces(P) U traces(Q)
traces(I §) = U{traces()P) | P € S}
traces(P O Q) = traces(P) U traces(Q)
traces(P > Q) = traces(P) U traces(Q)
tmces(Pﬂ(Q) = U{s ll(t|s € traces(P) At € traces(Q)}

traces(P; Q) = traces(P)NYX* U
{st | (V') € traces(P) Nt € traces(Q)}

traces(P[R]) = {s' | 3 s € traces(P) | s R s}
traces(P \ X) = {s \ X | s € traces(P)}

traces(P A Q) = traces(P) U
{s't| s € traces(P)NE* At € traces(Q)}

Fig. 1. Trace semantics

The semantic clauses for traces are, of course, identical to those for the traces model
(and for F): see Figure 1.

The calculation of most cases of deadlocks(P) can be presented as typical denotational

semantic clauses: see Figure 2. But this breaks down for parallel operators involving

synchronisation, and specifically ||. If, for example R = (¢ — R) M (b — R), then
X

deadlocks(R || R) = {a,b}* even though deadlocks(R) = {}. In other words, a

deadlock can occur in a parallel network when none of the components is deadlocked.
This non-compositionality of deadlock traces under parallel is intimately related to
the full abstraction of the stable failures model of CSP with respect to deadlock.
In the case of R, however, we will know failures(P) and failures(Q) for any pair of
processes we combine in parallel, thanks to the following calculation.

deadlocks(STOP) = {()}
deadlocks(SKIP) = ()
deadlocks(div) = ()
deadlocks(a — P) = {{(a)"s | s € deadlocks(P)}

deadlocks(?z : A — P) = {{) | A = 0}
U{{(a)'s|a€ ANs € deadlocks(Pla/z])}

deadlocks(P O Q) = ((deadlocks(P) U deadlocks(Q)) N {s | s # ()})
U (deadlocks(P) N deadlocks(Q))

deadlocks(P M Q) = deadlocks(P) U deadlocks(Q)
deadlocks(['1S) = U{deadlocks(P) | P € S}
deadlocks(P > @) = deadlocks(Q) U {s € deadlocks(P) | s # ()}

deadlocks(P; Q) = deadlocks(P)
U{st | s°(V') € traces(P) At € deadlocks(Q)}

deadlocks(P A Q) = {s"t | s € traces(P) NX* At # ()
At € deadlocks(Q)}
U{s | s € deadlocks(P) A () € deadlocks(Q)}

deadlocks(P[R]) = {t | Is € deadlocks(P).s Rt}
deadlocks(P \ X) = {s \ X | s € deadlocks(P)}

Fig. 2. Deadlock clauses other than for parallel

If P = (Tr, Dead, Rev) is a process represented in R we can easily calculate:

failures(P) = {(s,X) | X C XY A s € Dead}
U{(s,X),(s,XU{v})|(s,X,a) € Rev}
U{(s,X)|s(vV)eTrnX CX}
U{(s"(v),X)|s(vV)e TrAnX CX}

Note that this definition introduces failures consistent with the way in which v is
handled in F.

We can therefore extract the final clause of the deadlocks(P) semantics as follows.

deadlocks(P)H(Q) = {u|3(s,Y) € failures(P), (t,Z) € failures(Q).
VY- (Xu{v})=Z-(XU{v}
Au € (s || t)ynx*

ALY =YUZ}

Here, s || ¢ is the set of traces that can result from s and ¢ running and synchronising

X
on X. See [23] (pages 69/70 and 148) for details.

It is also useful to define the set of failures recording only refusals of subsets of X
from stable (as opposed to v'-stable) states:

failures’(P) = {(s,X) | X C Y A s € Dead}
U{(s,X) | (s,X,a) € Rev}

The only things which remain to be constructed for our semantics are the clauses for
revivals(P & @), quoted below for each operator, and the method by which the value
of a recursive term is computed. The following satisfies the first of these obligations.
We make use of the fact that failures(P) can be derived from the value in R of P.

revivals(STOP) = ()

revivals(SKIP) = ()
(div) = 0
(e = P) ={((),X,a) [a & X}

U{((a)'s,X,b) | (s,X,b) € revivals(P)}

revivals

revivals

revivals(?z : A — P) = {({(), X,a) | XNA=0ANa€ A}
U{((a)'s,X,b)|aec A
A (s,X,b) € revivals(Pla/z])}
revivals(P M Q) = revivals(P) U revivals(Q)
revivals(['18) = U{revivals(P) | P € S} for S a non-empty set of processes

revivals(P O Q) ={({), X, a) | (), X) € failures’(P) N failures’(Q)
A ((), X, a) € revivals(P) U revivals(Q)}
U{(s,X,a) | (s,X,a) € revivals(P) U revivals(Q) A s # ()}

revivals(P > Q) = {(s, X, a) € revivals(P) | s # ()} U revivals(Q)
revivals (P l|(Q)={(u, YUZ, a)|
3s,t.(s, Y) € failures’(P) A (t, Z) € failures’(Q)
/\uGs}H(t/\Y—X:Z—X
A ((a € X A(s,Y,a) € revivals(P)
A (t,Z,a) € revivals(Q))
Vadg X AN((s,Y,a) € revivals(P)
Vadg X N(tZ,a) € revivals(Q))))}
U{(u,YUZ, a) |
ds,t.(s, Y, a) € revivals(P) At (V') € traces(Q).
ZQX/\CLQX/\UES)H(t}
U{(u, YUZ, a)|
ds,t.(t, Z, a) € revivals(Q) A s (V') € traces(P).
YgX/\ang/\uesll(t}
revivals(P\ X) = {(s\ X, Y,a) | (s, Y UX,a) € revivals(P)}
revivals(P[R]) = {(s',X,a’) | Is,a.s Rs' ANaRd
A (s, R7Y(X), a) € revivals(P)}

revivals(P; @) = {(s, X, a) | (s, X, a) € revivals(P)}
U{(st, X, a) | s(v) € traces(P) A (t, X, a) € revivals(Q)}

revivals(P A Q) = {(s, X, a) € revivals(P) | ({), X) € failures’(Q)}
U{(s,X,a) | (s,X) € failures’(P) A ({), X, a) € revivals(Q)}
U{(st,X,a)|s € traces(P)NE* Nt # ()
A(t, X, a) € revivals(Q)}

Notice that the clause for the parallel operator has become more complicated because
we have to deal with the cases in which the final event of the revival is, and is not,
synchronised, and with the cases where only one of P and () has terminated. The
most interesting clause is that for hiding: a state in P \ X is only stable if the
corresponding state of P refuses the whole of X. Since the successor event is never in
the refusal of a revival, it follows that in the clause above it is never in X, and so never
gets hidden for any refusal that remains valid. Similarly in P[R], the corresponding
failure of P has to refuse every single event which renames to the set X, meaning

that the relational image a’ of P’s successor event a is certainly not in X .8

As usual, it is a mechanical calculation that all of these clauses preserve R’s health-
iness conditions (see [30]). We will however show in Section 5 below how, as an
alternative, this fact can be a corollary to other results.

In Section 8.2 of [23], the author showed how definitions like the ones above, in which
the behaviours of each operator P & @ (not necessarily binary) are formed from
relations applied to those of subsets of the arguments, are always distributive with
respect to finite and infinite nondeterministic choice (i.e. component-wise union). For
this to apply, the reason for any behaviour being present in the binary construct
P & @ must be one of the following:

It is present independently of P and @, such as the revival (), ¥ — {a}, a) in the
(unary) construct a — P.

It is there simply because of some behaviour of P, such as any trace ¢t € traces(P)N
¥*in P; Q.

It is there simply because of some behaviour of (), such as any behaviour b of)
in P> Q.

It is there because of a behaviour of P and a behaviour of @), such as any deadlock
5"t where s°(v') € traces(P) and t € deadlocks(Q) in P; Q.

No behaviour of P & () should depend on anything more complex than this. Since
the derivation of failures(P) above requires only one behaviour of P to create each
member, it follows by inspection that all the non-recursive operators over R meet this
condition. Following the reasoning behind Theorem 8.2.1 of [23], we therefore have
the following:

PROPOSITION 4.2 All the individual non-recursive operators of CSP are distributive
over finite and infinite nondeterministic choice for R, and hence all CSP-definable
operators are monotonic with respect to refinement (C) and continuous with respect
to subset (C=1).

We can therefore compute the C-least fixed point of any CSP term F(p) with a free
variable via the formula J{F™(div) | n € N} and this is the semantic value given
to the recursive term pp.F(p). By a standard argument, this fixed point is itself
monotonic and continuous (though not necessarily distributive) in any other free

8 To amplify this: suppose we wanted to refine R, and so proposed an extended revivals
model which contains behaviours of the form (s, X,¢) in which ¢ is a trace of length 1
or 2, rather than just the singleton event used in R. We would then discover that it is
impossible to calculate the semantic value of (¢ — b — a — STOP) \ {b} from that of
a = b— a— STOP: a step of the extended revival is lost to hiding, as explained by the
following example. The process (¢ — b — a — STOP) > (a — b — div) has exactly the
same representation as ¢ — b — ¢ — STOP, but hiding b in the more complex process
does not give the extended revival ({), 0, (a, a)).

process variable. We explained informally in Section 3 why this is the correct fixed
point to choose. As an example, consider the definition P = a — (P \ {a}). The
C-least fixed point gives this traces {(), (a))}, revivals {((), X,a) | « ¢ X} and no
deadlocks, which is operationally correct since our process is initially stable offering
a, but after that diverges. If ¥ is a proper superset of {a}, the C-least fixed point
has many more behaviours which would not correspond to reality. Even if ¥ = {a},
this fixed point incorrectly predicts deadlock after (a).

This C-least fixed point definition of recursion can, of course, be extended to mutual
recursion in the standard way.

5 Congruence and full abstraction for R

For the above semantics to make sense we need to establish equivalence of the values
in R predicted by observation of the operational semantics and the denotational
semantic clauses. This will be a classic operational congruence result in the style of
those established in, for example, [23,25,26] for other models of CSP. We will also
develop full abstraction results for R.

5.1 Congruence

We will only give the operational semantic rules here that we use directly; the rest
can be found in Section 7.3 of [23].

The proofs of such results always fall into three parts: setting up an appropriate induc-
tive framework for the proof, establishing that the semantic clauses of non-recursive
operators are correct, and then demonstrating that the chosen fixed point theory
matches that produced by the operational semantics (where the rule for recursion
is that, unconditionally, pp.F(p) — F(up.F(p)) — in other words straightforward
unwinding).

The first of these is always essentially the same and involves establishing the congru-
ence result by structural induction on CSP terms in which free process variables are
mapped to arbitrary LTS nodes by a function o. One proves that each term P with
its free variables substituted by o yields an LTS which, when the natural abstraction
mapping ® from LTS nodes to the semantic model is applied, gives the same result
as when the denotational semantics is computed with ®(o(p)) substituted for every
free variable p. We can frame this as a formal result:

THEOREM 5.1 Let CSP be the LTS of closed CSP terms under its operational se-
mantics and V' be the set of process variables. Then for each CSP term P and each
o:V — CSP, we have ®(c(P)) = R[P](7), where

e 0(P) means the term P with all its variables p substituted by the appropriate o[p].

e R[P] is the denotational meaning of the term P: a mapping that takes an envi-
ronment p (a function from P’s free process variables to R) and gives a value in
R.

e 7 is the environment that maps p to ®(o[p]).

This result is proved by structural induction over the term P, for all o simultaneously.

The case where the term P is a process variable is trivial. The other cases constitute
the other two parts of the proof structure discussed above. One part always consists
of a series of usually straightforward results: one for each non-recursive operator. We
will see an example below.

The recursion case can be challenging in cases where the model contains infinite
behaviours (see [25,26]), but is always essentially straightforward in cases like R where
only finitary behaviours are used. The essence of the argument is easy to understand,
and we have already alluded to it:

e Suppose we have a recursion y p.P. We must think of P as a function from potential
values z of p to the value it represents when all p’s in P take value z. This applies
both in the operational semantics (where the values are LTS nodes) and in the
denotational one.

- For a given o, the function representing one iteration of the unwinding over its
operational semantics is Fp that maps a given node) € CSP to the term o'(P),
where o'[p] = (SKIP; Q) and o'[q] = olq] for p # ¢. The reason for using
SKIP; @ it that it creates the same initial 7 as the unwinding rule of recursion.
This does not change the R semantics of a term: ®(o’[p]) = ®(Q). Fo(Q) is then
interpreted under the operational semantics of CSP, with the closed terms that
substitute process variables being interpreted as themselves.

- For the same o, the denotational function Fp maps a € R to R[P](T[a/p]).

The unwinding rule for recursion automatically makes the operational semantics

of up.F(p) a fixed point (in the sense of strong bisimulation) of the operational

function Fp. We know that the denotational fixed point ¢ is U{F/(®(div)) | n €

N}. (We have written ®(div) here rather than div to make a clear distinction

between syntax and R-semantics.)

e The structural induction over terms means we may assume that the operational and
denotational semantics of the body P of y p.P are congruent, or in other words that
Fo and Fp are congruent: for any CSP node @ we have ®(Fp(Q)) = Fp(®(Q)).

This tells us that

Fp(®(a(pp.P))) = ®(Fo(o(pup.P))) = (o(np.P))

In other words the abstraction under ® of the operational semantics of the recursion
is a fixed point of Fp. We still have to prove it is the right one.

e Because ¢ is the least fixed point of Fp, we know by the above that it is contained in
®(o(pup.P)). The reverse containment follows because the unwinding rule of CSP’s

operational semantics adds a 7 step to the computation. This means that every
behaviour of o(up.P) observable in & actions is also observable of FET'(Q) for
any LTS node @) at all, since the first £ + 1 steps of that process are completely
independent of @. (k+1 is used rather than k to allow for observing deadlock after
a trace with length £, and revivals with a trace this long.)

This observation of ®(o(up.P)) is therefore present in ®(F**1(div)), which we
know equals FE™(®(div)), so that all such observations are present in ®(F*(div))
for sufficiently large k. Hence

(o(pnp.P)) C U{FF(Q(div)) | k € N}
completing the proof of the recursive case.

The lemmas for the individual operators all take the following form. It is only nec-
essary to prove that the revivals components of the left- and right-hand sides are
equal, since the traces and deadlocks cases can be deduced from the corresponding
congruence theorem for F.

LEMMA 5.2 Suppose N is any node in the LTS CSP* of CSP terms where free
variables have been instantiated to nodes in another LTS. (So typically N = o(P) for
some CSP term P and mapping o of free variables to the other LTS.) Then

B(N\ X)=d(N)\ X

where the hiding operator on the right is the one defined over R.

PROOF We recall the operational semantic clauses for hiding: whenever P can per-
form an action not in X (including 7), so can P \ X, and whenever P can perform
a € X, P\ X can perform 7.

PP P-4 P
z (z & X) -
P\X 2 P\ X P\X s P\ X

(a € X)

We know that the trajectories (operational sequences of states and actions) of a state
N \ X are exactly those of N in which all X-actions have been converted to 7 and all
processes have the operator “\ X” applied. We also know that the state M \ X, the
form of all those reachable from N \ X, is stable if and only if N is stable and has
no X-action. Now any revival of N \ X is of the form (s, Y, a) (a & {7,v'}), where
there is a trajectory

N\X B2 NM\X 2. N\ X S N \ X

in which (z;,...,2,) | ¥¥ = s and N, \ X is stable. It easily follows that there are
actions y; such that y; = z; if z; # 7 and y; € X U {7} if z; = 7 such that

N2 N N, S Ny

is a trajectory of N. N, is stable and refuses Y U X, and so N has a revival of the
form (¢, Y U X, a) where ¢ \ X = s. This shows that there is a revival of N which
maps to (s, Y, a) under the denotational model of \ X. The argument also works in
reverse, which completes the proof of our lemma. |

The arguments for all the other operators are similar to this one.

The combination of these lemmas and the one for recursion completes the proof of
Theorem 5.1.

5.2 Full abstraction

The classic concept of full abstraction compares an abstract semantics M of a pro-
gramming language L against an underlying operational semantics. It asserts two
things:

e M contains no “junk”, namely regions which do not correspond to anything in the
operational semantics. Formally this is often stated as saying that the denotations
of L are dense (a topological or order-theoretic concept) in M. Because CSP has
infinitary syntax if we wish, we can usually go one better there and show that every
member of one of its models is denoted by some program. For these CSP models,
this part of the result essentially says that the healthiness conditions on the model
are strong enough.

e M distinguishes two objects P and @ if and only if this is necessary to be able to
decide if programs built from them do or do not satisfy some simple test or tests.
In other words P =y, @ if and only if for all program contexts C[-] we have that
C[P] passes these test(s) if and only if C[Q] does.

Thus the traces model is fully abstract with respect to the test “P does not have the
trace (fail)” for any fixed event fail; the stable failures model is fully abstract with
respect to the test “P cannot deadlock on ()”; and the failures/divergences model A/
is fully abstract with respect to the test “P can neither deadlock nor diverge on ()”
for finitely nondeterministic CSP. For details see [23].

In this section we cover this issue for R.

The first thing we will do is to show that the entire model R is denotable.

THEOREM 5.3 For each member V- = (Try, Deady, Revy) of R there is a closed CSP
term (one without free variables) Py such that ®(Py) and the denotational value of
Py (now known to be equal thanks to congruence) are both V.

PROOF We will represent V as a large nondeterministic composition?, with one
option for each behaviour in its representation.

e If sis a trace in X*, then T is defined:

T<> = le

Tiays = divOae — T,

Note that this has no deadlocks or revivals, only the traces which are prefixes of s
and are therefore implied by the healthiness conditions given that s is present.

e We can extend the above with the rule T\,y = SKIP to deal with traces of the
form s°(v'). T,y has no deadlocks or revivals.

e For a deadlock s € ¥* we define

Dy = STOP

Diays = divOa — D,

This has no revivals, but it has the deadlock s and those traces implied (Tr1) by
s being a trace (itself a consequence of Dead1).

e The processes defined above are the greatest (under the refinement order) that
contain the respective trace or deadlock. There is no such greatest process, for a
revival (s, X, a) unless X U {a} = X, but we can use Rev3' to pick Z such that
a ¢ Z, X C Z,and (s,Z,b) € revivals(V) for all b ¢ Z. It follows that all the
traces and revivals of the process R, 7 defined

R,z =7y : X —Z — div

Riays,zy = divOa — R 2
belong to V' and include the original (s, X, a).

Now define Py to be the nondeterministic composition of the processes described
above for every behaviour in V. It follows from the above that Py equals V over our
chosen model. This establishes that every member of our model is representable in
CSP. This completes the proof of Theorem 5.3. |

We have taken advantage, in all the cases above, of the fact that div has as few
behaviours as possible. This made our life relatively easy at the expense of creating
a process that, objectively speaking, behaves very bizarrely! This is necessary some-
times since R does contain elements which look a little bizarre (like the individual

9 Tt should be noted that though this obviously has the potential to yield an infinitary term,
it does not go beyond the reaches of the structural induction used to prove congruence, since
the syntax tree will have no infinite descending sequence of simpler terms.

constructions above) thanks to unseen divergence. On the other hand, our construc-
tions create odd-looking implementations of values that seem well behaved such as
processes that would be deterministic if they had empty sets of divergences.

We remarked earlier that the preservation of healthiness conditions could be derived
as a corollary. It is the above result which permits this, since it implies that, were
there to be a case in which a (binary, say) operator did not preserve them, there
would be a CSP term P @ @ (with P and @ both closed terms with semantics in the
model) which did not satisfy the conditions. However we know that the operational
and denotational semantics of this term are congruent, and it is easy to check that the
abstraction mapping ® only creates values in R, so we would have a contradiction.

We now turn to the subject of the sort of test that R characterises, before moving on
to consider its extensions.

The idea of this congruence arose in [8] to model behaviour called stuckness (in order
to achieve its complement, stuck-freedom). In [22] we stated that the stable revivals
model is fully abstract with respect to determining these conditions, and also that it
was fully abstract with respect to a related condition RespondsTo.

The nature of CCS'® (the language used in [8]) parallel makes it straightforward to
define stuckness there. The parallel composition (P | @) \ X (where X is the set
of labels on which P and @) interact) is stuck if the unrestricted process P | @ can
perform a trace of non-X events, and then be stable and able to perform an event
in X but none outside X. For that represents a deadlock state where one of the
participants wants to communicate with another.

Clearly that sort of behaviour is instantly recognisable from the revivals of P | . The
same effect can be achieved in CSP by renaming all the processes in a network so that
every synchronised event is mapped to both itself and a new, special event, say request,
that is not synchronised. The network is then stuck-free if this renamed version does
not have the revival (s,% — {request}, request) for any s € (3 — {request})*.

The RespondsTo condition is similar, but with a different motivation relating to the
proper behaviour of plug-in components. P RespondsTo () if and only if P cannot
cause () to deadlock: () cannot get into a state where it is not deadlocked, but is
waiting solely for P which refuses to respond. This is clearly an asymmetric condition.
In the parallel composition P || @ it can be expressed formally as follows. There are

J
no revival (s, X, a) of @ and failure (¢, V) of P with s [J =1t [J, such that a € J

0In CCS, P | Q allows P and Q either to synchronise on events they agree on — in which
case they are hidden and become 7s — or perform them unsynchronised. The same effect as
the combination of parallel and hiding internal events in CSP is then achieved by applying
the restriction operator \ X which stops the unsynchronised versions of the common events
from happening.

and (XNJ)UY = X¥. A pair of processes which synchronise on their entire alphabets
satisfy RespondsTo in both directions if and only if they are stuck-free.

The test we will choose to characterise revivals is the following one:

Tx P satisfies this test if the parallel composition P || STOP is stuck-free, where we
{a}
will assume that P uses no event other than a. In other words P fails the test if

and only if it has the revival ((),0, a).
Another way of describing Tx is to say that P fails it if, on the empty trace, P
can stably offer a.

This is in fact precisely equivalent to STOP RespondsTo P. It follows that if R is
fully abstract with respect to T then it is with respect to each of stuck-freeness and
RespondsTo in general.

We said above that it is traditional to judge tests such as this over the operational
semantics. Note, however, that we have established a congruence between operational
and denotational semantics and this means that it is equivalent to judge it in terms
of revivals(P) as described above.

THEOREM 5.4 Two processes are equivalent over R if and only if, for all CSP contexts
C-] which restrict the visible events to be within {a}, C'[P] passes Ty if and only if
C[Q] does.

PROOF We know from what we have already done that, for arbitrary P and @, we
can calculate the R-semantics of C[P] and C[Q] from those of P and Q. It follows
that if P and @ are equivalent in R then ((),0, a) € revivals(C[P]) if and only if
((},0, a) € revivals(C[Q]). Thus the “only if” half of the theorem is true.

For the “if” half we will show that, for every behaviour that we record in a process’s
representation in R, there is a context C'(b)[-] such that C'(b)[P] fails T if and only if
P has b. We will write C'(b) as Cy-(b),Cgeaq(b) or Crey(b) depending on whether b is a
trace, deadlock or revival. Below || will mean Q, parallel with all events synchronised.

e First consider traces of the form s™(v'). Let
Ci(s" (V)P = ((Tewy || P)\ X); a — STOP

where T,y is as defined earlier. This has both the trace (a) and our chosen revival
precisely when P has s™(v') as a trace.

e Apparently the simplest type of behaviour is a trace s € X*. But, as indicated
earlier, the only way we can deal with these is via the interrupt operator. The
process P /A SKIP has the trace s if and only if it has s°(v'): we then use the
method for terminating traces above. So

Cir(8)[P] = Cip(s(V)[P & SKIP]

e For a deadlock trace s € X*, consider the processes

Oy ="z : ¥ —div
0(a>As = (CL — OS) O div
The only point at which Oy is stable is after the trace s. It follows that (P; div) || O
can deadlock at all only when P can deadlock after s. (The ; div is included
to prevent deadlock occurring when P terminates after s.) Therefore the context

Cieaa(8)[P] = ((P; div) || O5) \ X) ||| @ — div fails T if and only if s € D.
e Finally, consider a revival (s, X, b). Define

Q) =?x:Y — STOP

Q();)As =z Q)

This simply steps through the trace s and offers the whole of Y after it. Let R be
the renaming that maps all events other than b to a fixed event ¢ # a, and maps
b to a. Then the process

Ci[P] = (P || QXU)[R]

can perform a trace of #s events (all cs and as) and then offer only a from a stable
state exactly when P has the revival (s, X, b), because if P offered any element of
X along with b, C,[P] would offer ¢ as well as a.

If U is any process using only the events a and ¢, then choose a further event d
(so this proof relies on | ¥ |> 3) and consider

Cy[U] = U[®%/a,a] || Regus where

Regy = a — Regy O ¢ — Reg

Reg, 1 = d — Reg, O ¢ — Reg,

Co[U] renames all a’s that occur before and including the #sth event to d. It
follows that

Creo (s, X, 0)[P] = (G[GY[P])) \ {d, ¢}

has the revival ((),0, a) if and only if P has the trace s (all of whose events are,
thanks to the renaming, hidden as d’s or ¢’s) and then reaches a state where it
offers b and no event of X (otherwise the hiding of ¢ would mean the state where
a is offered is not stable).

This completes the proof of full abstraction. 1

5.8 Rewvivals and specification

Aside from determining stuckness and RespondsTo, revivals have a role in specifying
certain other sorts of property that cannot be expressed using failures alone.

Revivals allow us to insist that whenever some event a is offered, the total offer must
satisfy some condition. Thus we get conditional control over what is offered from
stable states. The way that both RespondsTo and stuck-freeness ban processes from
making certain sorts of stable offer can be viewed as extreme forms of this.

A less extreme example is the statement that whenever P offers the event a it must
also offer the event b. One cannot make this statement in failures, but it is easy in
revivals: Vs.(s,{b}, a) ¢ Rev. Similarly one can state that whenever an event from
the set A is offered, then so must be some event from B: Vs.Va € A.(s, B, a) € Rev.
And Vs.Va € AYb € B.(s,{b},a) € Rev says that whenever any member of A is
offered then so must the whole of B.

Here, B might consist of actions like {back, cancel, home}.

Thus revivals allow us to make certain types of useful specification that are not
expressible over F. This model has been implemented in version 2.90 of FDR to
enable these extra types of specification to be checked. On the other hand, when
checking any specification, it is always a good idea to check it in whichever model
is the simplest that can express it. Not only is it likely to be algorithmically more
efficient, but the errors reported by a tool like FDR in the event that a specification
fails will be easier to interpret.

6 Revivals and divergence

As indicated in Section 3, we can extend R in three ways to encompass divergence
and infinite traces. Since deadlocks are final and revivals are only intended to reflect a
single step of behaviour after a stable state, it is not necessary — and almost certainly
impossible, in a congruence — to introduce any richer types of infinite observation into
the models. When extending F to A it is not necessary to carry the component of
finite traces from N across, because any process which is observed for long enough
will always either diverge or become v'-stable and therefore exhibit a refusal. The
situation is not quite so easy with R, since now our process can diverge, deadlock,
terminate (v') or exhibit a revival by moving to a non-deadlocked stable state.

For convenience — and to have an easy representation of the trace set — we choose,
for RV etc., to retain the finite trace component.

6.1 Healthiness conditions

Thanks to the existing structures and CSP semantics of R, U [25] and SBD [26],
we know exactly what the sets of traces, deadlocks, revivals, strict and non-strict
divergences and strict and weakly strict infinite traces of any CSP process are. We
also know what the strict sets traces, (P), deadlocks, (P) and revivals, (P) are: the
ones from R plus all those associated with strict divergences. It follows that we can
calculate the value of any CSP process in R¥, R% and R# from its values in known
models.

Each of R’s extensions can, however, be regarded as a self-contained model with its
own healthiness conditions and CSP semantics. The healthiness conditions for the
finite traces, deadlocks and revivals are exactly the same as in R.

e Each member of RY has components (77, Dead, Rev, Div) of finite traces, dead-
locks, revivals and divergences. The divergences are governed by:
DS1 t € Div=ts € D
DS2 Diwv C Dead
DS3 t € Div = (t's,X,a) € Rev
We do not need a condition stating Div C Tr because this is implied by DS2 and
Deadl.
e Each member of R%* has components (Tr, Dead, Rev, Div, Inf), the same ones plus
one of infinite traces, governed by the additional properties
DS4 t € Div = t'u € Inf
Infl tueInf=teTr
plus a closure property we discuss below.
e R*# has the same components as R* but different healthiness properties: since it is
not divergence strict it replaces DS1-4 by the weak divergence strictness property
WDS DivN ¥ C Inf
where X, for trace set X, is the union of X and set of infinite traces with infinitely
many prefixes in X. This model also uses the closure property discussed below.

We need a closure property to ensure that the set of infinite traces is consistent
with what we know must be possible from the finite information available — broadly
speaking, there are enough infinite traces to be consistent with what the revival
information allows us to force. This subject was discussed at considerable length, for
example in [25,2], when U was initially described. There were many formulations of
the required property. Most of these were specific to the language (namely failures)
of U. However, there is one that is more general. We say a process P is closed if
infinites(P) = traces(P). The following re-states in slightly more general languagea
principle discussed on page 257 of [23]:

Closure Each process is the nondeterministic choice of closed processes.

Over RY%“, nondeterministic choice is simple component-wise union. Over R# we

need, in general, to close up under weak divergence strictness after taking the union.
However we establish the following result:

THEOREM 6.1 Every member of R¥ is the component-wise union of closed processes.

PROOF This is analogous to that of Lemma 1.1 in [25]. All one has to show is that, if
P = (Tr, Dead, Rev, Div, Inf) is the WS-closure of the component-wise union (which
we will write [JX) of a nonempty set X of closed processes, and u € Inf, then there
is a closed process P, containing u such that P C P,. This is because we can then
define

Xy =XU{P, | ueInf}
and clearly the component-wise union of the X, is P.

We construct P, via a series of closed processes ();. We know that, for every finite
prefix ¢ of u, there is a process P, € X that has trace ¢. (In fact we know that there
is a P; that has an extension of ¢ as a divergence.)

Define)y to be any member of X.

Suppose we have defined (),. Then either (), contains u or, because it is closed, it
contains a longest prefix ¢, of u. In the first case we can set P, = @,. In the second
case, let a be the next element of u after ¢,.. We now define (), to have all behaviours
of @, together with just some of those of P; -4y, namely those that begin with the
trace ¢, (a). Q41 is closed as the union of a pair of closed sets, and a little analysis
shows it satisfies the other healthiness properties.

If we have not already defined P, (through the case where u € @,) then v is not a
behaviour of any member of the @,. In that case @*, their component-wise union,
is closed except that it does not contain u. This is because all prefixes of an infinite
trace w # u must be contained in @),, where r is minimal such that ¢, £ w. It follows
that @* with the addition of u is closed, and that u is the only behaviour it has that
is not in |J X, which shows that P C P,. This completes the proof of Theorem 6.1. I

We might note that all finite-state processes (ones with only a finite number of states
in the LTS /operational semantics) and ones built from finitely nondeterministic CSP,
as discussed earlier, are closed.

The author is confident that using the Closure principle in the way formulated here
will be the key to the problem of formulating more difficult models where we need
richer infinite structures than infinite traces, such as R%“. The definition of a closed
process would then be modified so that every infinite behaviour, that is a limit of
finite ones of the process, is present.

6.2 CSP semantics

There is no need to give three more complete semantics for CSP here. The semantic
clauses for divergences and infinite traces are — for RY and R%“ — exactly the same as
over N, U (both [23]), and for R# they are the same as over SBD [26]. The clauses
for traces(P), deadlocks(P) and revivals(P) for R¥ are identical to those given above,
and the clauses for traces | (P), deadlocks | (P) and revivals | (P) for RV and R¥* are
identical except that they are closed up under divergences, for example

deadlocks, (P \ X) = {s \ X | s € deadlocks, (P)}
U divergences(P \ X)

revivals | (P O Q) ={((), X, a) | ({), X) € failures (P) N failures (Q)
A ((), X, a) € revivals | (P) U revivals, (Q)}
U{(s, X, a)| (s,X,a) € revivals(P) U revivals | (Q)
Ns # ()}
U{(s, X, a) | s € divergences(P O Q)N a & X}

The fixed points for calculating recursion exactly parallel the ones used in the respec-
tive failures-based model.

6.3 Full abstraction

Any closed process can be expressed in (infinitary) CSP. This is easier to prove in the
case where the alphabet ¥ is finite, so we address that first:

THEOREM 6.2 When Y is finite, every element of RV, and every closed element of
R and R* is expressible in finitely nondeterministic (though infinitary syntax)
CSP.

PROOF This follows the same pattern as that given on page 235 of [23] for M. We
build a mutual recursion indexed, essentially, by members of the semantic model we
are expressing. We can deal with the first two models at one stroke, as there is a
natural 1-1 correspondence between the closed elements of R%* and the whole of
RY. We therefore only give a single definition for these two classes of process. In the

definition below, £ abbreviates an arbitrary (Tr, Dead, Rev, Div) € RV,

div if () € Div, and otherwise

(?z : (indtials(§) — {v'}) = RSD(&/(z))})
>
M{STOP | {) € Dead)}
U{SKIP | (v')) € Tr}
U{?z: (X —2) = RSD({/(z)) | ((), Z, a) € Rev,
(Vb ex—2.((),2,b) € Rev)

RSD(¢)

—

We can paraphrase this definition as follows. We are creating an interpreter for the
revivals-and-strict-divergences model. The immediate behaviour of any process is de-
termined by what it does on the empty trace, and after any initial event a we change
the parameter to £/{a), the process consisting of all £’s behaviours on traces starting
with a, but deleting the initial a.

If the process diverges immediately, then thanks to strict divergence we can just
set the process equal to div. Otherwise, it certainly has () as a deadlock, (V') as a
trace, or a revival whose trace is (), so the nondeterministic choice above is nonempty
(noting that every revival ((), X, b) can be extended to ((), Z, b) for some suitable Z
by Rev3'. In that case the definition looks to see whether our process can deadlock,
terminate or perform events from stable states, and reproduces the corresponding
behaviour accordingly.

There are three important things to notice about this definition:

e Firstly, despite the use of ['], it only uses finite nondeterminism. This is because,
since X is finite, there are only finitely many revivals possible on ().

e Secondly, interpreted over R%“, it naturally creates a closed process. This is because
there is only one basic state it can reach on any finite trace s, namely RSD({/s),
and so, if u is any infinite trace all of whose finite prefixes are traces, the definition
RSD (&) has a trajectory that reaches each of these states in turn — meaning that
it can perform u.

e Thirdly, > is used in a fundamental way. We need to be able to express the fact
that all of the events in initials(§) — {v'} can occur, but not in a way that implies
that any of them can occur in a stable state, since those a which lack the revival
((},0, a) cannot. This distinction cannot be made over failures-based models, which
explains why > is treated as primitive in this paper.

The same structure (and argument for closure) works for closed elements of R#, where
again infinite traces tell us nothing and so can be disregarded. The only difference
is that now divergence becomes one of the standard options, rather than a special

case. The following is the corresponding “interpreter” for revivals with non-strict
divergences.

,

(?z : (indtials(§) — {v'}) = RNSD(&/(z))})

>

M{div | () € div}

RNSD(¢) =4 U{STOP | () € Dead}

U{SKIP | (V) € Tr}

U{?z:(X—Z2)— RNSD(&/{(z)) |VbeX—Z.({),Z,b) € Rev,
AX' D X.({), X', a) € Rev})

\

This completes the proof of Theorem 6.2. |

We cannot simply remove the assumption of finite ¥ from the above theorem, since it
is not then true: there are closed processes such as the most nondeterministic deadlock
free process

DF =[1{a — DF | a € DF} 1 SKIP

that cannot be expressed without infinite nondeterminism. What we can say, however,
is that for every closed process P and every finite set F' of P’s revivals there is a finitely
nondeterministic P’ Jp P that has all of P’s traces, divergences and deadlocks, and
has the whole of F'. To prove this one can use exactly the same constructions as above,
but only use the revivals (Z) clause for revivals in F' together with an arbitrary single
revival for each trace not represented any of F, or the deadlocks, termination traces
and divergences of P.

Theorem 6.2 and the modified argument in the last paragraph, together with the
closure principle and the use of nondeterministic choice, easily give us the following:

THEOREM 6.3 Every member of R%* and R* is expressible in infinitary CSP.

These expressibility results naturally lead us to ask with respect to what tests RY,
R¥ and R# are fully abstract. Just as with the pair F¥ = N and F% = U, we
must expect that the first two have the same full abstraction property for boundedly
and unboundedly nondeterministic CSP respectively.

We proceed by analogy with F and the pair N' and U, which are respectively fully
abstract with respect to the tests:

Tx is failed by P if P can deadlock immediately;
Tl} is failed by P if P can either deadlock or diverge immediately.

It is therefore natural to speculate that RY and R%* are fully abstract (for their
respective languages) with respect to the test

T% is failed by P if P can either diverge or stably offer a on the empty trace.

Since the models do yield this information and are congruences for their respective
CSP’s, they are certainly capable of determining from P’s value whether C'[P] satisfies
this test for an arbitrary context. It turns out, however, that this test alone is not
strong enough to distinguish between all pairs of processes, for example

Py =a —div and P, = STOP M (a — div)

The problem here is that we would need C[P;] to make a stable offer because P,
can deadlock immediately — the only behaviour that distinguishes it from P;. That
is entirely possible in itself, since we could use the context

C'[P] = (F(P) O a — STOP) \ {b}

where F'(P) renames all P’s initial events to b and all subsequent ones to a — achiev-
able using double renaming (such as used in the definition of Cy in the proof of The-
orem 5.4). This process has the stable revival ((),, a) if and only if P can deadlock
on (). However, C'[P] fails T% whenever P can diverge on its second step, meaning
that C'[] fails to distinguish Py and P, since C'[P;] and C'[P] both fail Th. Note
that anything like the test for a deadlock trace given for R in the proof of Theorem
5.4 will also create this difficulty. It does not seem likely to the author that any other
CSP context can be devised that overcomes this problem. !

What we seem to need for the CSP language of this paper is a pair of tests:

THEOREM 6.4 RY and R%“ are, with respect to their versions of CSP, fully abstract
with respect to the pair of tests Ty and T.

PROOF We know that our models have sufficient information in the semantics of
P to allow us to determine whether an arbitrary CSP context C[P] meets each of
these tests. We also know that T# allows us to distinguish any pair of processes (for
example (Py, P,) from above that confound Ty) that are distinguished in A or U
as appropriate. We can therefore restrict our attention to a pair of processes P # ()
with identical behaviour in failures, divergences and finite/infinite traces. Without
loss of generality we can therefore assume that P has a revival (s, X, b) that @ does

"'n the author’s sequel to this paper [28] he describes how related problems to this one
suggest the addition of a new operator O, (throw) to CSP: P ©; @ behaves like P until it
performs the action b, after which it starts the process). He terms the extended language
CSP+, which has the qualities required in [28], and which also solves the problem mentioned
here. One can now replace F'(P) in the definition of C'[P] by F(P)©, STOP, thus creating
a CSP+ context that maps precisely those P that can deadlock but not diverge on () to a
process (a — STOP or STOP M a — STOP) that fails T%.

not have, even though it has both the failure (s, X') and the trace s°(b). We can also
assume that s is not a divergence. We can now use the same context Chre,(s, X, b)
devised in the proof of Theorem 5.3 with the property that, for any process P such
that s & divergences, (P), Cre(s, X, a)[P] has the revival ((),0, a) if and only if P
has (s, X, b). This completes the proof of Theorem 6.4. |

We finally move on to the model R* that does not have strict divergence. The cor-
responding failures-based model, F# is, as shown in [20], fully abstract with respect
to the pair of tests Tx and T p;, (which is failed if P diverges immediately). Given
this, and the reasoning above, it is straightforward to deduce the following:

THEOREM 6.5 R¥ is fully abstract with respect to the three tests Tx, T and T p;,.

The divergence test is or-ed into the finite tests for the models with strict divergence
because the strictness principle means it is impossible to tell, for a divergence trace,
what a process can do from its value in the abstract model. When we drop this
principle we can see other behaviours separately from divergence.

The full abstraction results quoted so far are all in terms of what tests a given process
may fail. There is no guarantee that a process that can fail a given test will actually
do so. We can also look at models from the point of view of tests that we definitely
want to succeed; this is actually what we are likely to want of a process. A process is
guaranteed to pass the test Tﬁ when it can neither deadlock nor diverge immediately.
This corresponds to one reason why N is fundamental: it is the weakest congruence
where, for any trace s and nonempty set of events X, we can tell from a process’s
value whether it is guaranteed to accept an event from X.

We can clearly tell the same things from a process’s value in RY, but we can addi-
tionally guarantee that, if left to become stable, it will deadlock or will not offer some
banned event, without banning from it communicating such events from unstable
states. It is clear how this corresponds to detecting the stuckness and RespondsTo
conditions we discussed earlier — each of these is something that happens because of
an offer from a stable state.

We can also make an interesting distinction here with refusal testing models. Revivals
allow us to see static offer behaviour as required for the applications discussed above.
Imagine, however, that we want to run a process in such a way that all visible events
come from v'-stable states. This might be because of the underlying properties of
the implementation as in Statemate Statecharts [11,29] and (for the tock event) in
discrete timed models of CSP [17]. Alternatively, an observer might choose only to
communicate with the process once stability is observed, perhaps out of caution. To
model these things need to see stability dynamically, and perhaps encapsulate it in
a new operator stable(P) that only allows communications other than v* from stable
states. We would usually expect to need divergence information when considering this
operator, for a divergent process may never reach stability.

We certainly cannot model this operator in failures-based models, but it is tempting
to think we ought to be able to do so in revivals since it allows us to observe what
offers are made stably. This is, however, deceptive since revivals cannot distinguish
behaviour that follows stable and unstable instances of an event if both are possible.
Consider, for example

(a = a— STOP) > (¢ — STOP) and (a — STOP) > (a — a — STOP)

stable ought to give, respectively, a — STOP and a — a — STOP when applied
to these processes, but actually they are indistinguishable in revivals models. We
can, however, compute stable over refusal testing models — simply retain only those
behaviours

<X0, G, Xla A1y.. .y an,Xn+1>

such that all X; except X, 11 are restricted to be not equal to . The author conjectures
that R7 and its extensions are, in useful senses, fully abstract with respect to com-
puting stable(P).

6.4 Potential applications

We have seen that the stable revivals model R is the right one for reasoning precisely,
but without extraneous detail, about the offers made and refused in individual stable
states of processes or networks. It follows that the three models involving both revivals
and infinite behaviours should be used when we want to reason both about these
things and to limit what infinite behaviours can arise.

Any model of a CSP-style system that is intended to provide a complete description
must involve divergence, since omitting to involve it means that div is the most
refined process — and we would hardly expect div to be adequate for any, let alone
all, practical purposes. It follows that if we want a single model of a system to provide
a comprehensive description from the point of view of correctness then either it must
encompass divergence or we must have a separate proof that divergence is absent.
In the first of these cases, if we want to analyse the system from this description
for the type of property in which stable revivals are key, then the model used must
encompass both revivals and divergence.

Just as, with failures, N' = F¢ (as opposed to F#) is normally adequate for most
reasoning purposes for finitely nondeterministic processes, we expect that normally
the right model to use in these circumstances will be RY. If it is necessary to reason
about unboundedly nondeterministic processes, then normally R%* will suffice.

There is, however, a potential application for R¥ in the same sort of application
from which the notation of stuck-freeness arose, namely operating system analysis.
One can imagine that an operating system is, in a sense, a context C[-] in which

its application programs run. If one is designing the part of the operating system
devoted to closing down the system (i.e. what happens after one presses the “shut
down” button), it might be of no importance what the system does, even having the
possibility of diverging, before such a button is pressed. However after that button is
pressed, you must guarantee that the system closes down cleanly without being able
to diverge. There is a clear role for R# in such analyses where part of the proof of
clean termination involves an analysis for stuckness.

7 The hierarchy revisited

Since introducing the hierarchy of CSP models in Section 3, we have learned a lot
more about it and discovered new models. In this section we will see that, at least
for the more abstract end of the spectrum of models, we have actually completed the
picture.

Recall that a congruence is a notion of equivalence for processes that is compositional
under all operators of a language. It does not have to provide a solution in itself for
recursions, but must satisfy the unwinding rule for recursions. Each of our semantic
models induces a congruence for CSP. The assumptions we made earlier about the
nature of models imply that if M is one of our models defined over an alphabet ¥
large enough to contain all the events used by processes P and (), then P and () are
equivalent in M if and only if they are equal over the corresponding model defined
over a larger ¥’ O X. In this section we will frequently need to extend the basic
alphabet ¥ = Y3 by further events, but this argument shows that the equivalence is
not affected by doing so.

We assume similar properties for congruences: below, we only consider ocngruences
that make sense for CSP processes defined over any size of alphabet (again, conceiv-
ably, with some infinite upper bound), and where the equivalence of otherwise of two
processes is independent of alphabets large enough to express the processes.

If X identifies every pair of processes identified by), we write X <). If S is any set
of congruences, and X' <)Y for all Y € S we will say that X" is sub-S.

Notice that every finite observation model is, by definition, a sub-FL congruence. It
is unclear to the author whether there are any such congruences for which there is no
congruent finite observation model.

The following is the main theorem of this section.

THEOREM 7.1 For the dialect of CSP set out in Section 2, the only sub-{RT, A}
models are R, F, T and the trivial congruence NULL that identifies all processes.
Furthermore, every finite observation model X that is not NULL, T or F satisfies
R<X.

In other words, every non-trivial model that is not a member of the initial sequence
T < F < R is strictly finer than R, and furthermore this linearly ordered sequence
cannot be extended since A and R7 have no other congruence more abstract than
them both.

The proof of this theorem consists of four main lemmas. The first lemma shows that
any sub-{RT, A} congruence M satisfies M < R. The other three are similar to each
other and establish successively that any sub-F L model that is strictly less abstract
than any non-final member of the sequence

Nuce, T, F, R

is no less abstract than the next member of this sequence. These four together clearly
establish our result.

In the whole of the proof we only use the assumption that we are reasoning about mod-
els rather than the more liberal idea of a congruence once (in the proof of Lemma 7.5).
The author does not know if this assumption can be dropped.

LEMMA 7.2 If M is any sub-{RT, A} congruence then M < R.

PROOF We need to show that any two processes that are M-equivalent are R-
equivalent. Since M < A and M < RT we know that (P =4 QV P =1 Q) =
P =, Q. Another way of viewing this is to say that the relation =y, is a transitive
superset of =4 U =x7, so we know that if P =4 R and R =7 @, then P =, Q.

The same strategy used in Theorem 5.3 to show that all members of R are expressible
also works for A with very little amendment — the only difference is that the range
of acceptance sets after each trace is now unrestricted. To represent the acceptance
pair (s, A) we can use the process R, x_) defined as in the proof of Theorem 5.3.
The structure of that process is important so we recall it here:

R(():X) = ?y : (E — X) — div
Rays,x) = div O a = B x)
It follows that we can create a process P4 that implements P’s representation in A
using the same structures: the crucial feature of this implementation is that (because
of the use of div in the above definition) on no trajectory of any R, x), and hence

P4, is there more than one stable state. Furthermore each stable state is followed (if
anything) by a range of visible actions leading only to divergence.

Pgr, P’s representation in R generated by Theorem 5.3 shares this property of tra-
jectories, since it is built from the same components.

Since all the refusal testing observations of these two processes are made of such

trajectories, it follows that the only behaviours recorded for R7T of the processes Py
and Pr are of the three forms

(1) <.7 a1, ®,...,®, an7.> A
(ii) (e, ay,e,...,a,, X)
(iii) (e, ap,e,..., X, a,,®) where a, ¢ X,

where every behaviour of form (ii) is extendible either to one of form (iii) or to
one of the form (e, ay,...,a,, 2 U V). Thus every behaviour recorded in the RT
representation of P4, namely (P4)r7 is deducible from one of P’s R behaviours:
traces, revivals and deadlocks, and indeed P4 =gr Pg.

Thus, since M < RT, we have P4 =y Px.

Since P =4 P4 by construction, and M < A, we also have P =), P4. Putting these
two things together gives us P =), Pgr. If M distinguishes any pair of processes
identified by R this could not be true in general, so we may deduce that M <R. 1

Given this result, what we must prove to establish Theorem 7.1 is that the four mod-
els listed above are more abstract than all other finite behaviour models. Obviously
in discussing the relationship between different notions of equivalence we have to be
careful what we mean by equivalence and equality between a particular pair of pro-
cesses. In the arguments below we will sometimes claim that one process is equivalent
to another: our default interpretation for this will be that the two processes are equiv-
alent in FL since that implies equivalence in the whole range of congruences under
discussion.

The first two results below have probably been implicitly assumed for years: certainly
the author had long made this assumption without formulating them. The only formal
proof that the author is aware of in the literature is the result of Bolton and Lowe
[3] that there is no congruence strictly between 7 and F. That is a slightly weaker
version of Lemma 7.4 below.

LEMMA 7.3 Every sub-FL congruence M for CSP that distinguishes at least two
processes satisfies T < M.

PROOF We can assume there are processes P Cpy @) in any sub-FL congruence M
stronger than the null one, that are not identified by M. This is because there are
certainly processes K and L such that K #,, L. The third process K I L cannot be
M-equivalent to both K and L, for otherwise they would be equivalent to each other,
so without loss of generality we can assume K M L Cy K (and hence K M L Cp, K
since M =< FL).

Suppose U #+ V. The lemma is proved if we can establish U #,, V. Without loss
of generality we can assume there is a trace s belonging to U but not V. U #,, V is
established if we can find a context C[-] such that C[X] = P when s € traces(P) and

C[X] = @ otherwise, since M is assumed to be a congruence, and in a congruence
no context can map two equivalent processes to two inequivalent ones.

By the way we have defined the notion of congruence above, we may extend the
alphabet Y in which we are modelling processes to contain an element e that is not
used in the particular P and () chosen.

Let C7(s)[-] be the context that, as in the proof of full abstraction for 7, maps a
process U to one with the traces {(),{e)} or {()} depending on whether U has, or
does not have, the trace s. Let

G (s)[U] = (Cr(s)[U] A SKIP) {||} e — SKIP

This has the very useful property that its FL value depends only on the trace set of
Cr(s)[U], not on any other aspect of that process’s behaviour. In general, the FL
value of W A SKIP, because v' cannot be refused until it occurs, depends only on
the traces of W, not its deadlocks, failures and revivals.

The value of Cy(s)[W] is STOP if W does not have s, and (e — SKIP) > STOP if
it does.

Now consider
Co(s)[W] = ((Cu(s)[W]; P)De— Q) \ {e}
If W does not have the trace s this equals
((STOP; PO e— Q) \{e} =p (STOPO e — Q) \ {e} =@

If W does have the trace then it equals

((((e = SKIP) > STOP); P)O e — Q) \ {e}
=1 ((((e = P) > STOP)) D e = Q) \ {e}
=r ((e > (PT1Q)) > (e = Q) \ {e}
=r (e = (PN Q)N Q))\ {e}
=r, P11 Q

—FL P

by various standard CSP laws and inspection of the operational semantics; the last
line following from P Cpgj, Q. 1

One of the things we should note about this proof is that the interrupt operator A
played an important role. It would have been worrying had this not been the case since
if we dropped that operator the result would not be true: 7 and the congruence, for
the reduced language, of stable failures without a separate trace component, referred
to in Section 5, are incomparable since neither is weaker than the other.

LEMMA 7.4 Every sub-FL congruence M for CSP that distinguishes at least two
processes not identified by T satisfies F < M.

PROOF We can, in the same way as for the previous lemma, assume that there are
P Cpr @ identified by 7 but not by M. By Lemma 7.3 we know that M is at least
as strong as 7. What we therefore need to do is prove that any pair of processes
U and V that are trace equivalent but F-inequivalent are also M-inequivalent. For
such processes U, V we may assume without loss of generality that there is a failure
(s,X) in failures(U) — failures(V'). Following the model above we will construct
a context that maps processes to P or () depending on whether or not they have
(s, X). As before, we construct this from the context used in full abstraction, this
time Cx(s, X)[:] , mapping a process U to STOP if it has (s, X) and to div if not.
If P is v -free it is easy: set

Cs, X)[U] =@ (P |@| Cr(s, X)[U])

since (P || Cr(s, X)[U]) equals P if Cr(s, X)[U] is STOP, and otherwise refines Q
0

since it has the same traces but is never stable. If P is not v'-free the right hand
term may be able to refuse to terminate when P cannot, and the obvious solution of
replacing Cx(s, X)[U] by Cx(s, X)[U] O SKIP does not work since the SKIP can
resolve 0. This can be overcome by using an event e, not used in P and @, to guard
SKIP.

C(s,X)[U]=@QnN ((P; (e » SKIP)) {|6|} ((e = SKIP) O Cxr(s, X)[U])) \ {e}

Thus context maps U to P and V to @, completing the proof of this lemma. 1

Both of the above proofs were reasonably straightforward in that they were able to
map U and V to an arbitrary pair of processes such that P Cp;, @ (and P =4 @
in the second case). The author has not managed to find such a proof for the final
lemma (Lemma 7.6), so its proof is more technical. Specifically, the author has found
no way of handing general P and @) as above, but rather the P’ and @' shown to
exist by the following preliminary lemma.

LEMMA 7.5 Suppose P Cpr, () and P #); @ for some sub-F L model M. Then there
exist P' and ' such that

e Py, PPCpC Q Cpr Q

o Pl#y @
e There is a single F L-behaviour (3 such that P' = Q'U{f} (in their F L-representations).

PROOF To prove this we use an enumeration of P — @) using some ordinal a: {; |
u € a}. Since, for all § there are only finitely many 3 < [, we can assume that

ﬂi<ﬂj:>i<j.

For any FL-behaviour at all, it is straightforward to define the most refined process
that has it. There are two sorts of FL behaviours we need to consider:

<A07a17A27---7An—17anaAn> and <A0,a1,A2,---,An—1,an,°,/>

We define:

FLB((e) = div
FLB((A) = 7z : A — div
FLB((s,v') = SKIP
FLB((s,c)'B) = (¢ — FLB(f)) > div

FLB((A,c¢)'8) = (¢ - FLB()) 0%z : (A — {c}) — div

We can then define a process @; for all + < a:

* =0
® Qiy1 = Qi UFLB(B;)
e) =[1HQ;|i<A} for A alimit ordinal.

By construction we have (); Cr;, @; for ¢ < j, and (), = P, and by our choice of
enumeration we have that Q;,1 = @Q; U {f;} for all i.

It is evident that there must be some least ordinal j such that (); #u @. Clearly
j # 0, and j cannot be a limit ordinal. If it were then, as @; #u @, there must be
some member £ of one of the components of the M representation of); that does not
belong to the M representation of (). As each such component is, by Definition 3.1,
a relational image of the F L representation, it follows that there is some 3 € @); that
maps to §. Since @) is just the union of {@Q; | ¢ < j} it follows that there is such a @;
with 3. Therefore (); could not be M-equivalent to (), contradicting the fact that 5
is minimal.

It follows that j = 7 + 1 for some i. Setting Q' = @; and P' = Q;,, we have proved
our lemma. 1

LEMMA 7.6 If M is any non-trivial sub-FL£ CSP model other than T or F, then
R M.

PROOF Let M be such a model. By our earlier result we know that 7 < M. We
can assume that there are P Cp;, () such that P =p @ and P #), (. Applying
Lemma 7.5 to P and @ we see that necessarily P Cr P' Cr Q' Cr @ and therefore
P =p Q'. Let 8 be the single FL behaviour that represents the difference between
P" and @'. Since P’ and @' are trace equivalent, 8 must have some, and therefore a
first, proper acceptance: write

/8 = <.7 ap, ®,...,ds, AS>A5,

where s > 0 is the index of the first proper acceptance and 4’ may or may not be the
empty sequence ().

Since P’ and @' are equivalent in F, we know that ()’ has an FL-behaviour §* that
exhibits the failure ({(ay, ..., as), ¥ — Ay). This is because the presence of 3, and hence
its prefix (e, ay,...,®, a5, A) shows P’ has this failure. Without loss of generality we
can assume (3* = (e, qay,...,®, a5 B) where B C Aj.

We can assume, in the same way as we have introduced other events before, that
our alphabet ¥ is sufficiently large that it contains all the members ¥, used in P,
and a second disjoint set of the same size ¥;. We will assume that the operation o’
represents a bijection from ¥4 to X;.

Now let W (B, 3*) be the process that behaves identically to FLB(3) except that
after (ay,. .., as) it can communicate not only the members of A, but also a' for each
member a of B (leading to div). We will use this in creating a context D[-] such
that, for a chosen revival (¢, Y, b), D[U] = P’ or D[U] = @' depending on whether
(t,Y,b) € revivals(U) or not.

In doing this we again appeal to the context C,(t, Y, b)[U] that maps each process
U with the trace ¢"(b) to a process whose trace set is {(), (a)} and which has the
revival ({),0, a) if and only if (¢, Y, b) € revivals(U). If 3, does not end in v/, define

To[U] = STOP 1 ((Cren(t, Y, 0)[U] A ¢ — AS) { l : a—c— AS)\ {c}

Tn+1[U] =a— T()[U]
AS =a— AS

If 4 does end in v/, the definition can easily be adjusted so that this process termi-
nates after exactly as many as as there are non-tick events in /. In either case, Ts[U]
performs exactly as many as as there are events in 3 that precede the crucial accep-
tance A;. It then has the choice of deadlocking, performing a after e or, if (¢, Y, b) is
present in U, offering a stably. After that it performs enough stable offers of ¢ and if

necessary a v/ so that the construct E[U] defined below does not interfere with the
rest of 3. ¢ has a twin role in this definition. Firstly it is an interlock: the parallel
composition with ¢ — ¢ — AS ensures that the interrupting ¢ cannot happen until
after the first step, and the hiding of ¢ ensures that T,[U] can become stable after
s+ 1 as. Now let

ElU| = (W (Bm, ") 2|| T,[Ul[a — Zo])[Unprime]

where Unprime is the renaming that maps all events ¢’ in ¥; to ¢ as well as being
the identity function on ¥3. Except for what happens immediately after s events, this
process behaves identically to W (3, 5*) because the renamed T,[U]| does not then
block any event. After s events T5[U]| can, whatever U is, choose to deadlock or per-
form a without the observation of stability. When T,[U] deadlocks, this has the effect
of allowing only the X; events of W (3, #*) which, thanks to the Unprime remaining,
appear as the offer of B and are followed immediately by certain divergence. In other
words, deadlock by Ts[U] here results in the behaviour 3*, which we know belongs
to @'. The unstable occurrence of a in T,[U] at this point leads to a behaviour that
is either § with A, replaced by e, or one implied by it. By our assumptions all such
behaviours belong to Q’. It follows that, if U does not contain (¢, Y, b), then E[U]
refines ()’.

If U does contain (¢, Y, b) then since T;[U] can stably offer as throughout the length
of the behaviour § and then terminate if appropriate, it follows that [is a behaviour
of E[U]. Note that since, after s events W (3, §*) additionally offers the images of
B(C Ajy) in Xy, E[U] can perform each event from B in two ways, but the actual
offer after s events is the same as in [.

The extra possibility of the revival in T,[U] after s events clearly cannot add any
behaviours that are not automatically present in P’ because it has 3. Hence E[U]
refines P’. Now, defining

DUl =E[U]N Q'

we have exactly what we wanted and, since M distinguishes @' and P',if (¢, Y, b) €
revivals(U) — revivals(V)

D[V]=y= Q" #y P' =y D[U]

which proves our result. 1

This completes the proof of Theorem 7.1.

The state of knowledge it establishes about the finite observation models is illustrated
in Figure 3. The clouds illustrate the regions where there are models we have not
completely classified: note that Lemma 7.2 demonstrates that the parts of the main
cloud that lie beneath A and R7T are disjoint: they are represented by the small
clouds.

RT] A
= SN
R
jj
/I'

Fig. 3. The hierarchy as revealed by Theorem 7.1

This result raises the question of how it might be extended, for example by refining
our knowledge of the clouds or extending this result from finite observation models
to the other classes discussed earlier. Since this paper was submitted for publication,
the author has answered the second question for models in the classes MY and M":
namely, we get an exact analogy of Theorem 7.1, but only with the addition of the
O, operator referred to in a footnote earlier.

The situation with the M# family will be more complex for two reasons:

e Firstly, the three other families of congruences are themselves more abstract than
ones such as R¥, so there will certainly be more than four congruences below than
this model under <.

e Secondly, there seems to be nothing to constrain the level of detail recorded be-
yond the first divergence on a trace to be the same as that before. For example,
representing a process in a pair of models, exactly one of which is divergence strict,
will produce a congruence that is different from all our named ones, but which is
still stronger than R#. For example (F*, T) will tell you about failure information
prior to the first possible divergence on a trace, but only trace information beyond
this point.

It is unclear to the author how much practical benefit there will be from discovering
exactly what lies behind the clouds. The author believes, for example, that each of
the two small clouds contains an infinite set of models. For example, between R
and A we can create generalised revivals which, instead of recording only one event

that can happen after a refusal is observed, record up to K for some fixed K > 1.
Thus (s, X, V') says that P can perform s, and stably refuse X from some state that
can communicate each event (as alternatives) from the set Y where |Y| < K. The
equivalent model for K =1 is just R, and for K = 0 is F. If no limit is placed on K
this model is just A.

8 Conclusions

In this paper we have shown how the conformance equivalence defined in [8] and
developed as revivals in [22] can be turned into a full model of CSP which is fully
abstract with respect to the classes of property described in those two papers. We have
also shown how it fits into the hierarchy of CSP models and how this hierarchy allows
to create easily a number of extensions to include divergence and infinite traces. In
Section 7.1 we showed that R has a special place as the “biggest of the small models”
in rather a striking sense.

As stated at the end of the last section, the author believes that there are many other
models of CSP sitting undiscovered behind the clouds in Figure 3, but that the main
motivation for discovering them would be academic rather than practical.

He believes that failures models remain the most important ones of CSP, in part
thanks to their full abstraction properties such as the abilities to decide “can dead-
lock immediately” and “can deadlock or diverge immediately”. Revivals models are,
however, clearly important when one wants to examine stable configurations of net-
works such as those examined by the stuck-freeness and RespondsTo conditions we
described earlier, in that they allow us to express conditions in terms of processes’
individual offers. Another obvious application is in refining the concepts used in dead-
lock analysis such as the different types of conflict discussed in Chapter 13 of [23].
One fact that is worth bearing in mind, however, is that practical networks most
often consist of deterministic processes, it being the hiding of their interactions that
creates externally visible nondeterminism. In such cases the failures representations
of processes convey all necessary information about revivals, so that definitions of
stuck-freeness etc over failures models are in fact equivalent to revivals ones.

Revivals, particularly coupled with divergences, might well find uses in situations
like those envisaged in Section 11 where we can guarantee or wish to ensure that
observable actions only happen in v'-stable states.

In this paper we have concentrated on the denotational semantics of CSP over be-
havioural models such as R as well as demonstrating congruence of these with op-
erational semantics. In [13] CSP is given a wide range of algebraic laws, which were
codified and supplemented in [23] to give an algebraic semantics. One of the main ob-
jectives of an algebraic semantics is to characterise the same equivalence as a chosen

behavioural equivalence, and it is clear that moving from one behavioural equivalence
to another will involve a change in the set of laws. In one respect the move from F
to R is easy, since only one of the basic laws for F set out in [23] proves to be false,
namely the distribution of internal choice over external choice:

PN(QOR)=(PNR)O(PMNR)

To see that this is false over R consider P = STOP,) = a —) and R = b — B.
The process on the right-hand side above has the revival ({), {a}, b), but the one on
the left-hand side does not.

It is therefore tempting to hope that the algebraic semantics for CSP over R will
be a small step from that over F implied '? in [23]. Unfortunately this is not so. In
any model that is at least as rich as R one can make a distinction that is impossible
in models based on failures. That is, we can see, for each trace of the form s°(a),
whether the final ¢ could have occurred from a stable state or not: the alternative
is that it could only have occurred from an unstable state. This can be decided by
seeing whether our process has the revival (s,(, a). The ability to see when events
can not occur stably means that the shape of the step laws of [23], which demonstrate
how each operator behaves when its operands take the form 7z : A — P(z) is no
longer sufficiently general to cover all cases, simply because it does not cover the case
of events that can only occur unstably. The author believes that the way around this
problem is to include laws that show how the various operators respond to processes
of the form (?z : A — P(z)) > @, since the events in A are now offered unstably.
This is a substantial task beyond the scope of the present paper.

The investigation of further models for concurrency like those introduced in this
paper has both positive and negative qualities. On the plus side it shows how one can
sometimes get the exact model one wants for some purpose. The model introduced
in this paper turned out to be important, in the author’s opinion, primarily because
of the (literally!) pivotal position it turns out to have in the hierarchy of models.

On the other hand, as the concurrency community has learned to its cost, the prolif-
eration of models makes our work less accessible to potential users and can give the
impression that we are more concerned with academic minutiae than with applica-
tions. We have seen that revivals are necessary to capture precisely a particular sort

12 The algebraic semantics in [23] is chiefly for A/, but there is an exercise on adapting it to
F.

of practically-relevant property. However, for most purposes, the distinctions between

(z?{a, b} = STOP) > STOP

(z7{a, b} — STOP) 1 STOP

(e — STOP) M (b — STOP) N STOP
(z?{a,b} — STOP) > (a — STOP N STOP)
(z?{a, b} = STOP) > (b — STOP N STOP)
(z7{a, b} — STOP) M (¢ — STOP N STOP)

(z?{a,b} — STOP) 1 (b — STOP M STOP)

namely, the seven different R-values of divergence-free processes whose traces are
{(), {a), (b)} that can deadlock immediately, are probably not that important. They
are all equivalent in F.

Both revivals and refusal-testing refinement have recently been implemented in FDR
(version 2.90). The author was pleasantly surprised to discover, at the same time as he
was trying out this functionality for the first time, an industrially relevant application
of R. This was of the type discussed in Section 11, namely showing that offers of one
class of events implied offers of another.

As reported in [30], Markus Roggenbach’s group at Swansea University have recently
modelled R within their CSP Prover technology (based on the theorem prover Is-
abelle) and thereby verified some of the properties of this model claimed in the present
paper. They also discovered an error in the semantics of prefix choice (?z : A — P(z))
given in an earlier draft, as well as discovering some aspects of that version that were
open to misinterpretation. Ideally, in future, every paper introducing new theories of
CSP should be subjected to such “testing”.

Acknowledgements

I would like to thank Tony Hoare, Jakob Rehof and Sriram Rajamani for discussions
about conformance, Joy Reed and Jane Sinclair for discussions about responsiveness,
and Michael Goldsmith and Phil Armstrong for implementing revivals refinement
checking. I had useful discussions with Jakob and Antti Valmari about the material
in Section 7.1.

I would like to thank Markus Roggenbach and his group for their embedding of this
model in CSP-Prover, as described above.

The presentation of this paper has been much improved by the suggestions of anony-
mous referees. In particular these led indirectly to me writing the two sections on the
CSP hierarchy and discovering the results in Section 7.1. My work on this topic was
funded by US ONR and by a grant from EPSRC, and I completed this version in the
congenial surroundings of the UN International Institute for Software Technology in
Macao, China.

Appendix: Notation

This paper follows the notation of [23], from which most of the following is taken.

)Y (Sigma): alphabet of all communications

T (tau): the invisible action

X7 YU{r}

»v YU{v}

)Nl {s,s(V') | s € ¥*}

A* set, of all finite sequences over A

() the empty sequence

(a1,...,a,) the sequence containing ay,..., a, in that order
st concatenation of two sequences

s\ X hiding: all members of X deleted from s

s)||(t the set of traces composed from subsequences s and ¢

which share members of X and are disjoint elsewhere.

s<t (= Ju.s"u = t) prefix order

Processes:

pwp.P

a— P

70 A—> P

POQ
PmnaQ,
P)||(Q
P\ X
P[R]
Pla — A]
P[A — d]
P> @
PAQ

Plz/y]
P Q

Models:

[

recursion

prefixing

prefix choice

external choice

nondeterministic choice

generalised parallel

hiding

renaming (relational)

renaming in which a maps to every b € A
renaming in which every member of A maps to a
“time-out” operator (sliding choice)

interrupt

substitution (for a free identifier z)

(a € ¥ U{7}) single action transition in an LTS

SBD

References

traces model

failures/divergences model (divergence strict)

stable failures model

stable revivals model

stable ready sets, or acceptances, model

stable refusal testing model

the finest finite observation model

the model M extended by strict divergence information

M extended by strict divergences and infinite traces or similar
M extended by non-strict divergences and infinite traces or similar
failures/divergences/infinite traces model

with divergence strictness

finite and infinite traces/divergences model strict

under w-divergent infinite traces

X identifies all processes identified by)
bottom elements of models
top elements of models

refinement over whatever model is clear from the context

[1] G. Barrett, The fixed-point theory of unbounded nondeterminism, FAC 3 110-128, 1991.

[2] S.R. Blamey, The soundness and completeness of azioms for CSP processes, Topology

and category theory in computer science, OUP 1991.

[3] C. Bolton and G. Lowe, A hierarchy of failures-based models, ENTCS 96, 129-152, 2004.

[4] S.D. Brookes and A.W. Roscoe, An improved failures model for CSP, Proceedings of

the Pittsburgh seminar on concurrency, LNCS 197 (1985).

[5] M. Broy, A theory for nondeterminism, parallelism, communication and concurrency,

Theoretical Computer Science 45, ppl-61 (1986).

[6] R.de Nicola and M. Hennessy, Testing equivalences for processes, Theoretical Computer

Science 34, 1, 83-134, 1987.

[7] Formal Systems (Europe) Ltd, Failures-Divergence Refinement: FDR2 Manual, 1997.

8] C. Fournet, C.A.R. Hoare, S.K. Rajamani and J. Rehof, Stuck-free conformance,
Proceedings CAV 04, 16th International Conference on Computer Aided Verification,
Boston, USA, July 2004.

9] R.J. van Glabbeek, The linear time - Branching time spectrum I The handbook of
process algebra, Elsevier 2001.

[10] R.J. van Glabbeek, The linear time - Branching time spectrum II Proceedings of
CONCUR 1993.

[11] D. Harel, Statecharts: A visual formalism for complex systems, Science of Computer
Programming 8, 3, 231-274, 1987.

[12] C.A.R. Hoare, A model for communicating sequential processes, in ‘On the construction
of programs’ (McKeag and MacNaughten, eds), Cambridge University Press, 1980.

[13] C.A.R. Hoare, Communicating sequential processes, Prentice Hall, 1985.

[14] P.B. Levy, Infinite trace semantics, Proc 2nd APPSEM Workshop, 2004
www.Cs.ioc.ee/appsem04/accepted.html

[15] Abida Mukkaram, A refusal testing model for CSP, Oxford University D.Phil thesis,
1993.

[16] E.R. Olderog and C.A.R. Hoare, Specification-oriented semantics for communicating
processes, Acta Informatica, 23, 9-66, 1986.

[17] J. Ouaknine, Discrete analysis of continuous behaviour in real-time concurrent systems,
Oxford University D.Phil thesis, 2000.

[18] I. Phillips, Refusal testing, Theoretical Computer Science 50 pp241-284 (1987).

[19] A. Puhakka, Weakest congruence results concerning “any-lock”, Proc TACAS 2001,
Springer LNCS 2215 (2001).

[20] A. Puhakka, A and A. Valmari, Weakest-Congruence Results for Livelock-Preserving
Equivalences, Proceedings of CONCUR ’99 (Concurrency Theory), Springer LNCS
1664, Springer-Verlag 1999.

[21] J.N. Reed, J. Sinclair and A.W. Roscoe, Responsiveness of inter-operating components,
FAC 16 pp394-411 (2004).

[22] J.N. Reed, A.W. Roscoe and J. Sinclair, Responsiveness and stable revivals, FAC 19 3,
303-319, 2007.

[23] A.W. Roscoe, The theory and practice of concurrency, Prentice-Hall International, 1998.
Updated version available as number 68 at:
web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications

[24] A.W. Roscoe, An alternative order for the failures model, Journal of Logic and
Computation 2, 5 ppb57-577, 1992.

[25] A.W. Roscoe, Unbounded nondeterminism in CSP, Journal of Logic and Computation,
3, 2 131-172, 1993.

[26] A.W. Roscoe, Seeing beyond divergence, in Proceedings of “25 Years of CSP”,
LNCS3525 (2005).

[27) A.W. Roscoe, Confluence through extensional determinism, Proceedings of the
Bertinoro meeting on concurrency, BRICS 2005, and ENTCS 162, pp 305-309 (2006).

[28] A.W. Roscoe, The three Platonic models of divergence-strict CSP, Proceedings of
ICTAC 2008, LNCS 5160.

[29] A.W. Roscoe and Zhenzhong Wu, Verifying Statemate Statecharts Using CSP and FDR,
Proceedings of ICREM 2006, Springer LNCS 4260.

[30] D.G. Samuel, Yoshinao Isobe and M. Roggenbach, The stable revivals model in CSP-
Prover, Proceedings of AVoCS 2008.

