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Abstract— Relocalization is a fundamental task in the field
of robotics and computer vision. There is considerable work in
the field of deep camera relocalization, which directly estimates
poses from raw images. However, learning-based methods have
not yet been applied to the radar sensory data. In this work,
we investigate how to exploit deep learning to predict global
poses from Emerging Frequency-Modulated Continuous Wave
(FMCW) radar scans. Specifically, we propose a novel end-
to-end neural network with self-attention, termed RadarLoc,
which is able to estimate 6-DoF global poses directly. We
also propose to improve the localization performance by utiliz-
ing geometric constraints between radar scans. We validate
our approach on the recently released challenging outdoor
dataset Oxford Radar RobotCar. Comprehensive experiments
demonstrate that the proposed method outperforms radar-
based localization and deep camera relocalization methods by
a significant margin.

I. INTRODUCTION

Relocalization is a fundamental problem in robotics and
computer vision. A robot has to localize itself when moving
in urban or indoor environments to achieve competent auton-
omy. Several existing solutions employ Global Navigation
Satellite System (GNSS) to perform localization. However,
GNSS is not always available such as in indoor environments
and the accuracy of GNSS cannot be guaranteed in urban
environments with high-rising buildings since they can block
GNSS signals. There is a significant body of knowledge in
visual localization, as it has been studied for decades. Con-
ventional geometry-based visual localization systems mainly
utilize handcrafted features and descriptors, which are typi-
cally sensitive to illumination variation, dynamic objects and
viewpoint change [11]. Recently, learning-based visual local-
ization methods such as PoseNet and variants [5], [12]–[14]
have been proposed to solve these challenges, which leverage
either a single image or a sequence of images to predict 6-
Degree-of-Freedom (6-DoF) poses directly. Unlike retrieval-
based learning approaches e.g. CamNet [7], RelocNet [1] and
Camera Relocalization CNN [16], location-related informa-
tion of these deep learning methods is implicitly encoded
within the parameters of these deep neural networks, and
therefore these methods require agents that have previously
traversed the same environment. However, vision sensors
inherently suffer from several drawbacks which restrict their
ability to be used in scenarios where reliability is highly
desirable, such as self-driving cars. Visual inputs are easily
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Fig. 1: System overview of the proposed RadarLoc relo-
calization framework. A raw FMCW radar scan is first
transformed into a Cartesian Radar Image. The radar image
is then fed to RadarLoc, which directly estimates the 6-DoF
pose in an end-to-end manner.

impacted by ambient environmental conditions e.g. sunshine,
rain, fog; and further by their narrow Field-of-View (FoV).

Emerging Frequency-Modulated Continuous Wave
(FMCW) radar sensors can effectively solve many
of the shortcomings of cameras. They can provide a
360° view of the scene and range objects hundreds of
meters away. Meanwhile, they can function reliably in
unstructured environments in different conditions e.g. snow,
darkness, fog, smoke, direct sunlight [2] without impact.
These characteristics of radar make it suitable for robot
localization, especially for autonomous agents which operate
in large-scale urban scenes. Inspired by the aforementioned
deep pose regression methods that use images, the aim
of this work is to investigate and provide a robust radar
localization system, allowing robots to relocalize themselves
under previously visited scenes.

Specifically, we propose a novel geometry-aware neural
network architecture, termed RadarLoc, which can estimate
the 6-DoF pose using a single radar scan. The proposed self-
attention module of a nested encoder-decoder architecture
further improves the localization performance. During the
training phase, RadarLoc takes as input a sequence of
radar scans, and predicts poses optimized and constrained
by both absolute and relative (geometric) pose losses. At
inference time the 6-DoF pose is regressed from a single
input scan. Fig. 1 illustrates the overview of the proposed
fully differentiable relocalization system.

Our contributions are summarized as follows: We demon-
strate that radar scans can be employed to estimate ab-
solute 6-DoF poses in an end-to-end fashion. We further
refine pose estimations by leveraging geometric constraints
between radar pairs as one component of the loss function.



Comprehensive experiments and ablation study have been
done to demonstrate the effectiveness of RadarLoc, which
outperforms state-of-the-art radar-based localization, DNN-
based camera relocalization methods by a significant margin.

II. RELATED WORK

A. Deep Camera Localization

Apart from problems of computation and storage, tradi-
tional visual localization in dynamic environments is still
very difficult because of foreground outliers and appearance
variations [11]. For tackling these problems, recent works
propose DNN-based methods to estimate 6-DoF poses di-
rectly. Single or sequential images are fed into a neural
network model which comprises a feature extractor and a
pose regressor for estimating absolute poses in an end-to-end
manner. PoseNet [14] is the first to demonstrate that 6-DoF
camera poses can be directly predicted by a neural network.
Following variations [12], [13] improve the performance
of PoseNet by introducing a geometric loss and modelling
the uncertainty of poses with Bayesian Neural Network.
Walch et al. [18] proposed to utilize LSTM for structural
feature correlation to improve the performance. Although
these approaches are promising, they are still limited to the
disadvantages of visual sensors. Our work extends this line
of research by leveraging FMCW scanning radar to perform
deep global localization.

B. Radar Geometry

A 360° FMCW radar continuously scans the surrounding
environment with a total of M azimuth angles. The radar
emits a beam and collapses the return signal for each azimuth
angle [9]. The raw scan of the FMCW radar is a polar image,
which can be transformed into a Cartesian image. Formally,
given a point (a,b) where a is the azimuth and b is range on
a raw polar image, the range angle θ in the corresponding
Cartesian coordinate is:

θ = 2π ·a / M (1)

Thus, the corresponding coordinate Z in the Cartesian image
can be calculated as:

Z =

[
α · cosθ ·b
α · sinθ ·b

]
(2)

where α is a scaling factor between the image pixel space
and the world metric space. Cartesian representation of the
radar scan is visually comprehensible, and is better for
neural networks to learn and optimize than the raw polar
representation.

C. Radar Odometry

Recent works proposed to utilize radar scans for ego-
motion estimation, which is known as radar odometry. Cen
et al. [6] extracted landmarks from radar scans and then
conducted scan matching to predict ego-motion based on
unary descriptors and pairwise compatibility scores. Barnes
et al. [4] developed a robust and real-time radar odometry
system based on deep correlative scan matching with learnt
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Fig. 2: The difference between radar odometry and radar re-
localization [2], [17]. Radar odometry predicts relative poses
between consecutive radar scans and thus has accumulative
drifts over time, while radar relocalization estimates global
poses w.r.t the world coordinate and needs to traverse the
environments before. These are two different tasks in local-
ization, and this work focuses on the radar relocalization.

feature embedding and self-supervised distraction-free mod-
ule. Afterwards, they proposed a deep key point detection
approach for radar odometry estimation and metric local-
ization by embedding a differentiable point-based motion
estimator [3]. Note that different from these methods, our
work focuses on radar-based absolute localization, which
predicts global poses w.r.t. the world coordinate rather than
relative poses. Fig. 2 illustrates the differences between these
two different localization tasks.

III. DEEP RADAR RELOCALIZATION

In this section, we introduce the proposed deep radar
relocalization framework in detail. The overall architecture
of RadarLoc is illustrated in Fig. 3, which consists of a self-
attention module, a radar encoder, and a deep pose regressor.
Since the original output of the FMCW scanning radar is
a polar image, we transform it into the Cartesian space as
a grey-scale birds-view-like image for better representation
and improved localization performance [21]. During training
phase, the neural network is optimized by the geometry-
aware loss function which employs a sequence of radar scans
to learn global 6-DoF poses and relative transformations
simultaneously. During test phase, the RadarLoc estimates
the 6-DoF pose of a single Radar input each time.

A. Problem Formulation

The scope of this work is to predict absolute 6-DoF
poses of the mobile agent given radar scans as inputs. The
scene has been visited by the agent before, in which the
agent can relocalize itself. The relocalization of the agent is
parameterized by a 6-DoF pose P = [p,q] with respect to the
world coordinate, where p ∈ R3 is a 3-D translation vector
and q∈ R4 is a 4-D rotation vector. At each timestamp t, the
agent receives a Cartesian Radar image I ∈ RH×W from the
FMCW scanning radar where H is height and W is width.
The deep radar relocalization framework learns a function f
so that f (I) = [p,q], where f is a deep neural network.
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Fig. 3: The architecture of RadarLoc. RadarLoc consists of a self-attention module, a radar encoder and a deep pose regressor.
A raw FMCW radar scan is transformed into a Cartesian radar image, and then it is fed into a self-attention module to
learn a soft attention map. DenseNet [10] is employed as the radar encoder to extract useful features for relocalization. The
deep pose regressor predicts the parameterized translation p ∈ R3 and rotation logq ∈ R3 [5]. The predicted parameterized
rotation vector logq can be further transformed to the 4-D rotation vector q ∈ R4.

B. Self-Attention for Robust Relocalization

For the radar relocalization task, there are two categories
of noises which can significantly affect the accuracy of pose
predictions. One is noises from the radar sensor itself. The
current FMCW scanning radar is affected by multiple noises,
e.g. range error, angular error, and false positive and false
negative detection which make the radar scans noisier than
camera images. The other is the foreground moving objects
in dynamic environments. There are several types of dynamic
outliers e.g. pedestrians, bikes, buses, trucks in the complex
urban environments, which have different shapes and sizes.
Since the radar can scan more than 150 meters range, it is
likely that one radar image can contain these different types
of moving objects. Therefore, the aforementioned noises
can inevitably bias the neural network, making the radar
relocalization quite challenging. Barnes et al. [4] proposed
a U-Net structure to predict distraction-free radar odometry.
Wang el al. [19] designed a non-local self-attention module
to filter out moving objects for camera relocalization. How-
ever, these methods neither learn semantic features in a fine-
grained manner [4] nor are designed specifically for radar
images [19]. To this end, we propose a novel self-attention
module for radar relocalization as shown in Fig. 4, which is
a nested encoder-decoder style neural network, to mitigate
the impact of these noises by filtering them out. Our design
intuition is that considering the different shapes and sizes of
moving objects, the self-attention module should have the
ability to extract fine-grained features and filter out these
dynamic noises. Compared to the U-Net style architecture,
the nested encoder-decoder architecture can gradually down-
sample, fuse and up-sample features from inputs, which
can reduce the semantic gap between the feature maps and
extract fine-grained semantic information. We choose the re-
designed skip pathways proposed by Zhou et al. [22] due
to its impressive performance on multiple medical image
segmentation tasks, in which the feature maps pass through a
dense convolution block whose number of convolution layers
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Fig. 4: The architecture of self-attention module. The module
is a nested encoder-decoder structure [22]. For better visu-
alization, we only depict 3 levels in the figure, and in our
implementation, the nested structure has 6 levels. We adopt
a soft attention mechanism, and fuse output features at the
upper level to have a fine-grained attention map.

depends on the pyramid level, and the stack of the feature
maps are calculated as:

Xi, j =

{
g(Xi−1, j), j = 0
g([[Xi,k] j−1

k=0,g
′
(Xi+1, j−1)]), j > 0

(3)

where Xi, j is the extracted feature of each node in Fig. 4 ,
g(∗) denotes a convolution layer with an activation function,
g
′
(∗) is an up-sampling layer, [∗] indicates a concatenation

layer, i ∈ [0,1, ..,n− 1] is the index of the down-sampling
layer along the encoder, j ∈ [0,1, ...,n− 1] is the index of
convolution layer of the dense block along the skip pathway,
n is the number of pyramid levels. In order to learn features
at different scales, we fuse node outputs on the uppermost
level to generate the output features Inode by averaging them:

Inode =
1
n

n−1

∑
j=0

X0, j (4)

Thus, our self-attention module is an encoder-decoder pyra-
mid structure with densely skip pathways followed by an



activation function. We adopt a soft attention mechanism to
learn the mask, so the activation function we use is Sigmoid.
Given a Cartesian radar image I ∈ RH×W , the self-attention
module serves to learn a noise-free feature map I′ ∈ RH×W :

I
′
= σ(Inode) · I (5)

where σ is the Sigmoid function, and · represents the dot
product.

C. Radar Encoder

The radar encoder extracts features from a radar image
for relocalization. Existing state-of-the-art camera relocal-
ization approaches [5], [11], [19] employ ResNet [8] as the
visual encoder considering the residual neural networks can
learn deeper and alleviate the gradient vanishing problem.
DenseNet [10], which consists of densely connected convo-
lutional networks, has been proved better performance on
four object recognition tasks than ResNet. Hence, RadarLoc
adopts pre-trained DenseNet as the radar encoder for feature
extraction of the relocalization. We broadcast feature map I

′

to 3 channels, and replace the last 1000-dimensional fully
connected layer with a M-dimensional fully connected layer.
Formally, given the I′ from the self-attention module, the
feature encoder fencoder extracts the feature vector z ∈ RM×1

from I′ , which can be presented as:

z = fencoder(I
′
) (6)

D. Deep Pose Regressor

The deep pose regressor receives the feature vector z
from the Radar Encoder, and predicts the position p and the
rotation q respectively. It consists of Multi-Layer Perceptrons
(MLPs) of two branches. An activation function is applied
to each layer of the MLPs except the last one. The pose
regressor which ultimately estimates the global pose P =
[p,q] is defined as:

P = fMLPs(z) (7)

E. Loss Function with Geometric Constraints

For the loss function, we employ the definition in [5] as
it has been shown to be effective in existing image-based
global pose regression tasks. The vanilla loss function h is
defined as:

h(P, P̂) = ‖p− p̂‖1e−β +β +‖ logq− log q̂‖1e−γ + γ (8)

where p and logq are translation and orientation of the
predicted global pose P, p̂ and log q̂ are translation and
orientation of the ground-truth global pose P̂, ‖∗‖1 denotes
the L1 loss function, β and γ are learnable balance factors
which are initiated by β 0 and γ0 respectively. logq is the
logarithmic form of a unit quaternion q = (u,v), where u is
a scalar and v is a 3-D vector, which is defined as:

logq =

{
v
‖v‖ cos−1 u, if ‖v‖ 6= 0

0, otherwise
(9)

Since a 2-D radar image can provide metric information
within a wide range, we further improve the performance

TABLE I: Dataset Descriptions on the Oxford Radar RobotCar.

Scene Time Tag Training Test

Seq-01 2019-01-11-14-02-26 sun X
Seq-02 2019-01-14-12-05-52 overcast X
Seq-03 2019-01-14-14-48-55 overcast X
Seq-04 2019-01-15-14-24-38 overcast X
Seq-05 2019-01-18-15-20-12 overcast X
Seq-06 2019-01-10-11-46-21 rain X
Seq-07 2019-01-14-12-41-28 overcast X
Seq-08 2019-01-15-13-06-37 overcast X
Seq-09 2019-01-17-14-03-00 sun X
Seq-10 2019-01-18-14-14-42 overcast X

of relocalization by leveraging geometric constraints to opti-
mize parameters of the neural network. During training, we
choose N radar images, consisting of the current radar image
I0 as well as N-1 sequential radar images {I1, ..., IN−1} close
to I0. Consequently, RadarLoc learns both global poses (Lgp)
and relative pose transformations (Lrp) between radar image
pairs. The improved loss functions are defined as:

Lgp =
N−1

∑
i=0

h(Pi, P̂i) Lrp =
N−2

∑
i=0

h(Qi,Q̂i) (10)

where Pi,Qi are predicted global poses and relative pose
transformations while P̂i,Q̂i are ground-truth global poses
and relative pose transformations respectively, and h is the
distance function defined in Eq. 8. Therefore, the ultimate
loss function for RadarLoc is formulated as:

Ltotal = Lgp +Lrp (11)

Importantly, we employ multiple images in the training
phase, and only a single radar image in the test phase.

IV. EXPERIMENTS

In this section, we evaluate our proposed RadarLoc on the
recently released Oxford Radar RobotCar Dataset [2], [17],
and compare it with state-of-the-art radar-based localization
and deep camera and LiDAR relocalization methods.

A. Dataset

The Dataset provides Navtech CTS350-X FMCW scan-
ning radar data, RGB images and corresponding ground
truth poses. It was collected in January 2019 over thirty-
two traversals of a central Oxford route spanning a total
of 280 km of urban driving, and covered different kinds of
lighting, weather and traffic conditions [2]. The length of
each sequence is around 9 km, and they traverse the same
route. Therefore, the dataset is large-scale and complex. For
the relocalization task, it is quite challenging since the urban
scenes encompass a variety of foreground objects e.g. people,
car, bus, which significantly influence the performance of
relocalization. The descriptions of our training sequences
and test sequences from the Oxford Radar RobotCar Dataset
are illustrated in Table I. Note that seasonal variations affect
localization significantly, this dataset only covers January.



TABLE II: Results showing the mean translation error (m) and rotation error (°) for state-of-the-art radar-based localization methods
and deep camera and LiDAR relocalization methods on the Oxford Radar RobotCar Dataset. For RadarSLAM and Adapted methods, the
sensory data is FMCW radar scan. The sensory data of AtLoc and PointLoc are camera RGB image and LiDAR point cloud respectively.

Sequence
RadarSLAM Adapted Masking Adapted PoseNet17 Adapted AtLoc Adapted LSTM AtLoc PointLoc RadarLoc

[9] [4] [13] [19] [18] [19] [20] (Ours)
[Radar] [Radar] [Radar] [Radar] [Radar] [RGB] [LiDAR] [Radar]

Seq-06 49.81m, 5.22° 12.54m, 3.93° 15.12m, 4.08° 15.85m, 4.20° 15.86m, 4.28° 15.36m, 3.37° 14.42m, 2.77° 8.43m, 3.44°
Seq-07 24.73m, 3.36° 8.11m, 3.04° 13.59m, 3.54° 13.23m, 3.82° 13.33m, 2.47° 39.76m, 8.31° 8.46m, 1.82 ° 5.12m, 2.87°
Seq-08 26.09m, 1.57° 11.32m, 4.18° 14.81m, 3.46° 14.17m, 2.94° 14.86m, 2.88° 31.68m, 4.34° 9.52m, 2.14° 6.56m, 3.06°
Seq-09 39.84m, 5.67° 11.53m, 2.76° 14.44m, 3.04° 15.71m, 3.23° 13.86m, 2.71° 47.06m, 9.38° 11.52m, 1.98° 6.51m, 2.91°
Seq-10 17.83m, 1.71° 9.42m, 1.81° 13.21m, 2.02° 13.22m, 1.94° 14.65m, 1.89° 10.35m, 1.26° 8.43m, 1.40° 5.34m, 1.78°

Average 31.66m, 3.50° 10.58m, 3.15° 14.23m, 3.23° 14.44m, 3.22° 14.51m, 2.85° 28.84m, 5.33° 10.47m, 2.02° 6.39m, 2.81°

B. Implementation

The spatial dimensions of the self-attention module of
RadarLoc are 8, 16, 32, 64, 128 and 256 respectively. The
size of a Cartesian radar image is set to 224×224 in order
to utilize the pre-trained DenseNet on ImageNet. For all
experiments, the number of training epochs is set to 100,
and we tune all baseline methods for the best performance.
The learning rate is set to 1× 10−4, and we set the initial
values of β0 = 0.0 and γ0 =−3.0. Furthermore, we retrieve a
sequence of N = 4 radar images each time. For all methods,
Adam [15] optimizer is applied to the neural networks.

C. Baselines

We compare RadarLoc with both radar-based methods
and state-of-the-art RGB and Lidar techniques. We also
adapt learning-based visual relocalization pipelines to use
radar images as input. RadarSLAM is a full radar-based
graph SLAM system for reliable localization in large-scale
scenarios. Masking by Moving [4] is the state-of-the-art deep
learning-based radar odometry approach, and we adapt the
feature extraction module for relocalization. PoseNet17 [13],
LSTM-Pose [18], and AtLoc [19] are state-of-the-art camera
image-based deep relocalization methods, and since our radar
scan can be seen as a 2-D 224×224 grey-scale image, we
want to examine the performance of these architectures on
the radar inputs. We apply these neural networks to radar
images for adapted radar relocalization. AtLoc (RGB) is
the state-of-the-art deep camera relocalization method, and
PointLoc (LiDAR) is the state-of-the-art DNN-based LiDAR
point cloud relocalization method.

D. Results

The experimental results are illustrated in Table II, and
the qualitative comparisons are depicted in Fig. 5. From
Table II, the proposed RadarLoc outperforms radar-based
methods by a significant margin. RadarSLAM can predict
consecutive poses but accumulates drifts with the increasing
distance, which leads to large localization errors as shown in
Table II. Note also that RadarSLAM is a continuous localiza-
tion technique, while RadarLoc is single-shot. For adapted
Masking by Moving, adapted PoseNet17, adapted AtLoc and
adapted LSTM, the results indicate that our proposed neural
network architecture is superior than previously proposed
architectures for both deep radar odometry and deep camera
relocalization.

We also compare with camera-based and LiDAR-based
deep relocalization methods to examine the differences
among different sensory data for deep pose regression. The
results in Table II demonstrate that radar-based deep relo-
calization method is much better than camera-based method
in terms of accuracy. The probable reasons are radar sensors
can provide broader FoV of scenes and are less sensitive to
environmental conditions than cameras. Interestingly, Radar-
Loc significantly outperforms PointLoc in translation while
remaining comparable in rotation performance. This is most
likely due to LiDAR providing full 3-D metric depth, rather
than the 2-D bird’s eye view of the FMCW radar scanner,
which aids in full 6-DoF pose estimation.

Fig. 6 shows the cumulative distribution function (CDF)
for both translation and orientation errors for the above
mentioned approaches. RadarLoc consistently produces low
errors in all sequences and it is closely followed by PointLoc.
Pose accuracy for RadarSLAM and AtLoc, on the other hand,
was highly dependent on the sequence being considered.
Most noticeably, in Sequence 09, over 40% of poses esti-
mated with RadarSLAM showed errors beyond 40m.

E. Ablation Study

In order to study the impact of different components of the
proposed RadarLoc system, we conduct the ablation study
as shown in Table III. For ablation experiments, we keep all
the architecture designs the same as RadarLoc except that
we do not contain self-attention module (w/o SA), use the
UNet as the self-attention module (SA w/ UNet), use the
ResNet as the radar encoder (ResNet) and do not use the
geometric constraints as one component of the loss function
(w/o GC) respectively. The RadarLoc improves the w/o SA
by 39.77% in translation and 5.70% in rotation, which proves
that our self-attention module is very effective in improving
the radar localization performance. To delve into the reasons
behind the improvement of our self-attention module, we
visualize the soft attention map as depicted in Fig. 3. The
self-attention module helps RadarLoc focus more on the
static objects like streets and buildings rather than feature-
less regions of a radar image. Moreover, it improves the SA
w/ UNet by 12.71% and the ResNet by 31.51% in translation
while remains comparable performance in rotation (less than
0.1°). Note that the performance of translation is very crucial
in application scenarios like indoor parking lot or outdoor
autonomous robots. Furthermore, the RadarLoc improves the



Fig. 5: Visual comparisons of all localization approaches for Sequence 10. Poses were projected from 6-DoF to 3-DoF with
exception to RadarSLAM, which outputs 3-DoF poses originally.

(a) Sequence 06 (b) Sequence 07 (c) Sequence 08 (d) Sequence 09 (e) Sequence 10

Fig. 6: Cumulative distributions of translation and rotation errors.

TABLE III: Results showing the mean translation error (m) and
rotation error (°) of ablation studies on the Oxford Radar RobotCar
Dataset.

Sequence w/o SA SA w/ UNet ResNet w/o GC RadarLoc

Seq-06 12.56m, 3.89° 9.96m, 3.62° 11.51m, 3.62° 11.13m, 3.80° 8.43m, 3.44°
Seq-07 10.26m, 3.16° 6.74m, 2.76° 8.09m, 2.75° 8.04m, 2.95 ° 5.12m, 2.87°
Seq-08 10.91m, 3.38° 6.46m, 2.72° 9.42m, 2.60° 10.74m, 3.47° 6.56m, 3.06°
Seq-09 10.36m, 2.82° 7.77m, 3.13° 9.73m, 2.86° 10.34m, 2.77° 6.51m, 2.91°
Seq-10 8.94m, 1.65° 5.64m, 1.61° 7.91m, 1.81° 10.15m, 1.88° 5.34m, 1.78°

Average 10.61m, 2.98° 7.32m, 2.77° 9.33m, 2.73° 10.08m, 2.97° 6.39m, 2.81°

w/o GC by 36.63% in translation and 5.39% in rotation,
which demonstrates that the geometric constraints can greatly
improve the performance of radar relocalization. Meanwhile,
RadarLoc without geometric constraints (w/o GC) also out-
performs all the baselines in Table II except the rotation of
PointLoc, which reveals the effectiveness of the proposed
neural network architecture considering the only difference
between RadarLoc and the w/o GC is the loss function.

V. CONCLUSIONS
The paper proposes a novel Radar-based relocalization

system, RadarLoc, based on deep learning. It can directly
predict 6-DoF global poses in an end-to-end fashion. The
system can be leveraged in urban areas like Oxford for lo-
calization or as a component of the existing radar localization
system to redeem the accumulative drifts of radar odometry.
One important extension direction of this work is to reduce
the prediction outliers, which significantly influence the per-
formance of the large-scale localization. The other direction
is to integrate the deep radar relocalization system with deep
radar odometry to provide a superior localization system in
the real world. In the future, we plan to collect more radar
sensory data to supplement the shortage of open dataset, and
test our methods on it.
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