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Abstract— The safe deployment of autonomous vehicles (AVs)
in real world scenarios requires that AVs are accountable.
One way of ensuring accountability is through the provision
of explanations for what the vehicles have ‘seen’, done and
might do in a given scenario. Intelligible explanations can
help developers and regulators to assess AVs’ behaviour, and
in turn, uphold accountability. In this paper, we propose
an interpretable (tree-based) and user-centric approach for
explaining autonomous driving behaviours. In a user study, we
examined different explanation types instigated by investigatory
queries. We conducted an experiment to identify scenarios
that require explanations and the corresponding appropriate
explanation types for such scenarios. Our findings show that
an explanation type matters mostly in emergency and collision
driving conditions. Also, providing intelligible explanations (es-
pecially contrastive types) with causal attributions can improve
accountability in autonomous driving. The proposed inter-
pretable approach can help realise such intelligible explanations
with causal attributions.
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I. INTRODUCTION

The increasing growth rate in the automotive industry is
precipitated by the accrued research knowledge in vehicle
dynamics, the emergence of deep learning algorithms, the
development of new and enhanced sensing devices (as de-
scribed in [1]), and possible market potential [2]. Despite
the technological advancements, the successful deployment
of AVs in the real world may greatly depend on users’
acceptance and confidence. Due to reports on AV accident
cases [3], [4], public skepticism in the acceptance of AVs
in society still seems to exist. Effective means to building
public confidence in AVs are therefore necessary.

A means of building confidence and increasing public
acceptance is through the provision of explanations. AVs
make high-stake decisions that can significantly affect hu-
mans. Hence, they should intelligibly explain and justify their
decisions sufficiently to uphold accountability. Most of the
existing explanation techniques mainly focus on explaining
data-driven models (e.g., machine learning models) with
less attention on complex goal-based systems such as AVs.
Moreover, the explanations they offer also suffer from low
intelligibility [5], [6]. This makes them mainly beneficial to
the experts and not readily utilisable by lay users. In addition,
only a few human-centric studies on explanations have been
conducted in the autonomous driving context.
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Fig. 1: Interpretable Representation. Different types of explanations (e.g.
Why and Why Not) generated from the underlying representations of actions
(A), observations (O), and road rules (R). The observations and actions
are obtained from scene graphs representing various frames from a driving
scene video. The actions (A), observations (O), and road rules (R) are used
to build a tree in the ‘Explanation Generation’ phase. We focused on the
tree representation in the ‘Explanation Generation’ phase and the impact of
the explanations on humans. Using a user study, we evaluated the impact
of the generated explanations in a range of driving scenarios and assessed
them against intelligibility and accountability goals.

Using intelligibility and accountability goals, this research
proposes an interpretable and user-centric method to expla-
nation provision in autonomous driving. It builds on risk
object identification technique in driving scene [7] and traffic
objects representation using scene graphs [8] (see Figure 1).
The observations recorded in the scene graphs, the AV’s
actions, and the road rules are combined to generate explana-
tions. In this paper, we only focus on how this combination
can generate different explanations (i.e., the proposed tree-
based method), and the type of driving conditions where
the explanations are mostly appropriate (i.e. through a user
study).

Our main contributions are:
• We propose an interpretable tree-based representation

for generating different types of explanations based on



observations, actions, and road rules.
• We present a user study that evaluates different types

of explanations (generated by following the proposed
tree-based approach) in a range of driving scenarios. In
particular, we show the importance of causal explana-
tions in safety-critical scenarios.

• In contrast to existing work on explanations in AVs,
we apply a triangulation design method (i.e., both
quantitative and qualitative methods) to evaluate ex-
planations for autonomous driving against intelligibility
and accountability goals.

Explanations with causal attributions (causal explanations)
are those that explicitly state reasons for an event [9]. We re-
fer to explanations that do otherwise as explanations without
causal attribution (non-causal explanations), see Table I.

II. BACKGROUND

Explanations have been studied in various contexts to
determine their impact on people [10], [11]. As the ef-
fectiveness of explanations differs with domains and their
context [12], investigating explanations in the context of
autonomous driving is key.

In the recent work, deep learning model have been trained
on video driving data with textual explanations as annota-
tions [13], [14]. Only a few works employed user studies as a
means to examine the impact of explanations on stakeholders
in the driving context [15]. Ha et al. [16] and Koo et
al. [17] examined people’s perception of trust in autonomous
vehicles by conditioning the participants to explanations
presumed to have been provided by an AV.

We provide a background for intelligibility and account-
ability as we look at explanations with intelligibility and
accountability goals in mind.

A. Intelligibility

Article 12 of the GDPR [18] demands that information
be provided to data subjects in an intelligible construct. The
term intelligibility is used to describe how easy an explana-
tion could be understood or comprehended [11]. While some
existing artificial intelligent systems equipped with explana-
tion mechanisms could be beneficial to experts, a thorough
investigation of their explanation properties show no indi-
cation of intelligibility when lay users are involved [19].
Further, many explanation algorithm design processes are
not informed by users’ needs. For example, Chakraborti
et al. [20] proposed an algorithm for explaining the plans
of an autonomous robot. The explanations generated by
this algorithm were not communicated in natural language.
Therefore, they are not easy to comprehend by lay users. This
is a serious concern, especially for AVs and social robots
where the party who mainly requires explanations is usually
not an AI expert. In fact, visual explanations in the form of
saliency maps may not pass clear or correct messages [21]
to an AV auxiliary driver who needs to immediately act
where an intervention is required. Intelligible explanations
are therefore critical as it is seen as one way of ensuring
accountability in autonomous driving.

TABLE I: Explanation types and their investigatory queries as used
in this study.

Type Class Example Query
Contrastive Causal Why Not: why did you not do Y?
Non-Contrastive Causal Why: why did you do X?
Counterfactuals Causal What If: what would you do if Z?
Informative Non-Causal What: what are you doing?

B. Accountability

Regulators and auditors (e.g., the GDPR) are seeking
ways to ensure accountability in algorithmic systems. One
way they are doing this is by setting authorities to audit
algorithmic systems in order to ensure their compliance to the
guidelines. Auditing can be challenging in blackbox systems
without explanations [22]. Moreover, accident investigation
in AI systems, as described in [23], requires meaningful
transparency in autonomous systems so as to enable easy
investigation by different stakeholders. The high complexity
of the explanation techniques (e.g., training a deep learning
model with scenes and corresponding explanations) for AVs
which have been applied in previous works makes account-
ability difficult to achieve.

In the other hands, explanations could be overwhelming
or redundant. In the next section, we discuss redundancy in
explanation.

C. Redundancy

The existing explanation techniques [13], [14] applied in
AVs so far focus on explaining only a specific aspect of an
AV, which are usually one or two actions (e.g., left turn and
forward movement). Often, the aspects focused on are not
very critical and explanations might not be crucial for such
cases. Explanations for irrelevant scenarios could, in fact, be
disturbing to users. One contributing factor to this problem
is the widespread use of non user-centric design approaches
for explanation systems.

As a step towards more user-centric explanation design,
we first describe a transparent and interpretable approach
to generating intelligible explanations from observations,
road rules, and actions using a tree-based data structure.
Further, we describe a user study we have conducted to
examine different explanations (see Table I) in different
driving conditions using the intelligibility and accountability
objectives.

III. EXPLANATION GENERATION

After a careful analysis of different driving scenarios,
we identified three variables required to provide an intel-
ligible explanation. These include a set of road rules (R),
observations (O), and actions (A). Conditions such as traffic
offence, justification for an action, unexpected circumstance,
and an AV’s reaction to other agents’ offence were derived
from these three variables: R,O, and A. Observations are
objects, agents or road signs in the environment detected
by a detection and tracking model. Road rules are part of
the domain knowledge of the agent. Rule selection in each



Fig. 2: Underlying tree-based representation used in the explanation
generation phase depicted in Figure 1. The tree is constructed with key
variables: road rules (R), observations (O), and actions (A). Different types
of explanations are generated through different traversals of the tree. We
manually interpreted the outcomes indicating accountability (especially in
collision incidents) for each path in the tree representation one of the left
turn scenarios used in the user study (see Figure 3).

situation is informed by observations. Actions represent the
decisions taken based on observations and rules.

Explanation X is represented with a variable size tuples
(X = 〈...〉). For example, X = 〈A,O,R〉 will yield an
explanation of the form:

The car [describe action] because [describe ob-
served circumstance] and [reference the relevant
road rules].

In each driving scenario, a tree is created from the observa-
tions and actions represented in a scene graph, and the road
rules (see Figure 1). The tree is traversed to collect the values
for each member of the tuple needed to form X . Figure 2
shows an example of a constructed tree using R,O and A
for the left turn scenario shown in Figure 3.

Formally, let T represents a tree such that T = 〈N,E〉.
N is a set of nodes and E is a set of edges connecting
two nodes. We define a node n ∈ N in the tree as a tuple
n = (u, S) where: u ∈ N is a unique numerical identifier
for a node in T . S is a list of statements based on R,O, or
A (e.g. A = 1). The root node is the unique node with no
parent, and a leaf is a node with no child. The level ln of a
node n is the number of edges from the root to that node.

We explain how four different explanation types (Why,

Why Not, What If, and What) can be generated from T .
To construct a Why explanation, we traverse T by starting

from the root node (say nr ∈ N ) to a leaf node (say nl ∈ N ).
We return the set of unique statements Sw which satisfy the
decision trace of the input instance. Why explanation is then
created using the information in Sw. Each s ∈ Sw is then
represented with linguistic terms that describe its meaning
in the driving domain. The ‘Why’ explanation Xw is now a
concatenation of the linguistic terms for all the s ∈ Sw.

For Why Not explanations, traverse T to generate Sw for
the why-trace. Find and note the lowest common ancestor na

of leaf node nl and the foil nl
′ (i.e., the closest alternative

output). na is the node from which the path pw from the root
nr to nl and the path pwn from the root nr to nl

′ first differ.
Thus, the statement s at na is crucial for explaining why nl

′

was not obtained. Why Not explanation Xwn is constructed
using the linguistic representation of s.

What If explanations are also referred to as counterfac-
tual explanations. Counterfactual explanations are meant to
contain information about the minimum change required to
obtain the closest alternative outcome or foil. To construct a
What If explanation, find the closest foil nl

′ to the current
leaf node nl. Obtain the lowest common ancestor na of nl

and nl
′ in T . The statement s at na is negated (e.g., ¬O = 1)

and added to the set of statements (say Sf ) resulting from
pw\pwn (where ‘\’ represents set complement). Each s ∈ Sf

is then represented with linguistic terms that describe its
meaning in the driving domain. The What If explanation Xf

is a concatenation of the linguistic terms for all the s ∈ Sf .
To generate What explanation, use the leaf node nl which

represents an action statement that corresponds to the sce-
nario being considered.

In contrast to existing works which employed deep learn-
ing approaches (e.g. [13], [14], [24], [25]) our proposed
interpretable method combines road rules, observations, and
actions to realise intelligible explanations for AVs. The tree
representation can be generalised with respect to the com-
plexity of the propositions within nodes and the complexity
of the scene (tree can have variable depth and branching
factor). To rectify accountability errors arising from the
misidentification of objects by the perception system, an
ethical blackbox [26] (i.e., a transparent and accurate event
data recorder) can be leveraged to validate explanations in
critical incidents, such as, collision.

We applied the described tree-based approach to generate
explanations for the scenarios in our user study.

IV. USER STUDY

We examined the methodological aspects of related work
(such as [11], [10]) and adapted a combination of them.
Because highly automated vehicles are not prevalent in many
communities, only a handful of people have been directly
affected by their decisions. Hence, our study methodology
included a design for participants to learn by engaging, and
get tested on certain events of an AV. The learning process
involved the presentation of a sequence of graphical images
of driving scenarios with explanations provided as captions.



We introduced new road signs in the scenarios in an attempt
to place all participants on a seemingly level ground. The
testing process followed the same procedure as the learning
procedure, but the explanations were replaced by questions
about the graphical scenarios.

We investigated 4 different types of explanations (Why,
Why Not, What If, and What) based on investigatory queries
(see Table I). Hence, we setup an online between-group study
with 4 groups. We sought and gained approval from the
University of Oxford research ethics committee to conduct
the study.

A. Participants

We recruited 101 participants via the Prolific Academic
platform and applied filters to include only individuals over
the age of 18, resident in the United Kingdom, and fluent in
English language. 39 of the participants were male and 62
were female.

Their educational experiences ranged from: high school
diploma/A-level (29), enrolled for bachelor’s (12), bachelors
degree (48), to post-graduate degrees (12). 95 participants
possessed at least one form of driving licence, while 6 did
not. Asking participants how many days they drove in a
typical week before the COVID-19 pandemic lock-down, 16
participants indicated that they drove all 7 days in the week
before the lock-down, while 19 of them indicated that they
didn’t drive or would not drive at all in a week. Overall,
participants took 38 minutes on average to complete the
study, and each participant was paid £10 on completion.

The study was structured in two phases.

B. Phase 1

In this phase, the 101 participants were randomly assigned
to 1 of 4 groups: Why (N = 27), Why Not (N = 24), What If
(N = 24), and What (N = 26). Each group was presented
with the same sequence of scene images, illustrating driving
scenarios, but with different types of textual explanations
(i.e., Why, Why Not, What If, and What explanations) as
captions for each of the depicted scenario and group. Partic-
ipants observed the driving events by looking at the image
sequences and the corresponding textual explanations (image
captions) which explained the events in the scenario.

1) Driving Scenarios: In this paper, a scenario basically
represents a set of images that illustrate an event with or
without explanations as captions. In the research literature,
driving scenarios can be broadly categorised into two groups.
In particular Ramanishka et al. [27] categorised AV driv-
ing actions into goal-oriented actions and stimulus-driven
actions. Goal-oriented actions refer to actions that involve
the manipulation of the vehicle in navigation tasks such as
left turn, right turn, branch and merge. In contrast, while
the vehicle is in operation, it can make a stop or deviate
decision due to traffic participants or obstacles. Stop and
deviate are categorised as stimulus-driven actions. For each
of the driving action categories, we created normative events,
near-miss events, collision events, and emergency events, all
obtainable in the real-world.

Fig. 3: This scenario from our user study depicts a near miss in a left-turn
situation involving an autonomous vehicle (AV) (blue) and another traffic
agent (green). The green vehicle failed to yield, but the AV adjusted to
avoid a collision. Parameters for the scenario depicted are: Observations
(O) = {0:no agent detected on lane, 1:agent detected on lane}. Road rules
(R) = {0:yield, 1:have right of way}, Action (A) = {0:stop, 1:drive in}. See
Figure 2 for the basic tree representation. The following two examples of
explanations (generated using the tree representation) were given by the AV
to different user groups for the depicted scenario: Non-Causal Explanation
(What group): ‘We are stopping.’ Causal Explanation (Why Not group):
‘We can’t continue because a vehicle from the side-road unexpectedly
moved into the main road obstructing our path. The default rule requires
that vehicles on the side-road yield to vehicles on the main road.’

1) Normative events occur when all road participants
including the AV obey the traffic rules.

2) Near-miss events occur when a participant violates the
traffic or road rules, and the AV has to adjust to avoid
a collision.

3) Collision events occur when two or more vehicles
(including the AV) crash into each other. This occurs
when one participant suddenly violates traffic rules
and the AV failed to adjust accordingly to avoid an
accident.

4) Emergency events occur in situations where there is an
emergency vehicle such as an ambulance, fire fighters’
van, or police van. These emergency vehicles have
right of way in all situations, and some of their
actions permissively violate default road rules. The AV
and other traffic participants are expected to yield in
virtually all cases.

In this study, scenarios were carefully selected to include
different AV driving actions (i.e., goal-oriented and stimulus-
driven actions) and their corresponding events (i.e. norma-
tive, near-miss, collision, and emergency). These different
dimensions of actions and events were formed from varieties
of left turn and lane merge examples. There was an AV in
every scenario, and it was always a blue coloured vehicle.
The total number of scenarios used in this stage was 24.
Participants were asked to imagine that they were passengers
in the AV, and that the explanations were generated by the
AV.

2) Explanation Generation: After a careful analysis of
driving scenarios, we noticed that the presentation forms
of the various causal explanations vary with respect to the
driving event under consideration [12]. To ensure consistency
of explanation forms across events, we created an explanation
schema for the different event types. We designed the schema
to appropriately place the elements needed for good intelligi-



bility. We manually populated the explanation schema using
the tree-based method described in Section III.

C. Phase 2
Phase 2 was an evaluation phase. We designed three

performance evaluation measures: the task performance mea-
sure, the driving rules agreement measure, and the goodness
of explanation measure. Some of the measures were objective
while others were subjective.

1) Objective Measure: The Quiz Performance: After the
interactions with the scenarios and the explanations, the
participants were asked to perform some tasks (in the form
of a quiz) on similar driving events. The task comprised 30
questions. The questions were in objective form and required
the choice of an answer out of 4 options of which only one
is correct. The tasks also included scenarios that exhibited
the different AV driving action categories as well as the
corresponding events. The tasks were designed to reflect
three forms of questioning styles (which we also refer to
as task categories) with 10 questions in each category.

1) Prediction—a single image about a traffic scenario is
displayed without an explanation and the participant is
asked to predict the next action of the AV.

2) Accountability—the participant is asked to identify the
road participant who caused a collision or near miss
in a presented graphical traffic scenario without an
explanation.

3) Situation Assessment—a graphic about a traffic sce-
nario is presented along with four statements that relate
to the current scenario. Participants were asked to
select one of the four options that mostly supported
the scenario.

2) Objective Measure: Driving Rules Agreement: We
stated important road rules that were applied in the learning
stage and asked participants to rate their agreements with the
rules on a 5-point Likert scale. We assumed that participants
with good performance in the tasks would strongly agree
with all the statements as the statements were all correct.

3) Subjective Measure: Goodness of Explanation: Partic-
ipants were provided with 7 statements to elicit the basic
properties of good explanations as discussed in [28], [29];
hence, the term ‘goodness of explanation’. The participants
were asked to rate their agreement with the statements on a
5-point Likert scale.

The goodness of explanation construct employed was
founded on those developed in the evaluation metric for
explainable AI research summarised by [29] and was adapted
to fit our use case. Participants were also asked to provide
free responses about what they did not like about the
explanations, what they liked, and what they expected of
a good explanation.

We carefully formulated hypotheses and expect to validate
them using the results from this study.

D. Hypotheses
We hypothesise that different forms of explanations would

influence (to varying degrees) the end-users’ understanding
of AV events.

Our hypotheses for each of the explanation types is hereby
detailed:

H1—Intelligibility: Contrastive explanations are pre-
ferred by humans because humans generally expect a con-
trastive response when they ask questions [28] under normal
circumstances. We therefore expect that:

Why Not explanations will generally yield the best
user understanding over Why, What If, and What
explanations.

H2—Accountability: We also expect that:
The participants in the Why Not group will produce
the best performance in the accountability tasks.

We measured the levels of understanding through tasks
performance (in the form of a quiz) and a questionnaire on
road rules that tests participants’ comprehension of the AV
events and road rules.

V. RESULTS

A. Quantitative Result

In this section, we present quantitative results relevant to
our hypothesis.

1) Test of Hypothesis H1—Intelligibility: We used
ANOVA and Tukey’s post-hoc paired tests to analyse the
performances in the quiz. We assumed that participants’
performances gauge their level of understanding of the AV’s
events. We discovered that explanation type significantly
affected the participants’ understanding of the AV’s events
as reflected in the quiz performances (quiz F(3, 97) =
8.011, p < 0.001). Observing the group range scores across
driving scenarios, emergency and collision events had the
largest range scores (See Figure 4). Hence, the provision of
explanations and the type of explanation is mostly important
in emergency and collision events. The descriptive statistic
(M = 17.8, 20.2, 15.5, 16.1, SD = 4.03, 4.43, 3.12, 2.94)
represent the means and standard deviation for the Why, Why
Not, What If, and What groups respectively. Participants in
the Why Not group performed better than those in What and
What If groups. Hypothesis H1 was therefore not rejected.
See Figure 4

2) Test of Hypothesis H2—Accountability: We analysed
scores based on the task categories (prediction, account-
ability, and situation assessment). We used ANOVA test to
determine the types of explanations appropriate for each of
the three categories. We discovered that in the accountability
tasks, participants in the Why Not group had the best perfor-
mance with a significant difference to What group (p = .01),
What If group (p < .001), and Why group (p = .007). The
result supported hypothesis H2, we therefore did not reject
hypothesis H2.

B. Goodness of Explanation

We repeated the procedure for the goodness of ex-
planation responses and observed a significant differ-
ence in explanation goodness mean ratings across groups
(F(3, 97) = 10.0, p < .001). Means and standard deviations
of the goodness of explanation ratings were: (M = 3.83,



Fig. 4: Quiz task performance in the different driving events. With the
exception of the near-miss category, participants in the Why Not group
consistently out-performed the participants in the other groups. Impacts of
explanation types was greatest in the collision and emergency events.

3.34, 3.25, 2.83, SD = 0.35, 0.65, 0.77, 0.88). The highest
mean rating was from the participants in the Why group. No
correlation was observed between the explanation goodness
mean ratings and the quiz scores (rho = 0.19, p = .051).

1) Driving Rules Agreement: Using Pearson’s correlation
coefficient, we checked the correlation between the mean
road-rules agreement rating and quiz scores. The mean
agreement values and standard deviations were (M = 3.38,
3.57, 3.39, 3.18, SD = 0.83, 0.57, 0.35, 0.54) for Why, Why
Not, What If, and What respectively (See Figure 5). We found
that there was a weak positive correlation between the two
variables (rho = 0.34, p < .001). Our result indicated that
Why Not group had better understanding of the road rules.

C. Qualitative Results: Themes and Reflections

In addition to the Likert scale statements on the goodness
of explanation questionnaire, participants were asked to
provide free comments. The open-ended questions were:
• ‘What are some of the things you like about the textual

explanations?’
• ‘What are some of the things you do not like about the

textual explanations?’
• ‘What are the other elements you would like an expla-

nation to have?’
We performed an inductive thematic analysis on the

comments from each of the 4 groups. The themes indi-
cated that participants generally prefer short explanations
with sufficient information; and that explanation presentation
mode matters. Some participants suggested that explanations
should be provided as bullet points, and that the AV should
provide more details on road signs when explaining events.
See Table II for a comprehensive result.

D. Conclusion

Drawing on the findings, intelligibility is mostly positively
impacted by concise and clear contrastive (Why Not) ex-
planations. This means that explanations in AVs should be
constructed with reference to relevant foils such as observed

Fig. 5: Rule agreement performance from the rule agreement question-
naire. Participants in the Why Not group best understood the rules as they
mostly agreed with the road rules.

road participants (e.g. pedestrians, cyclists, other vehicles),
road rules, and actions especially in emergency and collision
events. They should also be sufficiently clear for lay users
to comprehend.

In addition, Why Not explanations were the most effective
in the accountability tasks. We conclude that explanations
with causal attributions, especially the contrastive types,
relatively increase human understanding of AV behaviours
and are helpful in upholding accountability. The conceptual
tree-based approach proposed in this paper can be used to
generate causal and non-causal explanations as explained in
this paper.

In summary, we have proposed a conceptual tree-based
approach for generating explanations with and without causal
attributions. We also described an experiment to investigate
explanations in different autonomous driving conditions.
Our findings show that providing explanations with causal
attributions, and in particular, contrastive (or Why Not)
explanations, can improve intelligibility and accountability in
AVs. Further, the results indicated that an explanation’s type
is more significant in the emergency and collision events.
In future work, we shall introduce probability into the tree
and provide formal and experimental proofs of the proposed
method. We will also investigate whether our results can
be confirmed using a high-fidelity prototype for a more
immersive AV experience since some of the events (e.g.
collision) cannot be controlled in a real-world setting.
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TABLE II: Common themes per group from the participants’ comments on the explanations provided.

Limitation Strength Suggestion
Why - Information overload

- Ineffective communication of speed &
priority

- Proved that the AV takes the errors of other
participants into account
- Easy to visualise and imagine
- Informative and explained occurrences well

- Explanation of traffic signs
- Use of videos
- Use of bullet points

Why Not - Information overload
- Situational report and not mechanistic
- Road signs unexplained
- Not enough clarity

- Simple and easy to follow
- Detailed
- Shows the ‘mechanics’ of how things work

- Use of bullet points
- Prediction of behaviours
- Road signs labelling
- Improve clarity on complex scenarios

What If - Limited information
- Too open ended
- Difficult to understand

- Visual aids
- Explained errors
- Travel directions and vehicle gesture repre-
sentation
- Enlightening

- How fast and calculated evasive action
would be taken by AVs, when required.
- Provided only when necessary
- Speed indication and road signs labelling

What - Not detailed enough
- No reasons provided
- Hard to figure out road signs
- Too short

- Very basic
- Factual, brief and concise

- More details and precision
- Indicate time, direction, and speed ap-
propriately
- Road sign labelling
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