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Abstract. We present the first machine learning approach to the ter-
mination analysis of probabilistic programs. Ranking supermartingales
(RSMs) prove that probabilistic programs halt, in expectation, within a
finite number of steps. While previously RSMs were directly synthesised
from source code, our method learns them from sampled execution traces.
We introduce the neural ranking supermartingale: we let a neural network
fit an RSM over execution traces and then we verify it over the source
code using satisfiability modulo theories (SMT); if the latter step produces
a counterexample, we generate from it new sample traces and repeat
learning in a counterexample-guided inductive synthesis loop, until the
SMT solver confirms the validity of the RSM. The result is thus a sound
witness of probabilistic termination. Our learning strategy is agnostic
to the source code and its verification counterpart supports the widest
range of probabilistic single-loop programs that any existing tool can
handle to date. We demonstrate the efficacy of our method over a range
of benchmarks that include linear and polynomial programs with discrete,
continuous, state-dependent, multi-variate, hierarchical distributions, and
distributions with undefined moments.

1 Introduction

Probabilistic programs are programs whose execution is affected by random
variables [17,19,23,29,36]. Randomness in programs may emerge from numerous
sources, such as uncertain external inputs, hardware random number generators,
or the (probabilistic) abstraction of pseudo-random generators, and is intrin-
sic in quantum programs [34]. Notable exemplars are randomised algorithms,
cryptographic protocols, simulations of stochastic processes, and Bayesian infer-
ence [7,33]. Verification questions for probabilistic programs require reasoning
about the probabilistic nature of their executions in order to appropriately
characterise properties of interest. For instance, consider the following question,
corresponding to the program in Fig. 1: will an ambitious marble collector eventu-
ally gather any arbitrarily large amounts of red and blue marbles? Intuitively, the
question has an affirmative answer regardless of the initially established target
amounts, since there is always a chance of collecting a marble of either color.
Notice that, if the probabilistic choice is replaced with non-determinism, as often
happens in software verification, an adversary may exclusively draw one color
of marble and make the program run forever. The question that matches the
original intuition is whether the expected number of steps to termination is finite;
this is the positive almost-sure termination (PAST) question [8,10,13,19,27].



1 while (red > 0 || blue > 0) do
2 p ∼ Bernoulli (.01);
3 if p == 1 then
4 red = red - 1
5 else
6 blue = blue - 1
7 fi
8 od

Fig. 1: The ambitious marble collector1.

Probabilistic termination analysis is typically mechanised through the auto-
mated synthesis of ranking supermartingales (RSMs), which are functions of the
program variables whose value (i) decreases in expectation by a discrete amount
across every loop iteration and (ii) is always bounded from below; an RSM for-
mally witnesses that a program is PAST [10,13]. Early techniques for discovering
RSMs reduced the synthesis problem from the source code of the program into con-
straint solving [10]. These methods have lent themselves to various generalisations,
including polynomial programs, programs with non-determinism, lexicographic
and modular termination arguments, and persistence properties [2,14,15,16,20,25].
Recently, for special classes of probabilistic programs or term rewriting systems,
novel automated proof techniques that leverage computer algebra systems and
satisfiability modulo theories (SMT) have been introduced [5,6,38,39,41]. All
the above methods are sound and, under specific assumptions, complete; they
represent the state of the art for the class of programs they have been designed
for. However, their assumptions are often too restrictive for the analysis of many
simple programs. In particular, to the best of our knowledge, none can identify
an RSM for the program in Fig. 1. For this simple program, it is easy to argue
that the expected output of the neural network depicted in Fig. 2 decreases after
every iteration of the loop and that it is always non-negative (see Ex. 1). As such,
this neural network is an appropriate RSM for the program.
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Fig. 2: A neural ranking supermartingale for the program in Fig. 1.

We present a novel method for discovering RSMs using machine learning
together with SMT solving. We introduce the neural ranking supermartingale
(NRSM) model, which lets a neural network mimic a supermartingale over
1 The variables red and blue are initialised non-deterministically.



sampled execution traces from a program. We train an NRSM using standard
optimisation algorithms over a loss function that makes the neural network
decrease—in average—across sampled iterations. We phrase the certification
problem into that of computing a counterexample for the NRSM. To do so, we
encode the neural network together with the expected value of the program
variables; then, we use an SMT solver for verifying that the expected output of
the network decreases along every execution. If the solver falsifies the NRSM,
then it provides a counterexample that we use to guide a resampling of the
execution traces; with this new data we retrain the neural network and repeat
verification in a counterexample-guided inductive synthesis (CEGIS) fashion,
until the SMT solver determines that no counterexample exists [4,44]. In the
latter case, the solver has certified the generated NRSM; our method thus
produces a sound PAST proof or runs indefinitely. Our procedure does not
return for programs that are not PAST and may, in general, not return for some
PAST instances. However, we experimentally demonstrate that, in practice, our
method succeeds over a broad range of PAST benchmarks within a few CEGIS
iterations. Previously, machine learning has been applied to the termination
analysis of deterministic programs and to the stability analysis of dynamical
systems [1,12,21,24,28,30,31,32,42,43,45]; our method is the first machine learning
approach for probabilistic termination analysis.

Our approach builds upon two key observations. First, the average of ex-
pressions along execution traces statistically approximates their true expected
value. Thanks to this, we obtain a machine learning model for guessing RSM
candidates that only requires execution traces and is thus agnostic to the source
code. Second, solving the problem of checking an RSM is simpler than solving
the entire termination analysis problem. Reasoning about source code is entirely
delegated to the checking phase which, as such, supports programs that are out
of reach to the available probabilistic termination analysers.

We experimentally demonstrate that our method is effective over many pro-
grams with linear and polynomial expressions, with both discrete and continuous
distributions. This includes joint distributions, state-dependent distributions,
distributions whose parameters are in turn random (hierarchical models), and dis-
tributions with undefined moments (e.g., the Cauchy distribution). We compare
our method with a tool based on Farkas’ lemma and with the tools Amber and
Absynth [2,39,41]; whilst our software prototype is slower than these alternatives,
it covers the widest range of benchmark single-loop programs.

Summarising, our contribution is fivefold. First, we present the first machine
learning method for the termination analysis of probabilistic programs. Second,
we introduce a loss function for training neural networks to behave as ranking
supermartingales over execution traces. Third, we show an approach to verify
the validity of ranking supermartingales using SMT solving, which applies to
a wide variety of single-loop probabilistic programs. Fourth, we experimentally
demonstrate over multiple baselines and newly-defined benchmarks the practical
efficacy of our method. Fifth, we built a software prototype for evaluating our
method.



x ∈ Vars (variables)
N ∈ IR (numerals)

op2 ::= + | - | * | && | || | < | <= | == | . . . (binary operators)
E ::= x | N | E op2 E | -E (arithmetic expressions)
D ::= Bernoulli( E ) | Gaussian( E, E ) | . . . (probability distributions)
B ::= B op2 B | ! B | E op2 E | true | false (Boolean expressions)
C ::= skip (commands)

| x = E (deterministic assignment)
| x ∼ D (probabilistic assignment)
| C ; C (sequential composition)
| if B then C else C fi (conditional composition)

Fig. 3: Syntax of loop-free probabilistic programs.

2 Termination Analysis of Probabilistic Programs

We treat the termination analysis of single-loop probabilistic programs. We
consider an imperative language that includes C-like arithmetic and Boolean ex-
pressions, and sequential and conditional composition of commands [13,17,19,23].

Syntax. A grammar for this language is shown in Fig. 3. We analyse single-loop
programs of the form

while G do
U

od

where the loop guard G is a Boolean expression and the update statement U is
a command. Variables are real-valued and can be either assigned to arithmetic
expressions using the usual = operator, or sampled from from probability dis-
tributions using the ∼ operator. Probability distributions, which can be either
discrete or continuous, take not only parameters that are constant, and thus
known at compile time, but also parameters that depend on other variables, and
thus determined only at run time. In other words, distributions may depend on
the current state of the program, which is a random variable. Also, they may
depend on other random variables; as such, distributions may be multi-variate,
resulting from models with coupled and hierarchically-structured variables.

Semantics. The operational semantics of a probabilistic program induces a
probability space over runs, together with a stochastic process [13]. A state of
the process is an element of IRn with n = |Vars|, that is, a valuation of the
variables in the program. The space of outcomes Ωrun of a program is the set of
runs. A run is a possibly infinite sequences of variable valuations (taken at the



beginning of every loop iteration). This comes with a σ-algebra F of measurable
subsets of Ωrun. Initial states are chosen non-deterministically and, thereafter, the
process is purely probabilistic. Every initial state x0 ∈ IRn determines a unique
probability measure P(x0) : F → [0, 1], namely a probability measure conditional
on the state x0. The associated stochastic process is X(x0) = {X(x0)

t }t∈IN, where
X

(x0)
t is a random vector representing the state at the t-th step, initialised as

X
(x0)
0 = x0. Given an initial condition x0 and a solution process X(x0), the

associated termination time is a random variable T (x0) denoting the length of an
execution, which takes values in IN ∪ {∞}.

Positive almost-sure termination. Runs are probabilistic and thus also the notion
of termination requires a quantitative semantics. The termination question is
generalised to the notions of almost-sure and positive almost-sure termination.
Almost-sure termination (AST) indicates whether the joint probability of all
runs that do not terminate is zero; positive almost-sure termination (PAST),
which is stronger, indicates whether the expected number of steps to termination
is finite. Formally, a probabilistic program terminates positively almost-surely
if E[T (x0)] < ∞ for all x0 ∈ IRn. Notably, this implies that the program also
terminates almost-surely, that is, P[T (x0) <∞] = 1 for all x0 ∈ IRn. We provide
conditions ensuring that probabilistic programs are PAST and, consequently,
that they are AST. Notice that the converse may not be true, that is, these exist
programs that are AST but not PAST. Our method addresses the PAST question
only, by building upon the theory of ranking supermartingales [10].

Ranking supermartingales. A scalar stochastic process {Mt} is an RSM if, for
some ε > 0 and lower bound K ∈ IR,

E [Mt+1 |Mt = mt, . . . ,M0 = m0] ≤ mt − ε (1)

andMt ≥ K for all t ≥ 0. In other words, this a process whose values are bounded
from below and whose expected value decreases by a discrete amount at each
step of the program. We prove that a program is PAST by mapping X(x0) into
an RSM. Our goal is finding a function η : IRn → IR such that, for every initial
condition x0, it satisfies the following two properties:

(i) E[η(X
(x0)
t+1 ) | X(x0)

t = x] ≤ η(x)− ε for all x ∈ I and
(ii) η(x) ≥ K for all x ∈ I,

where I ⊆ IRn is some sufficiently strong loop invariant that can be the loop
guard or, possibly, a stronger condition. Function η maps the entire stochastic
process into an RSM. For this reason, we call η an RSM for the program.

Example 1. Consider the ambitious marble collector problem from Fig. 1. An
RSM for this program is a function η mapping states red and blue to IR.
Rephrasing condition (i) over this program, η is required to satisfy

0.01 · η(red− 1, blue) + 0.99 · η(red, blue− 1) ≤ η(red, blue)− ε, (2)



Input: Single-loop probabilistic program (G,U),
Initial state x0 ∈ IRn

Output: Transition samples S ⊂ IRn × P(IRn)
1 S ← ∅;
2 P ′ ← {x0};
3 for i← 1 to k do // k = path length
4 P ← P ′;
5 P ′ ← ∅;
6 p← pick arbitrary element from P ;
7 if eval(G,p) = True then
8 for j ← 1 to m do // m = branching factor
9 P ′ ← P ′ ∪ {exec(U ,p)}

10 S ← S ∪ {(p, P ′)};

11 return S
Algorithm 1: Interpreter

for all red, blue ∈ IR that satisfy red > 0 ∨ blue > 0, that is, the loop guard.
So, for example, function η(red, blue) = red + blue satisfies this condition;
however, it may take any negative value over the arguments red and blue such
that red > 0 ∨ blue > 0, thus violating condition (ii). By constrast, the neural
network in Fig. 2 succeeds at satisfying both conditions. In fact, the network
realises function η(red, blue) = max{red, 0} + max{blue, 0}, which satisfies
Eq. (2) and is bounded from below by zero. ut

3 Training Neural Ranking Supermartingales

Our framework synthesises RSMs by learning from program execution traces. We
define a loss function, that measures the number of sampled program transitions
that do not satisfy the RSM conditions. Applying gradient-descent optimisation
to the loss function guides the parameters to values at which the candidate’s
value decreases, on average, across sampled program transitions. Since the learner
does not require the underlying program (only execution traces), the learner is
agnostic to the structure of program expressions, and the cost of evaluating the
loss function does not scale with the size of the program.

A dataset of sampled transitions is produced using an instrumented program
interpreter (Algorithm 1). At a program state p, the interpreter runs the loop
body m times to sample successor states P ′, where m is a branching factor
hyper-parameter, before resuming execution from an arbitrarily chosen successor.
The dataset S consists of the union of pairs (p, P ′) generated by the interpreter.

The loss function is used to optimise the parameters of an NRSM, whose
architecture is shown in Fig. 4. This is a neural network with n inputs, one
output neuron, and one hidden layer. The hidden layer has h neurons, each of
which applies an activation function f to a weighted sum of its inputs. In our
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Fig. 4: Neural ranking supermartingale architecture.

experiments, the activation function f is either f(x) = x2 or f(x) = ReLU(x),
where ReLU(x) = max{x, 0}.

Therefore, we employ either of the two following functional templates, defined
over the learnable parameters wi,j and bi:

– Sum of ReLU (SOR):

η(x1, . . . , xn) =

h∑
i=1

ReLU

 n∑
j=1

wi,jxj + bi

 ; (3)

– Sum of Squares (SOS):

η(x1, . . . , xn) =

h∑
i=1

 n∑
j=1

wi,jxj + bi

2

. (4)

These choices of activation mean that our NRSMs are restricted to non-negative
outputs, and therefore satisfy condition (ii) by construction. The learner therefore
needs to find parameters that satisfy condition (i), which requires η to decrease
in expectation by at least some positive constant ε > 0.

The role of the loss function is to allow the learner parameters to be optimised
such that the NRSM decreases, on average, across sampled transitions. That
is, the loss function evaluates the number of sampled transitions for which the
NRSM does not satisfy the RSM condition (i), and the lower its value, the more
the neural network behaves like an RSM.

Concretely, the loss associated with a state p and its successors P ′ is:

L(p, P ′) = softplus
(
Ep′∼P ′ [η(p′)]− η (p) + δ

)
, (5)

where softplus(x) = ln(1 + ex), and Ep′∼P ′ [η(p′)] is the average of η over the
sampled successor states p′ from P ′.



We then train an NRSM by solving the following optimisation problem:

min
1

|S|
∑

(p,P ′)∈S

L(p, P ′), (6)

which aims to minimise the average loss over all sampled transitions in the dataset
S, over the trainable weights w1,1, . . . , wh,n ∈ IR and biases b1, . . . , bh ∈ IR.
This objective is non-convex and non-linear, and we resort to gradient-based
optimisation (see Sect. 6).

The softplus in Eq. (5) forces the parameters to satisfy condition (i) uniformly
across all sampled transitions in the dataset, rather than decreasing by a large
amount in expectation over some transitions at the expense of failing to decrease
sufficiently quickly for others. Furthermore, for NRSMs of SOR form we replace
the ReLU activation function by softplus, to help gradient descent converge
faster. Softplus approximates the ReLU function, and has the same asymptotic
behaviour, but results in an NRSM that is differentiable w.r.t. the network
parameters at all inputs, unlike ReLU [22, p.193]. However, since softplus is a
transcendental function, we revert back to using a simpler ReLU activation when
verifying an SOR candidate.

A CEGIS loop integrates the learner and verifier (Fig. 5). The dataset S
sampled by the interpreter is used to train an NRSM candidate η according to
Eq. (6). The verifier checks whether η satisfies condition (i), concluding either
that the program is PAST, or producing a counterexample program state xcex
for which η does not satisfy (i). The interpreter generates new traces, starting at
xcex, forcing it to explore parts of the state space over which the NRSM fails to
decrease sufficiently in expectation.

4 Verifying Ranking Supermartingales by SMT Solving

To verify an NRSM we must check that it decreases in expectation by at least
some constant (condition (i)). Condition (ii) is satisfied by construction because
the network’s output is non-negative for every input, leaving only condition (i)
to verify. The architecture of the verifier is depicted in Fig. 6. First, a program
(G,U) is translated into an equivalent logical formulation denoted by Ḡ and

Interpreter Learner Verifier
NRSM η

Counterexample xcex

Transition
samples S

Probabilistic program G,U

PASTPAST

Fig. 5: CEGIS architecture for the adversarial training of NRSM.
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Ḡ

Ū
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Fig. 6: Verifier architecture.

Ū (‘Encode’ block), which are used to construct a closed-form term E[η̄] for
the NRSM’s expected value at the end of the loop body (‘Marginalise’ block).
Secondly, given an NRSM η, its parameters are rounded and encoded as a logical
term η̄ (‘Round’ block). Then, the satisfiability of the following formula is decided
using SMT solving:

Ḡ(x1 . . . xn) ∧ E[η̄](x1 . . . xn) > η̄(x1 . . . xn)− ε. (7)

This is the dual satisfiability problem for the validity problem associated with
condition (i) on page 5. If Eq. (7) is unsatisfiable, then η̄ is a valid RSM and we
conclude the program is PAST. Otherwise, the solver yields a counterexample
state xcex ∈ IRn.

The rounding strategy (‘Round’ block) provides multiple candidates to the ver-
ifier by adding i.i.d. noise to parameters and rounding them to various precisions.
Setting parameters that are numerically very small to zero is useful since learning
that a parameter should be exactly zero could require an unbounded number
of samples; rounding provides a pragmatic way of making this work in practice.
If none of the generated candidates are valid NRSMs, all counterexamples are
passed back to the interpreter which generates more transition samples for the
learner (Fig. 5).

Notice that, if program’s guard predicate is not strong enough to allow a
valid RSM to be verified as such, the CEGIS loop will run indefinitely. In general,
stronger supporting loop invariants may need to be provided.

x ∈ Vars (variables)
N ∈ IR (numerals)
τ ::= x | N | τ + τ | τ − τ | . . . (terms)
φ ::= > | ¬φ | φ ∧ φ | φ ∨ φ | τ ≤ τ | τ = τ | . . . (formulae)

Fig. 7: Quantifier-free first-order logic formulae.



π ::= τ | Bernoulli(τ) | Gaussian(τ, τ) | . . . (probabilistic terms)
Σ = {x1 7→ π1, . . . , xn 7→ πn} (symbolic store)
σ ::= node(φ, σ, σ) | Σ (symbolic store tree)

Fig. 8: Symbolic store tree.

enc(Σ, x) = Σ(x)

enc(Σ,−O) = −enc(Σ,O) enc(Σ, ! O) = ¬enc(Σ,O)

enc(Σ,O1 op2 O2) = enc(Σ,O1) op2 enc(Σ,O1)

enc(Σ, skip) = Σ

enc(Σ, x = E) = Σ[x′ 7→ enc(Σ,E)]

enc(Σ,C1 ; C2) = enc(enc(Σ,C1), C2)

enc(Σ, if B then C1 else C2 fi) = node(enc(Σ,B), enc(Σ,C1), enc(Σ,C2))

enc(node(φ, σ1, σ2), C) = node (φ, enc(σ1, C), enc(σ2, C))

enc(Σ, x ∼ Bernoulli(E)) = Σ[x′ 7→ ν, ν 7→ Bernoulli(enc(Σ,E))]
enc(Σ, x ∼ Gaussian(E1, E2)) = Σ[x′ 7→ ν, ν 7→ Gaussian(enc(Σ,E1), enc(Σ,E2))]

... where every ∼ command creates a fresh ν variable.

Fig. 9: Translation from a loop-free command to a symbolic store tree.

4.1 From Programs to Symbolic Distributions

We now introduce a translation from a loop-free probabilistic program to a
symbolic store tree (Fig. 8), a datastructure representing the distribution over
program states at the end of a loop iteration as a function of the variable valuation
at its start. Marginalising out the probabilistic choices made in the loop yields
the NRSM expectation E[η̄].

This requires a form of symbolic execution. We represent program states
symbolically using symbolic stores, denoted Σ (Fig. 8), which map program
variables to probabilistic terms. A probabilistic term π can be either a first-order
logic term (Fig. 7) representing an arithmetic expression, or a placeholder for
a probability distribution whose parameters are terms (allowing them to be
functions of the program state). Finally, symbolic store trees σ (Fig. 8) represent
the set of control-flow paths through the loop body, arising from if-statements; it
is a binary tree with symbolic stores at the leaves, and internal nodes labelled by
logical formulae over program variables.

Fig. 9 defines a translation from an initial symbolic store tree and command
to a new symbolic store tree characterising the distribution over states after
executing the command. At the top level, we provide the the command G (the



loop body) and the initial symbolic store {x′1 7→ x1, . . . , x
′
n 7→ xn}, where primed

variables represent the variable valuation at the end of the iteration, whereas
unprimed variables represent the variable valuation at the beginning of the loop.

The first four cases of Fig. 9 define the translation of arithmetic expressions
(to terms) and Boolean expressions (to formulae), by replacing program syntax
with the corresponding logical operators.

The next four cases define the translation of commands. skip leaves the
symbolic store unchanged. For deterministic assignments, the right hand side
of the assignment is translated in the current symbolic store and bound to
the variable. Sequential composition involves translating the first command,
and translating the second command in the resulting store tree. A conditional
statement creates a new node in the symbolic store tree that selects between
the two recursively-translated branches, based on the formula derived from the
guard predicate. These rules assume the store tree to be a leaf-level symbolic
store, because the next rule handles the case where the initial symbolic store tree
is a node. Finally, if the command is a probabilistic assignment, we translate
the parameters to terms, and bind the resulting probabilistic term to a freshly
generated symbol. This allows variables to be overwritten by multiple probabilistic
sampling operations in the body of the loop. The mapping of variables to
distributions in leaf-level stores defines the probability density over particular
probabilistic choices.

Example 2. Fig. 10 is the store tree produced for the ambitious marble collector
program (Fig. 1). Each leaf-level store in the program’s store tree corresponds
to a particular control-flow path through the loop body. The interpretation of a
symbolic store tree is that if we fix the outcomes of the probabilistic sampling
operations performed by the loop body, then the state of the variables at the end
of the iteration is determined by the predicates labelling the internal nodes.

ν = 1


red′ 7→ red

blue′ 7→ blue− 1
p′ 7→ ν

ν 7→ Bernoulli(0.01)




red′ 7→ red− 1
blue′ 7→ blue

p′ 7→ ν
ν 7→ Bernoulli(0.01)



ν 6= 1 ν = 1

Fig. 10: A store tree for the program in Fig. 1.

4.2 Marginalisation

To construct the closed-form logical term representing the NRSM’s expected
value at the end of an iteration, the probabilistic choices in the symbolic store



tree must be marginalised out. If the program is limited to discrete random
variables with finite support, we automatically marginalise the random choices
by enumeration (for both SOR- and SOS-form NRSMs), as illustrated by Ex. 3.

Example 3. The ambitious marble collector program of Fig. 1, yields the symbolic
store tree of Fig. 10. Suppose we want to marginalise the NRSM:

η(red, blue) = ReLU(w1,1 · red + w1,2 · blue + b1)

+ ReLU(w2,1 · red + w2,2 · blue + b2) (8)

with respect to this symbolic store tree. We first apply the encoding of the NRSM
to each leaf-level symbolic store of Fig. 10, and enumerate the possible choices for
the probabilistic choices (which in this example is limited to ν ∈ {0, 1}), using the
bindings of ν to distributions in leaf-level stores to compute the probability mass
of each choice. After resolving the predicates for each choice of ν, this yields:

0.01 · η(red− 1, blue) + 0.99 · η(red, blue− 1). (9)

The term (9) is then provided as the value of the NRSM’s expectation to the
verifier. ut

If the program samples from continuous distributions, we marginalise SOS-
form NRSMs (but not SOR-form NRSMs) by substituting symbolic moments for
a set of supported built-in distributions, including Gaussian, MultivariateGaus-
sian, and Exponential, though could include any distribution whose closed-form
symbolic moments are available. Example 4 provides an example. This strategy is
general enough to support a wide variety of programs, including those of Sect. 5.
If a sampling distribution lacks symbolic moments, the cumulative distribution
function can also be utilised, which is is illustrated in the slicedcauchy case
study (Fig. 15).

Example 4. Consider an NRSM η(x) = (wx + b)2 and a symbolic store tree
node(p = 1, σ1, σ2) where σ1 = {x 7→ x + v, v 7→ Exp(λ), p 7→ Bernoulli(3/4)}
and σ2 = {x 7→ x − v, v 7→ Exp(λ), p 7→ Bernoulli(3/4)}. Exp(λ) denotes the
exponential distribution with parameter λ, with pdf denoted pExp(λ)(v). We apply
η to each leaf-level symbolic store, and marginalise the probabilistic choices. We
marginalise p first by enumerating over its possible values, and then marginalise
v. There are no dependencies between the distributions in this example, so the
order in which they are marginalised does not matter.∫ ∞

0

(
3

4
η(x+ v) +

1

4
η(x− v)

)
pExp(λ)(v)dv. (10)

The result of marginalisation is a closed-form expression for Eq. (10). Note that
since

η(x+ v) = w2v2 + 2(wx+ b)wv + (wx+ b)2 (11)



and
∫∞
0
vnpExp(λ)(v)dv = n!

λn , we use linearity of integration to perform the
following simplification, by substituting expressions for the moments of v in terms
of the parameter λ:∫ ∞

0

η(x+ v)pExp(λ)(v)dv =
2w2

λ2
+

2(wx+ b)w

λ
+ (wx+ b)2, (12)

which is used to reduce Eq. (10) to a closed form. This is the method used to
perform marginalisation for several case studies, including crwalk, gaussrw and
expdistrw. ut

Notably, our verifier requires the expected value of the RSM to be computed (or
soundly approximated) in closed form. We automate marginalisation for discrete
distributions of finite support, but require manual intervention for continuous
distributions. Nevertheless, our learning component is automated in both cases.
Characterising the space of programs with continuous distributions that admit
fully automated verification of an RSM is an open question.

5 Case Studies

Existing tools for synthesising RSMs reduce the problem to constraint-solving
[2,10,11,14], which can limit the generality of the synthesis framework. For
instance, methods that convert the RSM constraints into a linear program
using Farkas’ lemma can only handle programs with affine arithmetic, and can
only synthesise linear/affine (lexicographic) RSMs [2,10]. A second restriction of
existing approaches is that they typically require the moments of distributions
to be compile-time constants. This rules out programs whose distributions are
determined at runtime, such as hierarchical and state-dependent distributions.
Since the loss function of Eq. (6) only requires execution traces, our learner is
agnostic to the structure of program expressions, imposing minimal restrictions
on the kinds of expressions that can occur, or the kinds of distributions that can
be sampled from. This allows us to learn RSMs for a wider class of programs
compared to existing tools, as we will illustrate in this section using a number of
case studies.

5.1 Non-linear Program Expressions and NRSMs

Many simple programs do not admit linear or polynomial RSMs, such as Fig. 1.
Since the program cannot be encoded as a prob-solvable loop (due to the dis-
junctive guard predicate which cannot be replaced by a polynomial inequality),
it cannot be handled by another recent tool, Amber [39]. However, this program
admits the following piecewise-linear NRSM:

ReLU(0 · red + 1 · blue + 11) + ReLU(1 · red + 0 · blue + 11), (13)

whose parameters are learnt by our method, within the first CEGIS iteration.



1 while (i <= 10 && s > 0) do
2 r ∼ DiscreteUniform ({-2, 2});
3 s = r + s * i;
4 p ∼ Bernoulli (3/4);
5 if (p == 1) then
6 i = i + 1
7 else
8 i = i - 1
9 fi

10 od

Fig. 11: Probabilistic factorial (probfact).

Similarly, we learn the piecewise-linear NRSM:

ReLU(−1 · i + 0 · s + 12) + ReLU(0 · i + 0 · s + 9) (14)

for the program in Fig. 11, which contains a bilinear assignment (cf. multiplication
of s and i on line 3), so this program is not supported by [2]. The conjunction in
the guard means it is not supported by Amber, either.

5.2 Multivariate and Hierarchical Distributions

1 while (x < 10) do
2 rho ∼ ContinuousUniform (-0.5, 1);
3 covM = [[1, rho], [rho , 1]];
4 w1, w2 ∼ MultivariateGaussian ([0, 0], covM);
5 x = x + power ((w1 + w2), 2) - 2
6 od

Fig. 12: Random walk with correlated variables (crwalk).

Fig. 12 is a random walk that samples from a multivariate Gaussian dis-
tribution, with zero mean, unit variances, and correlation sampled uniformly
in the range

[
− 1

2 , 1
]
. The MultivariateGaussian of line 4 is an instance of a

hierarchical distribution, having parameters that are random variables. This
program also contains a non-linear (polynomial) expression that updates the
value of x. For crwalk we learn an SOS-form NRSM:

(0.1 · x− 47.2)2, (15)

proving this program is PAST. To verify this, the NRSM expectation is computed
via the symbolic moments of the multivariate Gaussian distribution, given its
covariance matrix (line 3), and then marginalising w.r.t. rho (again, using the



moments of the uniform distribution over
[
− 1

2 , 1
]
). Unfortunately, it is challenging

to translate many simple programs containing hierarchical distributions into ones
that can be handled by existing tools. For instance, although it is possible to
simulate sampling from a bivariate Gaussian of arbitrary correlation by sampling
from independent standard Gaussian distributions, this would involve computing
a non-polynomial function of the correlation. Similarly, for the program in
Fig. 14 (further discussed below), if a variable is exponentially distributed,
X ∼ Exponential(1), then X

λ ∼ Exponential(λ), providing a way of simulating
an exponential distribution with arbitrary parameter λ. However, this again
requires a non-polynomial program expression (i.e. the reciprocal of λ) when λ
is part of the program state and not a constant, and therefore out of scope for
methods that restrict program expressions to being linear/polynomial.

5.3 State-Dependent Distributions and Non-Linear Expectations

1 while (x < 0 && y < 0) do
2 s1 ∼ Gaussian(0, 1/4);
3 vx = min(2, max(0.1, vx + s1));
4 s2 ∼ Gaussian(0, 1/4);
5 vy = min(2, max(0.1, vx + s2));
6 s3 ∼ Gaussian(0, 1/4);
7 rho = min(1, max(-1, rho + s3));
8 mean = [sqrt (1+ power(x, 2)),sqrt (1+ power(y, 2))];
9 cov = rho * sqrt(vx * vy);

10 covM = [[vx cov], [cov vy]];
11 w1 , w2 ∼ MultivariateGaussian(mean , covM);
12 x = x + w1;
13 y = y + w2
14 od

Fig. 13: Gaussian random walk with time-varying and coupled noise (gaussrw).

Once we allow hierarchical distributions, it is natural to consider state-
dependent distributions, i.e. distributions whose parameters depend on the pro-
gram state rather than being sampled from other distributions. As an example,
consider the program in Fig. 13 (a 2-dimensional Gaussian random walk with
state-dependent moments). This is unsupported by existing tools because the
mean of the Gaussian is a non-polynomial function of the program state. However,
after defining the function

√
1 + x2 by means of the following polynomial logical

inequalities:

mu_x2 = 1 + x2 (16)
mu_x ≥ 1 (17)



(similarly for mu_y), we express the expected value of an SOS-form NRSM in
terms of symbolic moments mu_x, etc. Since these moments are state-dependent,
we cannot marginalise them out as in the hierarchical case. Instead we perform
non-deterministic abstraction, providing inequalities 1

10 ≤ vx, vy ≤ 2 and −1 ≤
rho ≤ 1 as further verifier assumptions.

1 while (x < 10) do
2 s ∼ Gaussian(0, 1);
3 lambda = min(10, max(1, lambda + s);
4 step ∼ Exponential(lambda );
5 p ∼ Bernoulli (3/4);
6 if (p == 1) then
7 x = x + step
8 else
9 x = x - step

10 fi
11 od

Fig. 14: State-dependent exponential random walk (expdistrw).

Even if program expressions are linear, the presence of state-dependent
distributions can result in a non-linear verification problem, if the moments
are themselves non-linear functions of the program variables. For instance, the
program in Fig. 14 represents a 1-dimensional random walk, with steps sampled
from an exponential distirbution. Since the nth moment of Exponential(λ) is
n!
λn , the expectation of an SOS-form NRSM is non-polynomial but still expressible
in the theory of non-linear real arithmetic (see Ex. 4). For expdistrw we learn

(0.1 · x− 3.3)2, (18)

whereas for gaussrw in Fig. 13 we learn

(0 · x− 1 · y + 11)2 + (0 · x + 0 · y + 8)2. (19)

We translate the program in Fig. 14 for Amber by replacing the update for λ
by instead sampling it uniformly from [1, 10]. Amber correctly identifies the
program is AST, and that (10− x) is a supermartingale expression (note, not an
RSM), though does not report that the program is PAST (answering “maybe”).

5.4 Undefined Moments

The ability to evaluate the cumulative distribution function (CDF) of a sampled
distribution could be useful in marginalisation, even if the moments of the sampled
distribution are undefined or not known analytically to infinite precision. An
example is Fig. 15: the program samples from the standard Cauchy distribution,



1 while (x > 0) do
2 p ∼ StandardCauchy ();
3 if (p > 10) then
4 x = x + 2
5 else {
6 x = x - 1
7 fi
8 od

Fig. 15: Sliced Cauchy distribution (slicedcauchy).

for which all moments are undefined. Since the sampled value is only used to
determine which branch of a conditional is taken, the RSM expectation is well
defined, and can be expressed in terms of the standard Cauchy CDF. Namely,
the if-branch is taken with probability q = 1−

(
1
πarctan(10) + 1

2

)
. This equation

is not expressible using polynomials; so we perform a sound approximation by
introducing a new variable that is quantified over a small interval surrounding
a finite precision approximation to q. This allows us to learn and verify the
SOR-form NRSM:

ReLU(1.2 · x + 9.1). (20)

For our experimental evaluation (Sect. 6) we create a modified version of each
of the six case studies described in this section, as follows:

– program marbles3 is a generalisation of marbles to three marble types,
instead of two;

– probfact2 uses 5/8 as the Bernoulli parameter, rather than 3/4;
– crwalk2 samples rho from a Beta(1, 3) distribution, instead of a uniform

distribution over
[
− 1

2 , 1
]
;

– expdistrw2 samples from an exponential distribution, where parameter
lambda is replaced by lambda*lambda;

– gaussrw2 uses [3 + 1/(1− x), 3 + 1/(1− y)]T for its mean vector, instead of
[
√

1 + x2,
√

1 + y2]T ; and
– slicedcauchy2 has a loop guard of x < 10, instead of x > 0, and swaps the

two branches of the conditional.

5.5 Rare Transitions

A limitation of relying on a sampled transition dataset to learn NRSM parameters
is we rely on the average Ep′∼P ′ [η(p′)] in Eq. (5) being accurate (see Sect. 3).
This assumption is challenged by programs that have certain control-flow paths
of very low probability, which are unlikely to be sampled by the interpreter. For
example, in the context of the ambitious marble collector (Fig. 1), Fig. 16 shows
that when the probability of obtaining a red marble decreases below 2−7, our
success rate drops. This is because a lower probability makes the corresponding
control-flow path rarer in the dataset, to the point where the expected value of
the NRSM cannot be estimated accurately.
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Fig. 16: Success rate and execution times for the ambitious marble collector
program (Fig. 1), where p is the probability of taking the if-branch. Success rate
refers to the fraction of 10 executions that succeeded in finding an NRSM before
a timeout of 300s. Execution times show the median time with the error bar
ranging between the minimum and maximum times of the 10 executions.

6 Experimental Results

We built a prototype implementation of our framework (in Python) and present
experimental results for benchmarks adapted from previous work, as well as our
own case studies (from Sect. 5). The case studies illustrate programs for which
our framework synthesises an RSM, yet existing tools cannot prove to be PAST.

The learner is implemented with Jax [9]. To train NRSMs, we use AdaGrad [18]
for gradient-based optimisation, with a learning rate of 10−2. Parameters are ini-
tialised by sampling from Gaussian distributions: weight parameters are sampled
from a zero-mean Gaussian, whereas the bias parameters are sampled either from
a Gaussian with mean 10 (for SOR candidates) or mean 0 (for SOS candidates).
We verify the NRSMs using the SMT solver Z3 [26,40]. The outcomes are obtained
on the following platform: macOS Catalina version 10.15.4, 8 GB RAM, Intel
Core i5 CPU 2.4GHz QuadCore, 64-bit.

As mentioned in Sect. 4, the verifier checks a candidate NRSM over states
satisfying the loop predicate, which characterises the set of reachable states. For
our experiments, we manually provide the NRSM expectation, and augment the
guard predicate with additional invariants where necessary. We generate outcomes
using two different rounding strategies (Sect. 4): an “aggressive” rounding strategy
which generated between 80 and 120 candidates per CEGIS iteration, and a
“weaker” rounding strategy producing between 15 to 25 candidates per CEGIS
iteration. The outcomes in Tab. 1 used the aggressive rounding strategy.

Benchmarks from previous work. We run our prototype on single-loop programs
from the WTC benchmark suite [3], augmented with probabilistic branching and
assignments [2]. These correspond to the programs in the first section of Tab. 1.
We perturb assignment statements by adding noise sampled from a discrete



Program Amber
Farkas’
lemma

Ab-
synth

Succ.
rate Inter. Train. Verif. #iter NRSM

[39] [2] [41]
Hare & Tortoise (d) 0.04 ≈0 0.09 10/10 0.61 3.86 0.70 0 SOR
exmini/terminate (d) — 0.02 oot 10/10 1.75 29.35 7.67 2 SOR
aaron2 (d) 0.03 0.02 0.02 10/10 0.04 2.27 0.01 0 SOR
catmouse (c) 0.03 0.02 — 9/10 0.39 12.41 3.68 1 SOS
counterex1c (d) — 0.02 0.22 8/10 1.00 6.71 0.02 0 SOR
easy1 (d) 0.12 0.01 0.05 10/10 1.12 5.55 1.27 0 SOR
easy2 (c) 0.04 0.02 — 10/10 1.55 6.79 0.18 0 SOS
ndecr (d) 0.04 0.02 0.03 10/10 1.18 5.63 0.02 0 SOR
random1d (c) 0.05 0.02 — 10/10 1.14 4.86 0.79 0 SOS
rsd (d) error 0.01 oot 10/10 1.14 6.18 2.04 0 SOR
speedFails1 (d) 0.07 0.01 0.04 10/10 0.45 4.09 0.67 0 SOR
speedPldi2 (d) — 0.02 0.40 9/10 1.36 7.85 0.02 0 SOR
speedPldi3 (d) — 0.02 0.36 8/10 2.58 30.70 2.12 1 SOR
speedPldi4 (d) — 0.02 0.17 10/10 0.68 5.07 0.04 0 SOR
speedSingleSingle (c) 0.03 0.02 — 10/10 0.39 2.85 0.51 0 SOS
speedSingleSingle2 (d) — 0.02 0.15 10/10 0.83 7.30 0.04 0 SOR
wcet0 (d) — 0.02 0.10 10/10 1.45 5.64 0.09 0 SOR
wcet1 (d) — 0.02 0.10 10/10 0.85 4.31 0.09 0 SOR
probfact (d) — — n/a 10/10 0.49 6.12 0.16 0 SOR
probfact2 (d) — — n/a 10/10 0.45 5.89 0.23 0 SOR
marbles (d) — — n/a 10/10 0.84 10.83 0.91 0 SOR
marbles3 (d) — — n/a 10/10 0.40 70.14 7.87 2 SOR
crwalk (c) — — — 10/10 0.53 3.06 1.56 1 SOS
crwalk2 (c) — — — 10/10 1.32 3.11 0.75 1 SOS
expdistrw (c) n/a — — 10/10 0.05 1.53 0.01 0 SOS
expdistrw2 (c) n/a — — 10/10 4.92 3.15 1.03 1 SOS
gaussrw (c) — — — 10/10 10.30 3.45 0.75 0 SOS
gaussrw2 (c) — — — 9/10 15.46 4.91 5.33 0 SOS
slicedcauchy (c) — — — 10/10 0.02 3.31 0.01 0 SOR
slicedcauchy2 (c) — — — 10/10 0.01 2.16 0.03 0 SOR

Table 1: Experimental results over existing (top section) and newly added bench-
marks (bottom section); (c) indicates the benchmark uses continuous distributions,
(d) indicates it only uses discrete distributions. All reported times are in seconds,
oot indicates time-out after 300s, n/a indicates the tool terminated without
definite answer, and — indicates the benchmark is unsupported. Our method is
run 10 times with different seeds; the overall success rate is reported. Runtimes
of interpretation, training, verification phases, and # of CEGIS iterations refer
to the run with median total runtime.

uniform distribution of support {−2, 2}, or a continuous uniform distribution on
the interval [−2, 2]. The while loops are also made probabilistic; with probability



1/2 the loop is executed, and with the remaining probability a skip command is
executed.

We compare our framework against three existing tools. The first is Am-
ber [39]: where possible, we translate instances from the WTC suite into the
language of Amber, but this is not possible for some programs where the loop
predicate is a logical conjunction or disjunction of predicates (indicated by dashes
in Tab. 1). Second, we compare against a tool for synthesising affine lexicographic
RSMs (referred to as Farkas’ lemma) for affine programs (i.e. containing only
linear expressions), based on reduction to linear programming via Farkas’ lemma
[2]. This is applicable to probabilistic programs with nested-loops, unlike our
method. However, since it is limited to affine programs and affine lexicographic
RSMs, it is not able to analyse all the programs we consider (again, indicated
by dashes in Tab. 1). The third tool is Absynth [41], for which we are able to
encode all programs that were limited to discrete random variables.

The experimental results (Tab. 1) show that for all the WTC benchmarks our
approach has a success rate of at least 8/10, and is able to synthesise an RSM
within 2 iterations (for the seed that results in median total execution time).
For 15 of the 18 WTC benchmarks no full CEGIS iterations are required. As
expected our approach, particularly the learning component, is much slower than
all three tools. However, our framework has broader applicability, as illustrated
with the next set of experiments.

Newly defined case studies (Sect. 5). The examples in the second section of Tab. 1
are not proven PAST by any of the three tools. Our approach is able to do so
with a success rate of at least 9/10, under the “aggressive” rounding strategy. Of
the new examples, marbles3 (Sect. 5) requires the longest time, since we use an
NRSM with h = 3 ReLU nodes (see Sect. 3), and six of the nine parameters must
be brought sufficiently close to zero to learn a valid RSM. For gaussrw/gaussrw2,
we find it necessary to set an SMT solver time limit within the CEGIS loop (of
200ms for gaussrw, and 5s for gaussrw2), such that candidates taking longer
than this to verify are skipped. The fact that these examples are harder to
verify is unsurprising, given that they give rise to a non-polynomial decision
problems, containing equationally defined rational expressions. In comparing the
two rounding strategies, we find that using the “aggressive” strategy tends to
result in fewer CEGIS iterations, reducing the learner time, while increasing the
verifier time: this is to be expected, since a larger number of candidates needs to
be checked in each CEGIS iteration.

7 Conclusion

We have presented the first machine learning method for the termination analysis
of probabilistic programs. We have introduced a loss function for training neural
networks so that they behave as RSMs over sampled execution traces; our
training phase is agnostic to the program and thus easily portable to different
programming languages. Reasoning about the program code is entirely delegated



to our checking phase which, by SMT solving over a symbolic encoding of program
and neural network, verifies whether the neural network is a sound RSM. Upon
a positive answer, we have formally certified that the program is PAST; upon a
negative answer, we obtain a counterexample that we use to resample traces and
repeat training in a CEGIS loop. Our procedure runs indefinitely for programs
that are not PAST, as these necessarily lack a ranking supermartingale, and may
run indefinitely for some PAST programs. Nevertheless, we have experimentally
demonstrated over several PAST benchmarks that our method is effective in
practice and covers a broad range of programs w.r.t. existing tools.

Our method naturally generalises to deeper networks, but whether these are
necessary in practice remains an open question; notably, neural networks with one
hidden layer were sufficient to solve our examples. We have exclusively tackled the
PAST question, and techniques for almost-sure (but not necessarily PAST) termi-
nation and non-termination exist [16,37,39]. Our results pose the basis for future
research in machine learning (and CEGIS) for the formal verification of probabilis-
tic programs. Different verification questions will require different learning models.
Our approach lends itself to extensions toward probabilistic safety, exploiting
supermartingale inequalities, and towards the non-termination question, using
repulsing supermartingales [16]. Adapting our method to termination analysis
with infinite expected time is also a matter for future investigation [37]. Moreover,
we have exclusively considered purely probabilistic single-loop programs: also
generalisations to programs with non-determinism, arbitrary control-flow, and
concurrency are material for future work [15,20,35].
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