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Abstract— Accurate motion capture of aerial robots in 3D is a
key enabler for autonomous operation in indoor environments
such as warehouses or factories, as well as driving forward
research in these areas. The most commonly used solutions at
present are optical motion capture (e.g. VICON) and Ultrawide-
band (UWB), but these are costly and cumbersome to deploy,
due to their requirement of multiple cameras/anchors spaced
around the tracking area. They also require the drone to be
modified to carry an active or passive marker. In this work,
we present an inexpensive system that can be rapidly installed,
based on single-chip millimeter wave (mmWave) radar. Impor-
tantly, the drone does not need to be modified or equipped
with any markers, as we exploit the Doppler signals from the
rotating propellers. Furthermore, 3D tracking is possible from
a single point, greatly simplifying deployment. We develop a
novel deep neural network and demonstrate decimeter level 3D
tracking at 10Hz, achieving better performance than classical
baselines. Our hope is that this low-cost system will act to
catalyse inexpensive drone research and increased autonomy.

I. INTRODUCTION

Motion capture of dynamic aerial robots (e.g. a small
UAV or quadcopter drone) is a key enabling capability for
navigation, path planning and autonomy. Motion capture in
this context means the estimation of precise 3D position
in real-time, with an external sensor. Unlike on-board self-
localization with techniques such as Visual-Inertial Odome-
try, localization with an external sensor can give an absolute
3D location, and does not suffer from accumulated drifting.
In outdoor areas with a clear sky view, the use of RTK GPS,
often combined with secondary sensors such as IMU, can
provide excellent absolute positioning accuracy.

Indoors or in GPS denied areas such as tunnels, alter-
native tracking approaches are typically employed. Broadly,
these can be divided into optical or RF based techniques.
VICON [1] is one of the most widely used optical motion
capture platform. These systems provide high precision 3D
tracking of a reflective marker placed on a drone, provided
that there is a good view from two or more spatially
distributed cameras. These systems however are expensive
($10k upwards), time-consuming to set up and calibrate, and
require modifying the drone to be able to track it. To prevent
dead-zones, a large number of cameras (e.g. 10) need to be
placed around the tracking volume and typically are mounted
at height (e.g. 2-3 m) to provide a wide field of view. A large
amount of research has considered the use of UWB ranging
as a multi-lateration approach [2], [3]. These systems provide
reasonable accuracy (10cm), but require the drone to carry

a UWB transceiver to achieve pair-wise distance estimation.
They also need a network of UWB transceivers distributed
around the convex hull of the area to be tracked, leading to
a time-consuming setup and calibration phase. It’s typically
not cheap as well for setting up a UWB localization system
(around $300 for an anchor and $30 for a tag).
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Fig. 1: Compared with the optical tracking method, our
proposed system does not require any marker modification
on the drone and only needs a low-cost mmWave radar.

In this paper we present a new approach for drone motion
capture that is able to operate from a single point (i.e. it
does not require multiple anchors to be carefully arranged
around the tracking volume). As a result, it is easy to setup
and deploy in new environments. mDrone is able to track an
unmodified drone in 3D with precision comparable to UWB
(< 10cm). Based on a single chip mmWave integrated radar
transceiver, mDrone is low-cost (<$300) and low-power, and
has the capability of operating in the dark and other visually
challenging conditions.

Our primary innovation is the use of single chip mmWave
radar which brings its own set of unique challenges. Al-
though radar has a long history of being used to track
aeroplanes at extremely long ranges (hundreds of kms), the
majority of solutions are military/aviation grade, large, costly
and power-hungry. Recent advances in microchip fabrication
have led to the availability of multi-channel, wideband radar
transceivers that have been successfully used in diverse
applications such as SLAM [4]–[7], industrial automation
[8], and human-computer interactions [9]–[12]. However,
a number of challenges arise from the problem of drone
tracking. Firstly, the drone is unmodified, i.e. it does not carry
any bright target e.g. a retroreflector. This makes it chal-
lenging to be detected, but we demonstrate how to exploit
measurements of the propeller’s doppler velocity to refine
the detection. Secondly, the drone is physically large (e.g.
60 cm across), so accurately tracking its centre is difficult as



the drone appears as a non-uniform blob in the radar returns.
Thirdly, existing techniques are computationally expensive
or inaccurate, precluding the ability for real-time motion
capture. To address these challenges, we introduce mDrone, a
new deep learning pipeline and demonstrate its performance
and robustness in comparison to five conventional signal
processing baselines. We believe that this low-cost motion
capture platform will not only be useful as a low-cost
research and development tool, but also enable a number
of downstream applications such as precision maintenance
and inspection, robotic interaction, and increased autonomy
in warehouses.

Our main contributions include:
� We propose a deep learning method for the estimation

of drone position based on mmWave radar
� We collected 100 sequences of data and evaluated our

proposed algorithm against multiple conventional signal
processing algorithms. The dataset will be released to
the community together with the code.

� Our system achieves a mean error of less than 10 cm
in 3D whilst operating at 10 Hz.

II. RELATED WORK

A. Cooperative Localization

In cooperative tracking, modifications are made to the
drone in order to track it. To achieve this, either markers
or transceivers are installed on the drone itself. One of the
most accurate 6-DOF cooperative tracking methods is based
on Optical Tracking systems (e.g. Vicon). Hemispherical
markers are attached to the body of the drone to form a
rigid and spatially unique pattern, which are modeled and
tracked by the system [1], [13]. Optical tracking systems
are expensive (tens of thousands of dollars to equip a room
with an optical tracking system) and time consuming to
install and calibrate. Santos et. al. propose an optical tracking
replacement system, for the estimation of 6-DOF drone pose,
with data from multiple sensors, including RGB-D camera
and on-board IMU, based on computer vision and sensor
fusion approaches [14].

UWB localization systems based on RF ranging and mul-
tilateration are widely used for their lower cost, whilst still
providing accurate positioning (errors typically around 10cm
or higher for outdoor scenarios) [2], [15], [16]. Ledergerber
et. al. designed a system using one-way UWB for drone
self-localization [17], and Angle of Arrival estimation [18].
There are also many works that fuse UWB with other sensors
for a better localization accuracy, such as UWB/IMU/Vision
[19], [20], UWB/IMU [21], and UWB/Radar [22]. UWB
techniques are also used for multi-UAV localization [23]–
[25].

B. Non-cooperative Localization

Despite the fact that computer vision algorithms for
object recognition and tracking with cameras are devel-
oping rapidly [26], cameras do not work robustly under
extreme light conditions. Researchers have been exploring
other sensors for passive drone localization, including Light

Detection And Ranging (LiDAR) [27] and LAser Detection
And Ranging (LADAR) [28]. Audio sensor arrays can be
used for drone localization [29], which are based on TDOA
principles, but they are sensitive to ambient noise and have
limited ranges [30].

Different types of radars are also widely used for drone
detection and localization [31]–[33], amongst which, FMCW
radars have attracted a great deal of research interest [34].
In our work, we used a commercial-off-the-shelf mmWave
FMCW radar, and focus on exploring the combination of
signal processing and deep learning techniques to greatly
improve short-range drone localization accuracy.

III. CONVENTIONAL DRONE TRACKING PIPELINE

A. FMCW Radar Background
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Fig. 2: Texas Instruments IWR6843 mmWave Radar MIMO
Virtual Antenna Array

We first introduce the principles and limitations behind
conventional tracking pipelines. We consider a Frequency-
Modulated Continuous-Wave (FMCW) Radar, which detects
objects with electromagnetic wave chirps whose carrier
frequency increases linearly with time. To demodulate, the
reflected signal is mixed with the transmitting signal and
produces an intermediate frequency (IF) signal, which is
the difference between the transmitting and receiving signal.
As the transmitting frequency is linearly increasing, the
frequency shift of the IF signal is thus proportional to the
distance of the object. The amplitude of the signal varies
as a function of strength of the reflectivity. The distance to
an object can be calculated by extracting peak frequency
components of the IF signal. This is typically accomplished
using a signal processing technique such as a Fast Fourier
Transform (FFT). As the radar emits chirps continuously,
the phase shift between chirps at a particular frequency
component of the IF signal can be used to estimate the speed
of the object, caused by a Doppler shift.

In this work, we consider the use of a Texas Instru-
ments(TI) IWR6843 single chip radar, but the concepts
presented here are generalizable to other platforms. The TI
IWR6843 radar features a 3Tx/4Rx MIMO antenna array,
which forms 12 virtual antennas (VA) based on the combi-
nation of Tx-Rx pairs [35]. The layout of the VA array is
shown in Fig. 2. The phase differences between the antennas
of the linear receiver arrays (horizontal and vertical) can be
used to estimate the azimuth and elevation angle of arrival



of different objects in the scene. For each frame, the radar is
able to generate a data cube of complex numbers, with the
axes respective to chirp index, samples, and virtual antennas.

B. Sensitivity to Moving Objects

FMCW radars are particularly good at detecting moving
objects, because a small movement of the target leads to a
large phase shift of the receiving signals. A UAV’s rotating
propellers can easily be detected and separated from the
background static clutter. This is performed by a clutter
removal algorithm that removes stationary objects from the
FFT, as stationary objects have no phase shift.

C. Tracking the Drone with a Radar Point Cloud
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Fig. 3: Radar Point Cloud pipeline

The mmWave radar is able to generate a 3D point cloud of
the scene based on the principles detailed above, which can
be used to localize the drone. As input, the radar data cube
is first processed along the chirp-sample dimension for 2D
object detection, by forming a range-Doppler heatmap. The
2D-CFAR algorithm is used to extract dominant points. The
phase differences between the virtual antennas corresponding
to a detected point are then used to estimate the 3D bearing
angle of each point. These are then combined to produce a
sparse 3D point cloud. The full pipeline is shown in Fig. 3.
Using the 3D point cloud, a clustering algorithm such as
DBScan is used to segment the point cloud into clusters. As
the background clutter has been removed, the largest cluster
corresponds to the drone, under the assumption that the scene
is relatively stationary. By taking the centroid of the largest
cluster, we can estimate the position of the drone.

D. Tracking the Drone with Distance and Angle Estimation

An alternative approach to estimate the location of the
UAV can be performed by omitting the chirp axis of the
radar cube, and only considering the Sample-VA plane.
Conventional signal processing algorithms, such as the Fast
Fourier Transform, or the super-resolution based MUSIC
(MUltiple SIgnal Classification) algorithm [36], can be used
to estimate the distance as well as both the azimuth and
elevation angle of arrival (AoA) of the object. Given the
distance and angle from multiple virtual antennas we are able
to obtain the location of the drone. By repeating this process
over the chirp axis of the radar cube, we can estimate the
trajectory of the drone.
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Fig. 4: 2D (top) and 3D (bottom) FFT and MUSIC pipelines.

As a refinement, we can perform 3D FFT or MUSIC
directly on the cubic data formed by the Sample axis and the
VA matrix shown in bottom pipeline of Fig. 4, for a globally
optimal estimation. The complexities of these algorithms
are however exponential in the number of dimensions. 2D
FFT/MUSIC based pipelines run significantly faster than 3D
FFT/MUSIC based pipelines, but are more sensitive to noise
and hence lack robustness and accuracy.

E. Problems with Conventional Drone Tracking Pipeline

Although tracking a drone based on conventional signal
processing algorithms is straightforward and easy to im-
plement, these methods suffer from a number of problems
which lead to low accuracy in practice. First of all, the drone
is not a single point, but a complex object with multiple
rotating points. Depending on the orientation of the drone
relative to the antenna array, the signals from one or more
propellers can be blocked or occluded by the drone body
itself. This typically leads to a systematic localization error.
In addition, there are many empirical parameters in con-
ventional algorithms and it can be difficult to fine-tune and
assign optimal values to those parameters. The localization
results produced by conventional algorithms are not stable,
and contain many outliers. This is because in some frames
the noise or multipath scattering overwhelms the primary
signal and is wrongly identified as the target.

IV. PROPOSED METHOD

Our method for drone localization contains two parts.
Firstly, the radar cube data is preprocessed in range-elevation
and range-azimuth heatmaps. Secondly, a deep neural net-
work, which consumes the heatmaps as input data and
produces a 3D localization estimation. Fig. 5 shows the
pipeline of the proposed method and the two parts are
discussed below.

A. Data Preprocessing

The data processing part is similar to a conventional 2D
FFT pipeline, except for that it produces 6 heatmaps in total
(2 azimuth heatmaps and 4 elevation heatmaps), rather than
just one azimuth heatmap and one elevation heatmap for
target localization as in the conventional 2D FFT pipeline.
In addition, heatmaps of multiple chirps with the data cube
are extracted and sent into the neural network.


