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Abstract— Autonomous vehicles operating in dynamic envi-
ronments are required to account for other traffic participants.
By interpreting sensor information and assessing the collision
risk with vehicles, cyclists, and pedestrians, near-misses and
accidents can be prevented. Moreover, by explaining risk factors
to developers and engineers the overall safety of autonomous
driving can be increased in future deployments.

In this paper, we have designed, developed, and evaluated an
approach for predicting the collision risk with other road users
based on a planar 2D collision model. To this end, we have
trained interpretable machine learning models to classify and
predict the risk of collisions on a range of features extracted
from sensor data. Further, we present methods for inferring
and explaining the factors mostly contributing to the risk. Using
counterfactual inference, our approach allows us to determine
the factors which highly influence the risk and should in
turn be minimised. Experimental results on real-world driving
data show that collision risk can be effectively predicted and
explained for different time horizons as well as different types
of traffic participants such as cars, cyclists and pedestrians.
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I. INTRODUCTION

Highly automated driving (HAD) is considered as the
future of intelligent road mobility [1]. A study from the
Insurance Institute for Highway Safety states that even
though HADs account for some human error, it still can-
not prevent 2/3rds of all accidents unless it can account
for more complex, prediction-based scenarios [2]. Traffic
safety evaluation is one of the most important processes
in analyzing transportation system performance. Traditional
methods like statistical models and before–after comparisons
have many drawbacks, such as limited time periods, sample
size problems, and reporting errors [3].

Mahmud et al. [5] summarise recent advancements in met-
rics applied to quantify risks to driving vehicles. However,
most of these metrics are far too simple for real world
traffic conditions. They often make assumptions such as the
vehicles are on the same lane, ignore overtaking or lane
change, assume constant speed or are highly intensive and
attainable only in a simulation environment. On the other
hand, while there are more generic metrics such as Crash
Index [3], Planar TTC and Looming [6], they have not
been tested extensively on real world data to determine their
usefulness in risk assessment. This paper aims to bridge the
gap by applying multifaceted risk quantification techniques
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Fig. 1: Assessing and explaining collision risk in dynamic
environments. An instance of the Lyft Level5 dataset [4]
used for training our risk prediction models. The green
rectangle represents the ego vehicle, the yellow rectangle is
the agent whose risk value is predicted relative to the ego
vehicle. The orange rectangle represents another different
agent behind the ego vehicle. The tables show the ground
truth risk prediction values for 1 second, 3 seconds, and 5
seconds. The black triangle points in the direction the vehicle
is moving. In Section V-C, we provide explanations for the
risk predicted for the yellow agent.

to the largest set of prediction data for autonomous vehicles
currently available [4]. The methods described in this paper
are very versatile and can be applied to any autonomous
driving dataset with sufficient information about other road
users. The risk is predicted at different time instants in the
future to give the vehicle sufficient time to avoid a collision.
Most of the past work in this area defines thresholds and
formulates classification problems whereas our work extends
this to regression models so that we understand the risk
of other traffic participants at greater detail. Apart from
the quantitative results of the risk assessment provided in
this paper, there are also qualitative algorithmic explanations
provided to gain an intuitive understanding of the problem
to enable developers and engineers to identify important
features and increase the situational awareness of the au-
tonomous vehicle.



The paper makes the following contributions:
• a learning-based approach to dynamic risk assessment

based on abstracted sensor information and a planar
collision risk metric;

• a novel approach for inferring and explaining risk
factors in autonomous driving; and

• an experimental evaluation and discussion of quantita-
tive and qualitative results on real-world driving data.

The remainder of the paper is structured as follows. In
Section II, we discuss related work on risk assessment and
methods for explanation generation. Our learning-based ap-
proach to dynamic risk assessment is described in Section III,
and in Section IV, we present two methods for generat-
ing explanations from learnt risk models. In Section V,
we present and discuss quantitative and qualitative results
from experiments using real-world driving data. Section VI
concludes the paper.

II. RELATED WORK

A. Risk Assessment

There are different categories of metrics defined to es-
timate the risk posed to a vehicle by another vehicle. Li
et al. [7] discusses various threat assessment techniques for
risk prediction which include time, kinematics, statistics and
potential field-based metrics. In this paper, we focus on time-
based metrics to estimate risk in an elegant and efficient man-
ner. It also makes it easier to account for different attributes
and develop explainable models. Lefèvre et al. [8] also
summarises different risk assessment techniques under the
brackets of physics-based, maneuver-based, and interaction-
aware models. We focus on physics-based models because, as
explained in the paper, they allow for efficient computation
of risk and short-term collision prediction. Wardziński [9]
defines a four level risk scale where the lowest level is
‘no risk’, the next level is ‘acceptable safe’ followed by
‘hazardous situation’ and the highest level is an ‘accident’.
While the author realised the importance of detecting the
threat early on, only the minimum distance between vehicles
was used to estimate the risk level. Likewise there are metrics
which only work in the one dimensional case of rear-end
collisions such as TTC (Time-to-Collision), THW (Time
Headway), TTR (Time-to-React), Safe Distance Model for
minimum safe distance between human driven and driverless
vehicles [10], Unsafe Density [5] and many more. These
fail to generalise well to more practical situations and often
contain overly simplified assumptions. Most of these metrics
also only work on the binary classification scale as they
generally have a threshold defined whereas our work extends
to regression models. While Vasconcelos et al. [11] does
define an accident prediction model for three-leg and four-leg
priority intersections, it requires access to reliable accident
records based on which a new model is defined for each
place. This is not scalable, as even though it might work
well for the particular locations mentioned in the paper, it
is not easily extendable to the entire world, especially in
areas where traffic monitoring is not done as extensively and

previous records are hard to acquire. Moreover, a number of
these metrics have been tested only in simulation environ-
ments and not on real world datasets. This greatly limits
their usage as while they do perform well in simulations,
real cars, more often than not, do not behave like an ideally
simulated car. There are suggestions that the way to get
over the errors in real traffic situations is for vehicles to
communicate their planned routes to other vehicles and
cooperate in route planning [9]. However, this may cause
concerns about security and privacy, as users of autonomous
vehicles may not be comfortable letting every car on the road
to acquire their destination information.

B. Explanations in Risk Assessment

Blackbox AI models are being deployed in different do-
mains to predict risk. As the consequences of the outcomes
of these models are grave in critical domains, their decision
making process needs to be transparent to relevant stake-
holders [12]. In response to this, explainable approaches to
risk prediction have been adopted in credit lending [13] and
healthcare [14]. Despite the increasing attention in explain-
able autonomous driving, and risk analysis, explainable risk
prediction still seems to be under-explored. In a related work,
Yu et al. [15] assessed the subjective risk level of different
driving maneuvers using a Multi-Relation Graph Convolution
Network (MRGCN), a Long Short-Term Memory Network,
and attention layers. The use of scene graphs allows for
explainable intermediate representation of driving scenes. As
a further step, interpretbility and intelligibility need to be
considered all through the learning and prediction process
in order to enhance transparency and accountability [16].
Hence, we apply interpretable models (tree-based) with high
intelligibility (natural language explanation) in risk predic-
tion and classification tasks.

III. DYNAMIC RISK ASSESSMENT

A. Problem Statement

The aim of this risk assessment is to quantify the risk
posed to the autonomous (ego) vehicle by other road users
(agents) present in the environment at any instant. This is
used to predict the risk of collision at various time horizons
in the future so that the vehicle can be notified of the
approaching danger ahead of time (see Figure 1).

B. Risk Metrics

1) Planar TTC: TTC at an instant t is defined as ‘the time
that remains until a collision between two vehicles would
have occurred if the collision course and speed difference are
maintained’ [5]. While TTC is often used for risk calcula-
tions, it has many limitations. It can only be used for rear-end
collisions and thus fails to model a real world environment
in which collision can occur in any direction. Moreover,
this definition of TTC implies that only if the speed of the
following vehicle is larger than that of the leading vehicle,
a collision will occur and ignores any potential conflicts
due to acceleration or deceleration changes. Thus, there is a
need for a Modified Time to Collision (MTTC) which takes



these factors into account to provide a more comprehensive
risk assessment. Ward et al. [6] extends TTC to general
traffic scenarios by combining the planar TTC with looming.
Planar TTC is calculated by assuming constant acceleration
in contrast to the constant speed assumption.

Consider dij to be the distance between the closest points
of the ego vehicle (pi) and the agent (pj) and ḋij and d̈ij to
be its first and second derivatives respectively. If

T1 =
−dij

˙dij
(1)

is the first order TTC where the closure rate is omitted, and

∆ = ḋ2
ij − 2d̈ijdij (2)

is the discriminant of the second order case, then the formula
to calculate the planar TTC (T2) is as follows:

T2 =
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(3)

T1 and T2 are capped to 30 seconds as values above
these are much larger than the horizon we want to predict
the collision in and this might skew the data. When ∆ is
negative, T2 is defined as the time of closest approach as
there are no real roots. Moreover, negative values of TTC
indicate that there is no risk for collision and hence they are
all treated the same.

2) Looming: The drawback of MTTC is that it assumes
that the vehicles are on the same collision course which
might not always be the case. Thus, looming, as introduced
in [6], is used to check if the vehicles actually reach the
point of intersection at the same time or they simply pass
one before another. To calculate looming, seven test points
are chosen on the vehicle as shown in Figure 2. The loom
points are biased to the front of the vehicle as predicting
the likelihood of collision with this part of the vehicle is
more useful to the driver than the end of the vehicle. Then
the linear velocity of the loom point (v̄i) is calculated as
follows:

v̄i = vi + (pi − pc)× ωi (4)

Where vi is the ego vehicle velocity, pi − pc is the dis-
placement of the loom point (pi) from the vehicle center of
rotation (pc) and ωi is yaw rate of the vehicle.

The vector sum of vehicle velocity and the linear velocity
due to the yaw of the vehicle about its centre gives the linear
velocity of the loom point. Thus, the loom rate (angular
velocity of the loom point) is calculated as follows:

θ̇ =
(pj − pi)× v̄i + (pj − pi)× vi

‖pi − pj‖2
(5)

where pj is the vector position of the agent.
This gives rise to fourteen loom rates corresponding to the
left loom rates (named alpha1 to alpha7) and the right loom

Fig. 2: Some Attributes of the Feature Vector. The blue
circles denote the loom points. The right diagram shows
the first four angles corresponding to the loom rates. In the
right diagram, the rightmost point of the object is moving
clockwise relative to the observer and the leftmost point is
moving anticlockwise. Thus, the observer’s field of vision is
filled increasingly by the object and the object is looming.

rates (named beta1 to beta7) of the seven loom points.
This calculation helps to determine if the vehicles are on
a collision course.

C. Feature Extraction

In addition to the metrics discussed above, we extract
several other features. The relative distance between the ego
vehicle and the agent is calculated by extracting their current
positions and taking the L2 norm of their difference. The
agent velocity and the ego velocity are calculated by iterating
through the frames and averaging its changing position over
time. The acceleration is calculated in a similar way by
averaging its instantaneous velocity over time. The relative
velocity and the relative acceleration are calculated by taking
the difference in each of the two dimensions, followed by its
L2 norm. The angular velocity of the ego is calculated by
averaging its changing yaw over time. The relative yaw is
the difference between the yaw of the agent and the ego.
The target position of the ego vehicle is also included in the
feature vector as it gives a sense of the direction the ego
vehicle aims to move towards. The type of agent (e.g. car,
cycle, or pedestrian) is also included.

D. Feature Vector Generation

Finally, we combine information from Section III-B and
Section III-C to generate a feature vector as input for our
learning-based dynamic risk assessment. It includes the fol-
lowing information: T1, T2, the fourteen loom rates, relative
distance, ego and agent velocity, relative velocity, agent and
ego acceleration, relative acceleration, angular velocity of the
ego, the target destination of the ego in both the x and the
y direction, the relative yaw and the type of agent.

E. Ground Truth

To determine the ground truth (labels for our learning
task), the actual relative distance between the ego vehicle
and the agent vehicle at future time t is extracted.



1) Binary Classification: As applied in [6], 10 metres was
used as the threshold for classification. If the future relative
distance was less than 10 metres, it was classified as high
risk (risk flag = 1) and if it was greater than or equal to 10
metres, it was considered as low risk (risk flag = 0). This
is intuitive as the vehicles are not likely to collide when the
distance between them is more than 10 metres.

2) Regression: While classification helps us distinguish
between high and low risk objects it does not tell us how
severe a risk is. Hence, we decided to extend this to a
regression problem. To come up with ground truth labels
(risk scores), we sampled the probability of the actual
distance from a one sided positive Gaussian distribution with
zero mean and a standard deviation of five. Two standard
deviations correspond to 10 meters and, thus, the majority
of the points are included.

3) Prediction times: The ground truth labels for regres-
sion and classification were generated at 1, 3 and 5 seconds
in the future. Reaction times vary greatly from person to
person, and even for the same person it changes based on the
time of the day, weather condition and the landscape [17]. A
professional driver who is physically fit and trained in high-
speed driving might have a reaction time of 0.2 seconds for
a given situation, while the average driver may have a slower
reaction time of 0.5 seconds, 0.8 seconds or even 1 second
[18]. However, in cases where the human driver needs to
override and take control, we need more time since human
drivers in autonomous vehicles tend to be more disengaged
in the task and more overconfident in the automation. They
can have a weakened understanding of the operation and
status of the automatic system, as well as that of the driving
situation the car is in. In the long term, they also could lose
the skills required to drive and operate the car safely [1].
Thus, even longer time horizons such as 3 and 5 seconds
were included as explained in Fig. 3.

F. Learning Approaches

1) Decision Trees: Decision Trees are a powerful non-
parametric supervised learning method often used for pre-
diction. The goal is to create a model that predicts the value
of a target variable by learning simple decision rules inferred
from the feature vectors. Decision trees work for both
classification and regression as they can handle both con-
tinuous and categorical variables. Another major advantage
of using decision trees is that they are interpretable. Thus,
faithful explanations in natural language can be provided to
enhance intelligibility for different stakeholders. To avoid
data overfitting, we resample the data many times and split
it into training and validation sets. This helps us find the
optimal tree depth which gives the best bias-variance trade
off for each of our experiments. For this, we use the K-
fold cross-validation algorithm, with five folds, based on
accuracy, with a hyperparameter grid as the input for the
search. This increases the performance of decision trees
significantly.

2) Random Forests: Random Forests consist of a large
number of decision trees that act as an ensemble. The

Fig. 3: An instance of the Lyft Level5 dataset [4] that
visualises a potential left-turn conflict. As before, the ego
is depicted in green and two other agents in yellow and
orange. The yellow agent is in the direct view of the ego
vehicle and has a current high risk value because the relative
distance between them is small. However, due to looming,
we realise that these cars will never actually meet since the
yellow agent will pass the point before the ego vehicle arrives
there, which is indicated by its decreasing risk. On the other
hand, the orange vehicle, poses a very high risk to the ego
as it might actually reach the point of collision at the same
time as the ego, once the yellow vehicle has passed. Thus,
this helps the ego to prioritize between different agents, to
focus on the more risky one (here the orange agent) and to
maneuver accordingly.

fundamental concept behind a random forest is a sim-
ple one: a large number of relatively uncorrelated models
(trees) operating as a committee will outperform any of
the individual constituent models. Thus, it reduces the over-
fitting in decision trees and helps improve the accuracy. To
improve the performance of random forests, we implement
both Random Search Cross Validation and Grid Search with
Cross Validation. Both these algorithms help us find the
best hyperparameters for Random Forests. Of these, Random
Search Cross Validation performs the best and is used to
report the results.

In our experiments, we use both decision trees and random
forests to improve our accuracy and precision while retaining
the interpretability. Thus, the classification and regression
models for each of 1, 3 and 5 seconds were trained using
both a decision tree and a random forest.

IV. RISK EXPLANATION

In this section, we describe two approaches for explaining
our risk prediction models (cf. Section III-F): (i) a tree-based
‘why’ and ‘what-if’ explanation which we have designed,



and (ii) the Shapley Additive Explanation (SHAP) method
[19] which we used to qualitatively evaluate our tree-based
explanation method.

A. Why and What-If Explanation

Let f represent a learnt decision tree model (from our
learnt models in Section III-F). Let T represents a tree for
f , such that T = 〈N,E〉. N is a set of nodes and E is a set
of edges connecting two nodes. We define a node n ∈ N (or
risk factor) in the tree as a tuple n = (u,C) where: u ∈ N
is a unique numerical identifier for a node in T . C is a list
of conditional statements. Each c ∈ C is constructed by an
inequality operator. The root node is the unique node with
no parent, and a leaf is a node with no child. The level ln of
a node n is the number of edges from the root to that node.

To construct a Why explanation, we traverse T by starting
from the root node (say nr ∈ N ) to a leaf node (say nl ∈ N .
We return the set of unique conditions Cw which satisfy the
decision path of the input instance. Why explanation is then
created using the information in Cw. Each c ∈ Cw is then
represented with linguistic terms that describe its meaning
in the driving domain. The ‘Why’ explanation Ew is now a
concatenation of the linguistic terms for all the c ∈ Cw.

‘What-If’ explanations are also referred to as counterfac-
tual explanations. Counterfactual explanations are meant to
contain information about the minimum change required in
the input in order to obtain the closest alternative outcome
(or a target output) from the model. To construct a ‘What-
If’ explanation, we find the nearest sibling nl′ to the current
leaf node nl which yields a different outcome/class to nl.
Where such leaf node nl′ does not exist, we move a level
up the tree and find the descendants of the sub-tree that lead
to the desired nl′ while avoiding leaf nodes that have been
visited. Once nl′ is discovered, the lowest common ancestor
na of nl and nl′ is identified in the tree. na is the node from
which the path pw from the root to nl and the path pf from
the root to nl′ first differ. The condition at na is negated and
added to the set of conditions (say Cf ) resulting from pf \pw
(where ‘\’ represents set complement). Each c ∈ Cf is then
represented with linguistic terms that describe its meaning
in the driving domain. The ‘What-If’ explanation Ef is now
a concatenation of the linguistic terms for all the c ∈ Cf .

When the model in consideration (f) is an ensemble of
trees (random forest), we perform a tree selection procedure
which differ for both regression and classification tasks. An
approach to obtain the final prediction (y) in an ensemble
tree regressor model is by estimating the mean or the median
of Y : Y = {yi|1 ≤ i ≤ n} where n is the number of trees
in the forest. In our implementation, we find the median of
Y and use the tree whose output correspond to this median
value to explain the model. Where n is even, we use the tree
with the closet prediction value to the mean of the prediction
yn

2
and yn+2

2

For an ensemble tree classifier, a sorted list of features is
created based on the frequency of the occurrence of features
across the forest. From the trees in the forest with same class
prediction, we find the tree that has most of the recurring

features. If there are more than 1 of such trees, we choose
the tree with the highest prediction confidence.

B. Tree SHAP Explanation Method

For a learnt model f , the Kernel SHAP algorithm [19]
explains a prediction with respect to a chosen reference or
an expected value by estimating the SHAP values of each
feature i from 1, ...,M . The SHAP values are computed as:
• generate all subsets S of the set F \ {i}
• for each S ⊆ F \ {i} find the contribution of feature i

as CT{i|S} = f(S ∪ {i})− f(S)
• compute the SHAP value according to:

φi :=
1

M

∑
S⊆F\{i}

1(
M−1
|S|
)CT (i|S) (6)

Tree SHAP explanation algorithm optimises the procedure
above to compute exact SHAP values for tree based models
in reduced time complexity. These SHAP values show the
contributions (both positive and negative) of the features in
the model. We show the 10 most contributing features to the
models’ prediction (see Figure 6). This will provide a basis
for us to compare our tree-based method with Tree SHAP.
Our tree-based explanation method should generate explana-
tions with reference to some of the features in Figure 6.

V. EXPERIMENTAL RESULTS

A. Lyft Dataset

In order to evaluate the efficacy of the proposed ap-
proaches, we utilise the Lyft Level 5 Prediction Dataset [4].
The dataset is primarily composed of a set of scenes collected
across 1118 hours of autonomous driving activity from 20
different vehicles. These scenes are accompanied by a man-
ually constructed semantic map detailing the road network,
as well as a metadata file. The metadata describes part of the
transformation from the semantic map frames based upon a
geodetic datum, to the world frame used for the scene data.
The scene data is structured as follows: the top level consists
of a series of scenes, each scene is ∼ 25 s and is composed
of ∼ 250 frames sampled at 1 Hz. Each frame contains a
timestamp, translation and rotation values for the ego vehicle,
and the relevant agent objects. Agent objects do not persist
between frames, and instead use a tracking id to identify
the same entity between frames. For our experiments, the
first 300 scenes were used to generate the feature vectors, of
which 20% were used for testing and the five-fold method
was used for cross validation. See Figure 1.

B. Dynamic Risk Assessment Results

Table I compares different classification models where
‘DT’ stands for Decision Tree and ‘RF’ stands for Random
Forest. The ROC curve at various instants are show in Fig. 4.
Table II compares the results of different regression models.
While the difference between the decision tree and random
forest models are not very evident in the classification case,
they are very distinct in the regression case. This is fairly
intuitive as it is much more difficult for the algorithm to



predict continuous values than it is to predict a binary value.
There is a stark difference between the performance of
decision trees in the two cases because they are sensitive
to small perturbations in data. This makes it hard to apply
it to the regression case where the data has very small
changes. Moreover, since they are non-smooth, they are also
prone to out-of-sample predictions. Another trend that is very
evident is that the performance decreases as we increase the
time horizon for our predictions. This is expected as it is
difficult to make accurate predictions of a dynamic human-
driven vehicle that can change its attributes in less than a
second. For example, it is more likely that our assumption
of constant acceleration or deceleration may hold true for 1 s
rather than for 5 s. Table III compares the regression model
among different agent types. The ‘count’ column represents
the number of instances of the particular class present in the
dataset. The models perform the best on cars and the least
on pedestrians. However, this is evidently not proportional
to the percentage of data they constitute. This is because it
is easier to estimate the velocity and acceleration of vehicles
than pedestrians. Moreover, velocity and acceleration of
pedestrians are not comparable to those of vehicles and this
might induce errors as they’ll give a large relative velocity
and acceleration. The dimensions of pedestrians are also
smaller compared to vehicles so the loom point method might
not work accurately even though the Lyft dataset does contain
the span of every single agent. The reason for this is that
pedestrians are typically harder to observe accurately. This
is partially because they are mainly found on pavements
where they are more likely to be obscured and partially
because their physical shape does not correspond well to
a rectangular shaped bounding box i.e. the span. Hence, we
will explore other agent-specific metrics in future work. Fig.
5 displays the normalised feature importance score of each
feature based on how relevant that particular feature is in
helping the model make a prediction. It is evident from
the graph that the relative distance and the Planar Time-
to-Collision are the two most important parameters for the
Random Forest model to make predictions. This is in-line
with our expectation from the risk metric.

C. Risk Explanation Results

Our tree-based explanation method can assist developers
and engineers to identify the most influential risk factors
from learnt risk assessment models. Moreover, through coun-
terfactual inference, our techniques can provide explanations
which describe how risk factors need to be ‘changed’ to
decrease the overall risk in safety-critical driving scenarios.

TABLE I: Comparing Different Classification Models

Time Model RMS Error AUC F1 Score

1 sec DT 0.313112 0.91 0.873064
RF 0.280056 0.98 0.895877

3 sec DT 0.285831 0.90 0.851776
RF 0.291492 0.92 0.844609

5 sec DT 0.313112 0.86 0.784305
RF 0.291492 0.88 0.816935

(a) 1 second

(b) 3 seconds

(c) 5 seconds

Fig. 4: ROC Curve for Different Temporal Predictions. We
can see how performance decreases as we predict for longer
time horizons.

We provide a qualitative assessment of our proposed tree-
based natural language explanation generation technique.
Tree SHAP is known to have higher level of faithfulness
in contrast to LIME [19]. Natural language explanations
which can be rendered as speech are useful in time critical
domains where participants have limited chance to observe
a chart or heatmap. Our tree-based method can generate
counterfactual explanations to meet certain requirements. For
example, the desired counterfactual class can be explicitly
set for a classification task. In the case of regression, a
counterfactual explanation which contains information on
how to obtain a prediction within a certain value range can



Fig. 5: Feature Importance Score assigns a value to each of
the features from the feature vector based on how important
that particular feature is in helping the model make a
prediction. The average feature scores for the Random Forest
classification model across the training set is shown.

(a) Random Forest Regressor, 1 sec prediction

(b) Random Forest Regressor, 5 secs prediction

Fig. 6: Explaining feature contributions for the example
scene shown in Figure 1 (yellow agent). We show the 10
most contributing features to prediction based on SHAP
values obtained from Tree SHAP algorithm for 1s and 5s
predictions. Both predictions are for feature vector X passed
to the RandomForest Regressor models.

TABLE II: Comparing Different Regression Models

Time Model RMS Error EVS R2 Score

1 sec DT 0.089790 0.513486 0.509954
RF 0.036018 0.921205 0.921146

3 sec DT 0.006891 0.449383 0.447278
RF 0.051660 0.786132 0.785953

5 sec DT 0.091964 0.369128 0.369034
RF 0.058059 0.7485211 0.748506

TABLE III: Comparing Different Classes

Class Count RMS Error EVS R2 Score
Car 519385 0.076093 0.754399 0.752412
Cycle 6688 0.053561 0.864631 0.735844
Pedestrian 43182 0.127931 0.695486 0.638030

be generated.
Explanation 1, 2, and 3 below are sample explanations

generated using the tree-based method for the yellow agent
in Figure 1. We generated natural language explanations
(‘why’ and ‘what-if’) for the tree models’ predictions. Our
explanations made references to some highly contributing
features (shown in Figure 6).

Explanation 1: RandomForest Regressor, 1s
Why: “The predicted risk for the provided agent’s
attributes is 0.4922 because important features
such as ‘beta6’ has a value between 0.0 rad s−1

and 16.0179 rad s−1, ‘agent vel’ was below
5.2209ms−1, ‘ego vel’ was below 0.0001ms−1.”
What-If (counterfactual inference): “To get the risk
prediction below 0.3, the following conditions should
be true: ‘alpha6’ should be greater than 0.0 rad s−1,
‘agent vel’ should be above 6.794ms−1.”

Explanation 1 was generated for a 1s random forest
regressor prediction for a particular feature vector (say X).
The counterfactual explanation is also generated for risk
value lower than 0.3. When ‘agent vel’ was set to 7ms−1, a
risk value of 0.2614 was obtained. Increasing the ‘agent vel’
makes the agent move farther ahead of the ego vehicle,
thereby reducing collision risk.

Explanation 2: RandomForest Regressor, 5s
Why: “The predicted risk for the provided agent’s
attributes is 0.3853 because important feature such
as ‘beta2’ was above -1.105e-05 rad s−1, ‘agent vel’
was below 5.1108ms−1, ‘ego target pos y’ was be-
low 0.6182m.”
What-if (counterfactual inference): “To get the risk
prediction below 0.3, the following conditions should
be true: ‘ego target pos y’ should be greater than
0.6182m.”

Explanation 2 was generated for a 5s random forest
regressor prediction for feature vector X . The counterfactual
explanation was generated for risk value lower than 0.3.
When ‘ego target pos y’ was set to 3, a risk value of 0.2754
was obtained. When the ego vehicle’s target y is increased,



the ego vehicle’s destination is further south (where (0, 0)
is the topmost left corner) which makes its trajectory farther
apart from the agent when the agent is heading East.

Explanation 3: RandomForest Classifier, 1s
Why: “The provided agent was classified as ‘high
risk’ because important feature such as ‘alpha1’ was
below 1.6972 rad s−1, ‘alpha5’ has a value between
-180.2083 rad s−1 and 0.0 rad s−1, ‘alpha7’ was
above -0.00046231 rad s−1, ‘beta1’ was above -2.9e-
07 rad s−1, ‘agent vel’ was below 23.5176ms−1,
‘rel yaw’ was above -0.4258 rad.”
What-if (counterfactual inference): “The closest class
to the prediction is ‘low risk’. To classify this sample
as low risk the following conditions should hold:
‘agent vel’ should be greater than 23.5176ms−1.”

Explanation 3 was generated for a 1s random forest
classifier’s prediction for feature vector X . An explanation
on how to obtain a counterfactual output (low risk) was also
provided.

VI. CONCLUSION

With growing interest in the autonomous driving market,
it is essential to account for its safety. In this paper, we
utilised sensor data from autonomous vehicles to provide a
comprehensive risk assessment that accounts for all kinds
of conditions that may result in a collision. We provide an
approach to infer risk from machine learning models (deci-
sion trees and random forests) trained on relevant features
extracted from the Lyft dataset with predictions made at
different future time horizons. We developed a tree-based
explanation technique to explain the models’ risk predictions.
This work can be directly incorporated into safety systems
in autonomous vehicles. It also serves as the basis for path
prediction algorithms for high risk road users which can then
assist the ego vehicle to perform maneuvers accordingly. The
models obtained are high performing (with R2 scores of
92.11% for the 1 second regression case) and are transferable
and explainable on other datasets (e.g. KITTI dataset [20],
Waymo dataset [21]). The explanation technique will enable
developers in this field to identify the important attributes
and how they can select these attributes to yield lower risks.
Moreover, the explanations provide assistance for model de-
bugging especially where safety is critical. While this paper
has been written in the context of autonomous driving, the
methods described could be extended to the risk assessment
of any kind of autonomous robot by the dynamic entities in
its environment.
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