Program Generation for
 Small Linear Algebra

Daniele G. Spampinato Markus Püschel

Computer Science
EIHzürich

Spiral
www. spiral. net

Kalman filter

Predict
$x_{k}=A x_{k-1}+B u_{k}$
$P_{k}=A P_{k-1} A^{T}+Q$
Update
Fast code needed
$x_{k}=x_{k}+P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1}\left(z_{k}-H x_{k}\right)$
$P_{k}=P_{k}-P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1} H P_{k}$

For example, commonly used in robotics
Could be 6, 11, 17, ... states

Linear algebra: Central to many domains

Control systems

Source: flyingmachinearena.org
Computer graphics

Source: ETH CGL

Optimization algorithms

Source: rain.aa.washington.edu

Computer vision

Communication
Signal Processing
....

Library performance for DPOTRF

Intel MKL on Intel Core i7 CPU (AVX)

- The Cholesky decomposition

$$
U^{T} U=S
$$

- Function DPOTRF in LAPACK

Library performance for DPOTRF: $U^{T} U=S$
Intel MKL on Intel Core i7 CPU (AVX)

Library performance for DPOTRF: $U^{T} U=S$
Intel MKL on Intel Core i7 CPU (AVX)

Library performance for DPOTRF: $U^{T} U=S$
Intel MKL on Intel Core i7 CPU (AVX)

$$
\begin{aligned}
\text { Fast code }= & \text { good algorithm } \\
& + \text { code style } \\
& + \text { locality } \\
& + \text { vectorization } \\
& (+ \text { parallelization })
\end{aligned}
$$

Goal: Program Generation for
 Small Linear Algebra

Kalman filter

Predict
$x_{k}=A x_{k-1}+B u_{k}$
$P_{k}=A P_{k-1} A^{T}+Q$
Update
$x_{k}=x_{k}+P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1}\left(z_{k}-H x_{k}\right)$
$P_{k}=P_{k}-P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1} H P_{k}$

```
void kf(double const * A, ...) {
    __m256d t0, ...;
    a0 = _mm256_loadu_pd(A);
    a1 = _mm256_load_sd(A + 4);
    m0 = _mm256_mul_pd(a0, x0);
    h0 = _mm256_hadd_pd(m0, m1);
    p = _mm256_permute2f128_pd(...);
    b = _mm256_blend_pd(t6, t8);
    _mm256_storeu_pd(X, r0);
}
```


Classes of linear algebra computations

Classes of linear algebra computations

Kalman filter

Predict
$x_{k}=A x_{k-1}+B u_{k}$
$P_{k}=A P_{k-1} A^{T}+Q$
Update
$x_{k}=x_{k}+P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1}\left(z_{k}-H x_{k}\right)$
$P_{k}=P_{k}-P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1} H P_{k}$

Classes of linear algebra computations

Classes of linear algebra computations

Kalman filter

Predict

$x_{k}=A x_{k-1}+B u_{k}$
$P_{k}=A P_{k-1} A^{T}+Q$
Update
$x_{k}=x_{k}+P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1}\left(z_{k}-H x_{k}\right)$
$P_{k}=P_{k}-P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1} H P_{k}$

Part 1: BLACs

[CGO 2014,DATE 2015]

Matrices, vectors, scalars
Multiplication, addition, transposition
Example: $\mathrm{y}=\mathrm{Ax}+\alpha \mathrm{B}^{\top}(\mathrm{y}+\mathrm{z})$

LGen: A basic linear algebra compiler

Tiling in LL - targeting scalar code

$$
\begin{aligned}
& C=A B \\
& {[C=A B]_{\underline{r, c}} \stackrel{\text { First tiling decision (register level) }}{\longleftrightarrow}} \\
& {[C=A B]_{2,2}} \\
& {[C]_{2,2}=[A B]_{2,2}} \\
& {[C]_{2,2}=[A]_{2, k}[B]_{k, 2} \xrightarrow{\text { Choice of } \mathrm{k}}[C]_{2,2}=[A]_{2,1}[B]_{1,2}}
\end{aligned}
$$

Vector code generation: General idea

Goal: First level of tiling to express the computation in terms of v-BLACs
$[y]_{\nu, 1}=[A]_{\nu, \nu}[x]_{\nu, 1}+[y]_{\nu, 1}$

Vector code generation: General idea

Goal: First level of tiling to express the computation in terms of v-BLACs
$[y]_{\nu, 1}=[A]_{\nu, \nu}[x]_{\nu, 1}+[y]_{\nu, 1}$

v-BLACs: Vectorization building blocks

Addition (3 v-BLACs)

Scalar Multiplication (7 v-BLACs)
$\square \square$

Transposition (3 v-BLACs)

Matrix Multiplication (5 v-BLACs)

Vector code generation: General idea

$[y]_{\nu, 1}=[A]_{\nu, \nu}[x]_{\nu, 1}+[y]_{\nu, 1}$

Scatter
Gathers

Σ-LL: Basics

Extension of Σ-SPL [Franchetti et al., PLDI 2005]

- Gathers: Extracting blocks

$$
A=B \quad B=A[0,0]_{2,2}^{4,4}
$$

- Scatters: Expanding blocks

$$
C=\begin{array}{|cc|}
\hline B & 0 \\
0 & 0
\end{array} \quad C={ }_{4,4}^{2,2}[0,0] B
$$

Σ-LL to C-IR

$$
\begin{aligned}
y & =A x+y \\
& =\sum_{i} \sum_{j}[i](A[i, j] x[j]+y[i]) \\
& \quad \text { Genc-IR(ISA=SSE2, P=double) }
\end{aligned}
$$

```
ForLoop ( i = 0; i < 4; i+=2 ) [
    ForLoop ( j = 0; j < 4; j+=2 ) [
        Ar0 = load(A[i,j], [0,1], hor)
        Ar1 = load(A[i+1,j], [0,1], hor)
        vx = load(x[j], [0,1], ver)
        store(mmHaddPd(mmMulPd(Ar0, vx), mmMulPd(Ar1, vx)), ty, [0,1])
        vy = load(y[j], [0,1], ver)
        store(mmAddPd(ty, vy), y[j], [0,1], ver)
    ]
]
```


Plotting

L1-D	L2	Vec. ISA	Th. Peak
32 kB	256 kB	AVX	$8 \mathrm{f} / \mathrm{c}$

Intel Xeon X5680 (Westmere EP)

L1-D	32 kB
Vec. ISA	SSE 4
Th. Peak	$8 \mathrm{f} / \mathrm{c}$

$C=\alpha\left(A_{0}+A_{1}\right)^{T} B+\beta C, \quad A_{0}, A_{1}, B \in \mathbb{R}^{4 \times n}$
${ }_{6}$ Performance $[f / c]$

BLAS 1-3 examples

(c) A is $4 \times n$.
(d) A is $n \times 4, B$ is 4×4.

(e) A is $4 \times 4, B$ is $4 \times n$.

ARM Cortex A8

L1-D	32 kB
Vec. ISA	Neon
Th. Peak	$4 \mathrm{f} / \mathrm{c}$

$C=\alpha\left(A_{0}+A_{1}\right)^{T} B+\beta C, \quad A_{0}, A_{1}, B \in \mathbb{R}^{4 \times n}$

Performance $[f / \mathrm{c}]$
0.0
0.0

Part 2: sBLACs

[CGO 2016]

BLACs + Structured matrices

Example: $\mathrm{A}=\mathrm{LU}+\mathrm{S}+\mathrm{xx}{ }^{\top}$

LGen with Structure

Structured Matrix Representation

$\mathrm{L}: \quad$ L.SInfo $=\left\{\begin{array}{l}\mathcal{G}:\{(i, j) \mid 0 \leq i<4 \wedge 0 \leq j \leq i\} \\ \mathcal{Z}:\{(i, j) \mid 0 \leq i<4 \wedge i<j<4\}\end{array}\right\}$ L.AInfo $=\left\{\{(i, j) \mid 0 \leq i<4 \wedge 0 \leq j \leq i\}:\left([i, j]_{1,1}^{4,4}, i d\right)\right\}$
S: \quad s.SInfo $=\{\mathcal{G}:\{(i, j) \mid 0 \leq i, j<4\}\}$ s.Ainfo $=\left\{\begin{array}{l}\{(i, j) \mid 0 \leq i<4,0 \leq j \leq i\}:\left([i, j]_{1,1}^{4,4}, i d\right) \\ \{(i, j) \mid 0 \leq i<4, i<j<4\}:\left([j, i]_{1,1}^{4,4}, i d\right)\end{array}\right\}$
Verdoolaege, ISL: an integer set library for the polyhedral model [MS 2010]

From LL to Σ-LL

N

From LL to Σ-LL

From LL to Σ-LL

$$
\begin{aligned}
C & =\sum_{i=0}^{3} \sum_{j=0}^{3}[i, j](A[i, 0] B[0, j]) \\
& +\sum_{k=1}^{3} \sum_{i=k}^{3} \sum_{j=k}^{3}[i, j](A[i, k] B[k, j])
\end{aligned}
$$

Extensibility

- Other important structures, e.g., banded matrices

- Or other combined structures

BLAS-like category

Intel core i7 (Sandy Bridge), Linux 3.13

$$
A=L U+S, \quad L, U \in \mathbb{R}^{n \times n}
$$

— LGen -O- Intel MKL II.2 $\boldsymbol{-}$ - - Naïve (icc 15) - L- LGen w/o structures

Part 3: Higher level linear algebra

 [CGO 2018]Cholesky factorization

LU factorization

Triangular solve

Collaboration:

Diego Fabregat-Traver

Paolo Bientinesi

RWTH Aachen

Cholesky Factorization

Algorithm 2.13 The Cholesky decomposition.
$U^{T} U=P, \quad U \in U_{n}$, and P is SPD.
U overwrites the upper half of P. Cost $\approx n^{3} / 3$ flops.
Partition $\mathrm{P} \rightarrow\left(\begin{array}{l|l}\mathrm{P}_{\mathrm{TL}} & \mathrm{P}_{\mathrm{TR}} \\ \hline \mathrm{P}_{\mathrm{BL}} & \mathrm{P}_{\mathrm{BR}}\end{array}\right)$

$$
\text { where } P_{T L} \text { is } 0 \times 0^{\circ}
$$

while size $\left(\mathrm{P}_{\mathrm{TL}}\right)<\operatorname{size}(\mathrm{P})$ do Repartition

$$
\left(\begin{array}{c|c|c|c}
\mathrm{P}_{\mathrm{TL}} & \mathrm{P}_{\mathrm{TR}} \\
\hline \mathrm{P}_{\mathrm{BL}} & \mathrm{P}_{\mathrm{BR}}
\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}
\mathrm{P}_{0,0} & \mathrm{p}_{0,1} & \mathrm{P}_{0,2} \\
\hline \mathrm{p}_{1,0}^{\top} & \pi_{1,1} & \mathrm{p}_{1,2}^{\top} \\
\hline \mathrm{P}_{2,0} & \mathrm{p}_{2,1} & \mathrm{P}_{2,2}
\end{array}\right)
$$

where $\pi_{1,1}$ is 1×1
$\pi_{1,1}:=\pi_{1,1}-p_{0,1}^{\top} p_{0,1}$
$\pi_{1,1}:=\sqrt{\pi_{1,1}}$
$\mathrm{p}_{\uparrow, 2}^{\top}:=\mathrm{p}_{1,2}^{\top}-\mathrm{p}_{0,1}^{\top} \mathrm{P}_{0,2}$
$p_{1,2}:=\left(1 / \pi_{1,1}\right) p_{1,2}$
Continue with

$$
\left(\begin{array}{c|c|c|c}
\mathrm{P}_{\mathrm{TL}} & \mathrm{P}_{\mathrm{TR}} \\
\hline \mathrm{P}_{\mathrm{BL}} & \mathrm{P}_{\mathrm{BR}}
\end{array}\right) \leftarrow\left(\begin{array}{l|l|l}
\mathrm{P}_{0,0} & \mathrm{p}_{0,1} & \mathrm{P}_{0,2} \\
\hline \mathrm{p}_{1,0}^{\top} & \pi_{1,1} & \mathrm{p}_{1,2}^{T} \\
\hline \mathrm{P}_{2,0} & \mathrm{p}_{2,1} & \mathrm{P}_{2,2}
\end{array}\right)
$$

Algorithm synthesized by Cl1ck:

Fabregat \& Bientinesi
[ICCSA 2011, CASC 2011]
Based on FLAME methodology
Bientinesi et al. [ACM TOMS 2005]
http://www.cs.utexas.edu/~flame
Requires availability of BLAS

How Cl1ck Works

$$
X^{T} X=A \quad \mathrm{X} \text { triangular, A symmetric pos def }
$$

$$
\left(\begin{array}{c|c}
X_{T L} & X_{T R} \\
\hline 0 & X_{B R}
\end{array}\right) \text { and }\left(\begin{array}{c|c}
A_{T L} & A_{T R} \\
\hline A_{B L} & A_{B R}
\end{array}\right)
$$

$$
\left(\begin{array}{c|c}
X_{T L}^{T} X_{T L}=A_{T L} & X_{T L}^{T} X_{T R}=A_{T R} \\
\hline * & X_{T R}^{T} X_{T R}+X_{B R}^{T} X_{B R}=A_{B R}
\end{array}\right)
$$

$$
\text { 1. } X_{T L}=\operatorname{CHOL}\left(A_{T L}\right)
$$

$$
\text { 2. } x_{T R}=\operatorname{TRSM}\left(X_{T_{L}}{ }^{\top}, A_{T R}\right)
$$

$$
\text { 3. } T_{1}=A_{B R}-X_{T R}{ }^{\top} * X_{T R}
$$

$$
\text { 4. } X_{B R}=\operatorname{CHOL}\left(T_{1}\right)
$$

Loop invariant
program CHOL
Matrix $X_{\text {TL }}<k, k$, Output, UpperTriangular, Overwrites(ATL)> Matrix $X_{T R}<k, r$, Output, Overwrites (ATR $>$
Matrix $A_{T L}<k, k$, Input, Symmetric, PositiveDefinite> Matrix $A_{T R}<k, r$, Input>

Connecting Cl1ck with LGen

Higher-level Computations

Cholesky $U U^{T}=S$
Performance [f/c] vs n [double]
4

Sylvester $A X+X B=C$

- Our synthesized code

O Intel MKL 11.3.2

- ReLAPACK
∇ Intel icc 16
\square clang 4/Polly 3.9
or RECSY '09

Part 4: Linear algebra programs

 [CGO 2018]$$
\begin{aligned}
& \text { Kalman filter } \\
& \text { Predict } \\
& x_{k}=A x_{k-1}+B u_{k} \\
& P_{k}=A P_{k-1} A^{T}+Q \\
& \text { Update } \\
& x_{k}=x_{k}+P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1}\left(z_{k}-H x_{k}\right) \\
& P_{k}=P_{k}-P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1} H P_{k}
\end{aligned}
$$

Grammar

Intel core i7 (Sandy Bridge), Linux 3.13 L1-D L2 Vec. ISA Th. Peak $32 \mathrm{kB} \quad 256 \mathrm{kB}$ AVX $8 \mathrm{f} / \mathrm{c}$

Linear Algebra Computations

Kalman filter

Predict
$x_{k}=A x_{k-1}+B u_{k}$
$P_{k}=A P_{k-1} A^{T}+Q$
Update
$x_{k}=x_{k}+P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1}\left(z_{k}-H x_{k}\right)$
$P_{k}=P_{k}-P_{k} H^{T}\left(H P_{k} H^{T}+R\right)^{-1} H P_{k}$

Input: $F, B, Q, H, R, P, u, x, z$
Output: P, x
$y=F * x+B * u$;
$Y=F * P * F^{T}+Q$;
$v_{0}=z-H * y$;
$M_{1}=H * Y$;
$M_{2}=Y * H^{T}$;
$M_{3}=M 1 * H^{T}+R$;
$\underline{U}^{T} * \underline{U}=M_{3} ;$
$U^{T} * \underline{v_{1}}=v_{0} ;$
$U * \underline{v_{2}}=v_{1}$;
$U^{T} * \underline{M_{4}}=M_{1} ;$
$U * \underline{M_{5}}=M_{4}$;
$x=\overline{y+} M_{2} * v_{2}$;
$P=Y-M_{2} * M_{5}$;

Performance [f / c] vs k [double]

Other Case Studies

Convex cone problem
Algorithm 1 Ll-Analysis

end for

Gaussian process regression

input: X (inputs), \mathbf{y} (targets), k (covariance function), $\sigma_{n}^{2} \underset{x^{3}}{(1)}$
2: $L:=\operatorname{cholesky}\left(K+\sigma_{n}^{2} I\right)$
$\boldsymbol{\alpha}:=L^{\top} \backslash(L \backslash \mathbf{y})$
: $\bar{f}_{*}:=\mathbf{k}_{*}^{\top} \boldsymbol{\alpha}$
$\mathbf{v}:=L \backslash \mathbf{k}_{*}$
6: $\mathbb{V}\left[f_{*}\right]:=k\left(\mathbf{x}_{*}, \mathbf{x}_{*}\right)-\mathbf{v}^{\top} \mathbf{v}$
$\log p(\mathbf{y} \mid X):=-\frac{1}{2} \mathbf{y}^{\top} \boldsymbol{\alpha}-\sum_{i} \log L_{i i}-\frac{n}{2} \log 2 \pi$
8: return: \bar{f}_{*} (mean), $\mathbb{V}\left[f_{*}\right]$ (variance), $\log p(\mathbf{y} \mid X)$ (log margina
$\}$ predictive m^{2}
predictive varia ${ }_{1}$

Conclusions

Program Generation for Small Linear Algebra

- Small linear algebra: An unsolved domain for performance
- Spiral-like approach to program generation
- Extensible (vector architectures, matrix structures)
- Good speedups
- Meanwhile there is more work on small linear algebra

