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Programming with nd-arrays

Instructions manipulate nd-arrays, e.g. dot, conv2d, etc.

Origins in APL, Fortran, Matlab. Popular for numerical 
computing (numpy) and Deep Learning (Jax, PyTorch, TF) 

Reasons for popularity: naturality/habituality, with notable 
exceptions trying to break out of the paradigm (e.g. Dex)

This talk: We take nd-array programming model as given, 
and focus on distributing programs written in this model (*)

(*) we will use semantic information not expressible in the model

https://arxiv.org/abs/2104.05372


Deep Learning: a case for extreme scaling of array programs
Bigger DL models perform better

● GPT-3: 175B parameters, 3.6PFLOPS-days to train
● Many research scientists aim to scale up their models, need more memory and flops

Training on a single accelerator device (e.g. Google TPU, NVIDIA GPU) not sufficient for research. Hence 
accelerators typically come in system configurations with custom interconnect networks. e.g:

● Google TPU pods
● NVIDIA DGX POD and SuperPOD

Given the needs and the available 
HW systems, partitioning is key for:

● research velocity
● hardware ROI

yet remains an expensive and 
challenging task …

https://arxiv.org/abs/2005.14165


Scaling research workloads to multiple devices

1. Multi-device programming model e.g. JAX pmap(), jit(), 
collective communication, explicit device transfers.

○ Programmers responsible for performance and correctness

2. Single-device model with programmer-supplied “sharding 
annotations” driving compiler passes (e.g. GShard, 
GSPMD and pjit(), JAX xmap())

○ Programmers responsible for performance

3. Automated search-based solutions e.g. Flexflow. 

Require either known 
sharding strategy 
(e.g. Megatron) or 
often expensive 
rounds of annotation 
and profiling

We also aim for 
automation; but our 

motivation and 
design has 
differences

https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2105.04663
https://arxiv.org/abs/1807.05358


Our setting: partitioning for researchers

Support fast paced research program, diverse accelerator stacks

○ Rich set of array programs (constrained only by a de-facto set of nd-array combinators)
○ Platform independent (i.e. compiler & runtime, GPU/TPU etc.)

Solution must enable speedy R&D cycle (vs. production needs)

○ Few minutes to a good-enough solution, scale with more resources
○ Scalability-target: HLO programs of 50k-300k instructions > 1k chips

Minimize annotation burden and maximize composability

○ Compose with other JAX APIs, such as pmap(), xmap(), pjit()
○ Eliminate need to annotate user code with sharding annotations



PartIR and its user facing API

device_layout = np.reshape(devices,  (2, 4))

mesh = Mesh(device_layout, ("batch", "model"))

update_fn, spec = automap(

  update_fn, mesh, ["model"], …)(*args)

XLA HLO

PartIR

PartIR:SPMD

Rewrite Engine

Simulation & static analyses
System 
Description 

cost/reward

AI problem: program 
transformations 
(actions), changing
the state (program),  
evaluated on an 
environment (compiler 
infra + simulators)

XLA HLO
(SPMD)

… XLA runtime
TPUs/GPUs



PartIR and its user facing API

device_layout = np.reshape(devices,  (2, 4))

mesh = Mesh(device_layout, ("batch", "model"))

update_fn, spec = automap(

  update_fn, mesh, ["model"], …)(*args)

XLA HLO

PartIR

PartIR:SPMD

XLA HLO
(SPMD)

…XLA runtime
TPUs/GPUs

PartIR is an MLIR dialect layered on 
top of another array dialect compiler, 
and runtime.

Includes:
- Statically shaped array types 
  shared with the array dialect
- Iteration and reduction constructs 
- Rewrite rules for manipulating these

Nothing really to do with 
partitioning!

Close relatives: Dex, Linalg, F-smooth  

PartIR:SPMD: No native array 
operations either, types that express 
distribution and replication, explicit 
redistribution instructions, SPMD ops 

Easy to reason about cost.

https://mlir.llvm.org/
https://github.com/google-research/dex-lang
https://mlir.llvm.org/docs/Dialects/Linalg/
https://arxiv.org/pdf/1806.02136.pdf


PartIR basics and rewrite system

* NB: we will ignore the meshes for this part of the talk and we will return later



PartIR constructs I: range values and slicing

Range type range<n> denotes set 0..(n-1). Use range values to slice:

       slice d x[r]

x : tensor<64x32x64xf32>

r : range<4>

slice 0 x[r] : tensor<16x32x64xf32>

slice 2 x[r] : tensor<64x32x16xf32>

A dimension 
index (attribute)

A tensor-typed 
value

A range-typed 
value



PartIR introduces a higher-order loop-like expression for this:

  y = tile d (\(r : range<k>) -> expr)

PartIR constructs II: tiling a dimension with a range

expr : tensor<32x(n/k)x16xf32>y : tensor<32xnx16xf32>

Semantics: a generator expression for the slices of a bigger array. It can 
be given either parallel or sequential semantics (depends on lowering)

A constant integer, which 
dimension to slice, here d=1



A similar higher-order operator:

 y = sum (\(r : range<k>) -> expr)

PartIR constructs III: reductions 

expr : tensor<32x16xf32>y : tensor<32x16xf32>

Semantics: sum together the k chunks of size <32x16xf32> to a single 
tensor of the same shape. Can be implemented with all-reduce in a 
distributed setting (see later)



Program equivalences in PartIR
Each tensor op in the underlying dialect is registered with information describing the 
equivalences of this op with tiling or reduction loops. Example:

x : tensor<nxmxf32>, y : tensor<mxoxf32>

matmul(x, y) == tile 0 (\r -> matmul(slice 0 x[r], y))

matmul(x, y) == tile 1 (\r -> matmul(x, slice 1 y[r]))

matmul(x, y) == sum (\r -> matmul(slice 1 x[r], slice 0 y[r]))

{ tile_mappings = [{1 -> (none, 1), 0 -> (0, none)], sum_mappings = [(1, 0)] }

Note: Data structure encodes information not present in the array programming 
model, but would be visible e.g. in Dex or Linalg.



Registering array ops mostly easy but can get hairy …
XLA Scatter Op

In the absence of formal semantics we have tests to 
guarantee that our registration is correct!



Rewriting: dumb-tiling actions

x : tensor<64x32xf32>

// dumb-tile(value=x,dim=0,range=16).

x ~~> tile 0 (\r:range<16> -> slice 0 x[r])

// dumb-tile(value=x,dim=1,range=16).

x ~~> tile 1 (\r:range<8> -> slice 1 x[r])



Propagation I: pushing forward

let x = tile 0 (\r -> e) in C[matmul(x,y)]
  ~~> let x = tile 0 (\r -> e) in C[tile 0 (\r -> matmul(slice 0 x[r], y))]

let x = tile 1 (\r -> e)) in C[matmul(x,y)]
  ~~> let x = tile 1 (\r -> e) in C[tile 1 (\r -> matmul(x, slice 1 y[r]))]

let x = tile 1 (\r -> e1) in … in

let y = tile 0 (\r -> e2) in C[matmul(x,y)]
  ~~> let x = tile 1 (\r -> e1) in … in

      let y = tile 0 (\r -> e2) in C[sum (\r -> matmul(slice 1 x[r], slice 0 y[r])]



Propagation II: pushing backward

let x = matmul(a,b) in C[slice 0 x[r]]

  ~~> let x = tile 0 (\r -> matmul(slice 0 a[r], b) in C[slice 0 x[r]]

let x = matmul(a,b) in C[slice 1 x[r]]

  ~~> let x = tile 0 (\r -> matmul(a, slice 1 b[r]) in C[slice 1 x[r]]



Propagation III: propagate sideways

let x = tile 1 (\r -> e) in C[matmul(x,y)]
  ~~(and y is not a ‘tile 0’-op)~~>

let x = tile 1 (\r -> e) in
let y’ = tile 0 (\r -> slice 0 y[r]) in C[matmul(x,y’)]

Dumb-tiles operands based on some other operands or results being tiled (in our implementation we 
call this “inference”)



Propagation IV: Fusion

Happens once a tile def meets a slice use (*and we are allowed to inline)

A bit like beta-reduction (cf. also the Dex paper), also like in F-smooth [ICFP’19]

let x = tile 0 (\r:range<k> -> expr) in C[slice 0 x[s]]
  ~~(s:range<k>)~~> 

let x = ... in C[expr{s/r}]



Towards lowering – device meshes



Options for lowering and executing PartIR programs

PartIR does not commit to a mode of execution, not even partitioning. Many options:

● Option 1: Lower tile d (\r -> e) and sum (\r -> e) to serial loops. May 
help lower peak memory on a single device (“micro-batching”)
 

● Option 2: Lower to some form of fork-join parallelism on multicore machines

We are interested in (Option 3) SPMD parallelism: a highly-performant, well-supported 
and widely used model for systems of accelerators (e.g. dominant model in JAX/XLA)

The first step is to introduce the concept of meshes.



Meshes: logical organization of devices as nd-arrays

device_layout = np.reshape(devices,  (2, 4))

mesh = Mesh(device_layout, ("batch", "model"))

update_fn, spec = automap(

  update_fn, mesh, ["model"], …)(*args)

server server

2x4 grid

2x4 
hierarchy

Similar concepts found in Mesh TF, JAX xmap(), and more …



Mesh-aware PartIR

PartIR iterations/reductions always have an associated mesh axis:

tile d axis (\(r : range<k>) -> expr)

sum axis (\r: range<k> -> expr)

A few well-formedness restrictions:

● Cannot double-nest the same axis
● Range type value must be equal to the corresponding axis size

Rewrite rules become stricter to ensure axes match and do not introduce 
non-well-formed programs.



Consequences of making the IR mesh-aware

1. Device assignment problem becomes trivial since each loop comes already 
annotated with a mesh axis.

2. Impose a strong prior/structure on the search space: rewrites will not need 
introduce entirely arbitrarily sized and wildly nested loops. Only:
a. Loops associated with one of (a few) axes
b. Nesting depth only up to the mesh rank

Note that (2) makes the search largely independent of the number of actual 
available devices, only dependent on the rank of the mesh



Example of mesh-aware rewriting
func @mlp(%x: tensor<16x256xf32>, %w: tensor<256x256xf32>, %u: tensor<256x256xf32>)  

     attributes {batch:2, shard:2} {

   %0 = partir.tile 0 “batch” (%r : !partir.range<2>) {

     %1 = partir.slice 0 %x[%r] 

     %2 = matmul(%1, %w) 

     %3 = matmul(%2, %u)

     partir.yield %3

   }

   return %0

}
  func @mlp(%x: tensor<>, %w: tensor<256x256xf32>,

    %u: tensor<256x256xf32>) attributes {batch:2, shard:2} {

    %0 = partir.tile 0 “batch” (%r : !partir.range<2>) {

      %1 = partir.slice 0 %x[%r]

      %2 = partir.sum “shard” (%s : !partir.range<2>) {

        %3 = partir.slice 1 %w[%s] 

        %4 = matmul(%1, %3) 

        %5 = partir.slice 0 %u[%s] 

        %6 = matmul(%4, %5) 

        partir.yield %6 }

      partir.yield %2 }

    return %0

  }

Actions:
tile(arg=%w,dim=1,axis=”shard”)
infer-propagate



PartIR:SPMD



An IR suitable as target for lowering PartIR

● Distributed types that express replication or distribution
● Explicit redistribution commands (type casts)
● Reduction instructions along given mesh axes
● Explicit SPMD ops consisting of base-dialect (non-distributed) computations

We will illustrate key concepts of lowering PartIR to PartIR:SPMD



%y1 = distribute(%y) : dist_tensor<[“xaxis”:range<2>],[8,16]>

%x1 = distribute(%x) : dist_tensor<[“xaxis”:range<2>],[32,8]>

%1 = spmd(%x1, %y1) [“xaxis”] (%r:range(2), 

                     %x_arg : tensor<32x8xf32>, 

                     %y_arg : tensor<8x16xf32>) { 

       %2 = matmul(slice 0 %x_arg[%r], %y_arg); 

       yield %2

     } : dist_tensor<[stacked “xaxis”:range<2>],[16,16]>

%2 = tile_stacked_tensor 0 (%1) :dist_tensor<[“xaxis”:range<2>], [32{0}, 16]>

%3 = undistribute(%2) : tensor<32x16xf32>

Lowering step 1: introduce SPMD op + lift free variables
%x : tensor<32x8xf32>

%y : tensor<8x16xf32>

%0 = tile 0 “xaxis” (%r:range<2>) { yield matmul(slice 0 %x[%r], %y)

Lift free variables %x and %y via 
replication, naively

Introduce a generic 
SPMD op on 
multiple arguments

SPMD op returns 
a “stacked” tensor

Tile (i.e. rearrange 
stacked tensor into 
distributed tensor

Explicitly un-distribute 
to preserve original type



Lowering step 2: transform replication to distribution
%y1 = distribute(%y) : dist_tensor<[“xaxis”:range<2>],[8,16]>

%x1 = distribute(%x) : dist_tensor<[“xaxis”:range<2>,[32,8]>

%1 = spmd_op(%x1, %y1) [“xaxis”] (%r:range<2>, 

                        %x_arg : tensor<32x8xf32>, 

                        %y_arg : tensor<8x16xf32>) { 

       %2 = matmul(slice 0 %x_arg[%r], %y_arg); 

       yield %2

     } : dist_tensor<[stacked “xaxis”:range<2>], [16,16]>

%2 = tile_stacked_tensor 0 (%1) : dist_tensor<[“xaxis”:range<2>],[32{0}, 16]>

%3 = undistribute(%2) : tensor<32x16xf32>

%y1 = distribute(%y) : dist_tensor<[“xaxis”:range<2>],[8,16]>

%x1 = distribute(%x) : dist_tensor<[“xaxis”:range<2>],[32,8]>

%x1 = distribute(%x) : dist_tensor<[“xaxis”:range<2>],[32{0},8]>

%1 = spmd_op(%x1, %y1) [“xaxis”] (%r:range<2>, 

                        %x_arg : tensor<16x8xf32>, 

                        %y_arg : tensor<8x16xf32>) { 

       %2 = matmul(%x_arg, %y_arg); 

       yield %2

     } : dist_tensor<[stacked “xaxis”:range<2>],[16,16]>

%2 = tile_stacked_tensor 0 (%1) : dist_tensor<[“xaxis”:range<2>, [32{0}, 16]>

%3 = undistribute(%2) : tensor<32x16xf32>



More lowering details

● For translating sum we introduce spmd op + reduction over relevant axis
● Supported: nested partir.tile and partir.sum, including non-perfect nests
● Fusion of distribution operators:

○ undistribute(distribute[τ](%x) ~> %x
○ distribute[τ](undistribute(%x) ~> %x 

    when type(%x) == τ 
○ distribute[τ](undistribute(%x) ~> redistribute %x 

    when globalType(type(%x) == globalType(τ)
● Final pass to convert functions to receive/return distributed types by removing 

initial distribute() calls and final undistribute() calls



Search design and initial results



Search design

Three components in our design:

● Rewrite actions to partition function arguments given a mesh
● Rules that propagate these actions throughout the program. 

○ Frequently results in partitioning other arguments accordingly 
(e.g. parameter -> opt. state for this param)

● Cost models based on memory and/or runtime estimation

Key insights:

● Users decide on mesh in advance (number and axes to partition over) 

⇒ search space becomes independent of the # of devices

● Mimic expert human partitioning by propagating argument decisions

⇒ search space largely independent of the # of total ops 



Transformers

Setup: GPT-3 style transformers of different 
sizes (e.g. 27 GB initial memory for 24 layers, 
device = TPU v3)

Known expert strategy: Megatron sharding

Status: Can achieve Megatron reliably (100% of 
25 seeds in nightly benchmarking) within <1k 
episodes

https://arxiv.org/abs/1909.08053


Performance analysis: layer grouping

ML models often have regular structure with 
the same blocks of layers repeated (e.g. 
Transformer, ResNet etc). High-level layer 
libraries (eg Haiku) maintain this structural 
information enabling us to detect repeated 
blocks.

Argument grouping: Deciding once per 
repeated block is key to scale to large depths.

Supported by automap via grouping hints. 

argument_grouping = argument_grouping_utils.get_repeating_params_haiku(

    abstract_params, 'transformer_block')

… = automap(..., partir_hints={'argument_grouping': argument_grouping}



Performance analysis: search time

Search performance: Search time scales with 
model size; ongoing work to speed up step time

Default automap setting: Use host resources, 
multi-threaded search

Caching search results: reuse across 
preemptions (and experiments) 

Very slow search step time!
few episodes ~ sec



Recap and Status on Search and APIs

A functioning JAX API 

Reach expected performance on a variety of models

Early integration of automap with pilot users

Not yet battle-tested

User hints on model structure required to reach good performance

Missing features (e.g. control flow support)

Also have an active foray into learnt policies for controlling the MCTS search, tune-in for 
the coming NeurIPS 2021 ML for Systems workshop for a presentation by Michael 
Schaarschmidt. 

Automap: Towards Ergonomic Automated Parallelism for ML Models

https://nips.cc/Conferences/2021/ScheduleMultitrack?event=21866#collapse35261

https://nips.cc/Conferences/2021/ScheduleMultitrack?event=21866#collapse35261
https://nips.cc/Conferences/2021/ScheduleMultitrack?event=21866#collapse35261


What’s Next and Conclusions



Very active area of work in our team

Current and planned work:

● Tiling through control flow constructs (almost ready)
● Padding design for non-divisible dimension by axes sizes
● Optimize search performance, introduce learnt policies and costs
● Revisit rewrite engine to understand effects of “races”
● More efficient ways to express choices without eager rewriting
● MCTS optimizations (caching of intermediate states vs recalculation)
● More expressive forms of parallelism (e.g. pipelining)
● APIs for distributed data loading and checkpointing
● …



Thank you!

● Need abstractions for partitioning in our compiler stacks that are 
platform-independent and flexible

● PartIR offers a principled approach to partitioning via semantics preserving 
sequences of really simple transforms, rooted in deforestation and fusion 
ideas from declarative programming

● Lower level type system that can reason about data redistribution
● Real workbench to explore program transformation through search, constraint 

solving, super-optimization, ML/RL 

The work is ramping up, keen to engage and collaborate!


