Legion: Programming Distributed,
Heterogeneous Architectures

Alex Aiken
Stanford

Joint work involving Stanford, NVIDIA, LANL & SLAC

e

Modern Supercomputers

|']:

@ Heterogeneity
@ Processor kinds
¢ Performance

@ Distributed Memory

@ Non-uniformin
size & speed

B SInvIDIA. @Al

How should we program these machines?

= A
) SINVIDIA. - Los Alamos SLAG|

AAAAAAAAAAAAAAAAAA
—————— EST.1943 —————

Principle

Data, not compute, matters most.

A

D)
2) INVIDIA. - LosAlamos [TV

Legion Programming Model Highlights

@ Data partitioning
@ Partitioning primitives
@ Mapping interface

@ Control replication

Partitioning
@ Partitioning data is necessary for parallelism

@ How should data be partitioned?

Partitioning

i
<ANVIDIA. ﬁZAlam

Partitioning

[2
) < NVIDIA. - LosAlamos °

Hierarchical Partitioning

e S
) < NVIDIA. - LosAlamos 9

Multiple Partitions

(£ A
<) INVIDIA. -LosAlam 10
p Ny = 2 NATIONA :STL_:Z?.ZO RRRRRR

Legion Example

task distribute charge(rpn, rsn, rgn : region(node),
rw : region(wij

Legion Example

task distribute charge(rpn, rsn, rgn : region(node),
rw : region(wire))
where
reads(rw.{in_ptr, out_ptr, current})
reduces +(rpn.charge, rsn.charge, rgn.charge)

{

1
Uses both views of the shared
nodes simultaneously.

12

Lesson 1: Compositionality

Multiple partitions of the same data are needed for
scalable software composition

@ Programs use multiple partitions of the same data

@ Consider two libraries
@ Written independently
@ Using different partitioning strategies
@ How can they be composed?

@ Examples
@ A simulation, a solver, and a visualization library
o A dgjta analysis pipeline

SANVIDIA. - Los Alamos %

AAAAAAAAAAAAAAAAAA
—————— EST.1943 ———

13

Partitioning Operators

@ Legion has a rich subsystem of partitioning
primitives

@ Each primitive is designed for efficient, scalable
parallel implementation

@ Combinations of primitives express sophisticated
partitioning strategies

14

Partitioning by Field

PartitionByField(nodes, nodes.SorP)

Nodes

1.4
2.5
0.3
6.2
1.4
0.0

o O A WODN -

<ANVIDIA. ;ﬂ’

Independent Partitions

@ Partitioning by field is an independent partition
@ A partitioning that depends on no other partitions
@ Another example: PartitionEqual(Region,5)

@ Legion also has dependent partitioning primitives
@ Compute new partitions from existing partitions
@ Allows regions to be co-partitioned easily
@ Set operations (union, intersection, difference of partitions)
¢ Image and preimage computations

e

=)
NVIDIA. - Los Alamos [EETIFYS] 16

Partition By Image

@ Treat a pointer field
as a function Region1 Region 2

@ Construct
compatible partition
of destination
region

17

Partition By Prelmage

@ Again treat a pointer
field as a function

@ Construct a compatible
partition of the source
region

Region 1

Region 2

18

Nodes and Edges

Nodes Edges

1 1.4 e e—
2 2.5 2

3 0.3

4 6.2 4

5 1.4 5

6 0.0 6

19

Dependent Partitioning Example

@ Goal: Compute the ghost node
partitions

@ For each piece

@ Start with the shared nodes of
that piece

@ Add adjacent shared nodes

@ Subtract out the shared nodes
of that piece

@ Computing adjacent nodes of
a piece requires an edge
partition

Dependent Partitioning Example

NP = PartitionByField(nodes, nodes.SorP)
Pri
Share

N

Partitions — arrays of subregions — are first
class entities in Legion

i 4 i
PrivatePa artitionByFie rivateNodes, nodes.piece)
SharedPart = PartitionByField(SharedNodes, nodes.piece)

EdgePartSrc = Prelmage(edges, SharedPart, edges.src_node)
EdgePartDst = Prelmage(edges, SharedPart, edges.dst_node)
EdgePart = EdgePartSrc .. EdgePartDst

SrcNodes = Image(SharedNodes, EdgePart, edges.src_node)
DstNodes = Image(SharedNodes, EdgePart, edges.dst_node)
» CGhostPart = (SrcNodes i DstNodes) - SharedPart

A
NVIDIA. - Los Alamos [EETIFYS] 21

Lesson 2: Partitioning Primitives

@ Using partitioning primitives is much better than
constructing partitions “by hand”
@ More maintainable
@ More performant
@ More scalable

@ Requires allowing multiple partitions of data

22

Legion Tasks

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{

calc_currents(
calc_currents(| p, |

subtasks

task calc_currents(...) :

task distribute_charge(...) :

P

) SINVIDIA. - L

(o]

NATI

o

NAL LABORATORY
EST.1943

23

Execution Model

task simulate_circuit(Region[Node] N, Region[Wires] W) :

{

calc_currents(
calc_currents(| p, |

Tasks are issued in program order.

24

Execution Model

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{

calc_currents(
calc_currents(| p, |

Tasks without dependences may
execute in parallel. Dependence

analysis is done dynamically.

25

Mapping Interface

@ Application selects:
@ Where tasks run
@ Where regions are placed

@ Mapping computed dynamically

@ Decouples correctness from
performance

Lesson 3: Mapping

@ Separation of mapping from program helps
enormously with portability

@ But also enables rapid experimentation and
autotuning even on a single machine
@ E.g., for different size inputs

@ Experience shows it is difficult to guess the best
mapping

@ Late binding of mapping saves recoding

A

§) SINVIDIA. - LosAlamos [ETIEYS

27

Legion Tasks

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{

while (not done) {

distribute_charge(| p,
distribute_charge(| o, |,

Who launches the subtasks?

28

Two Answers

@ Parent task running on one node
@ A centralized controller
@ And a scalability bottleneck

@ Parent task replicated across multiple nodes

@ N copies of parent task each do 1/Nth of the work
@ Launch 1/Nth of the subtasks
@ Keeps launch overhead constant in weak scaling

@ Replicas must still implement single task semantics
@ Dependences between different replicas must be preserved

A

<)
ZINVIDIA. - LosAlames TS

29

Lesson 4: Control Replication

@ Task launch overhead of centralized controller
grows rapidly with scale
@ Often cannot scale past 16 or 32 nodes

@ Control replication
@ Scales to 1,000’s of nodes
@ Does not change programming model

A

5) NVIDIA. -LosAlamos TS

30

Legion Programming Model Summary

@ Region-based data model
@ Similar to dataframes, relations, other collections
@ First-class partitioning
@ Allow arbitrary number of views (partitions) of the daa

@ Implicit task parallelism
@ Task may have arbitrary subtasks
@ Tasks declare privileges on regions

@ Tasks appear to execute in program order
@ Execute in parallel when data dependences permit

@ Portability by separating mapping from function
/A

|)
NVIDIA. - Los Alamos [EETIFYS]

31

Legion Runtime System

32

Legion Runtime System

T
T T T Parallel
2 > Legion Runtime — > Distribu_ted
T T T T Execution
4 _)
tOZ' r5, r7
Parent b Fou P2 Tasks : Regions :: Instructions : Registers
Task toirg 1
t3: rs, re y

Dep. Resolve _
AnalyssI I Distribute I ExecuteI Spec. ICompIeteI Commit

- A DIStrIb;LtEd Hierarchical Out-of-Order Task Processor

33

Dependence Analysis
disjoint
task simulate_circuit(Region[Node] N, Regiol [Wires] W) :
ReadWrite(N,W)

‘ read only

—) ;:.;alc_cu rrents(piece[0],)) 0));

memp calc_currents(piece[1]) 0))
distribute_charge(piece[0] DDU
distribute_charge(piece[1] DD s

}

task calc_currents(Piece p) :
ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :
Read(p.wires), Reduce(p.private, p.shared, p.ghost)

; &
<) INVIDIA. - LosAlamos 2

NATIONAL LABORATORY

task simulate_circuit(Region[Node] N, Region[Wires] W) :

{

Dependence Analysis

ReadWrite(N,W)

;:.:alc_cu rrents(piece[0],)) 0));
calc_currents(piece[1], Q))
distribute_charge(piece[O],DDD)

distribute_charge(piece[l],DDD);

}

task calc_currents(Piece p) :

ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :

Read(p.wires), Reduce(p.private, p.shared, p.ghost)

<z NVIDIA. »ﬁZAlamos

NATIONAL LABORATORY

WAR w/CC[1]

35

Mapping Interface

@ Application selects:
@ Where tasks run
@ Where regions are placed

@ Mapping computed dynamically

@ Decouple correctness from
performance

—
Dep.
Analysis

g -

A

U
AAAAAAAAAAAAAAAAAA
———— EST.1943 ————

Correctness Independent of Mapping

task simulate_circuit(Region[Node] N, Region[Wires] W) :
ReadWrite(N,W)
{

;:.:alc_cu rrents(piece[0],)) 0));

calc_currents(piece[1], Q))
E— distribute_charge(piece[O],D 0 D);

distribute_charge(piece[l],DDD);

}

task calc_currents(Piece p) :
ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :

ReadOnly(p.wires), Reduce(p.private, p.shared, p.ghost)
DCI0] CCI[1] CCIO]

[A
< <A NVIDIA. - LosAlamos 27

NATIONAL LABORATORY
————— EST.1943 ————

Distribution

After tasks are mapped
they are distributed to
their target nodes

Node O Node 1

Dep. Resolve _
AnalyssI I Distribute I ExecuteI Spec. ICompleteI Commit
38

ANVIDIA. Los Alamos

AAAAAAAAAAAAAAAAAA

Execution Wavefront
Mapping Wavefront

& Executed
@® Ready
Mapping

GC Wavefront

Dep. Resolve _
AnalysmI I Distribute I ExecuteI Spec. ICompleteI Commit
39

5\ <INVIDIA. - Lo3Alamos

NATIONAL LABORATORY
ST

Runtime Summary

@ A distributed hierarchical out-of-order task processor
@ Analogous to hardware processors

@ Can exploit parallelism implicitly:
@ Task-, data-, and nested-parallelism

@ Runtime builds task graph ahead of execution to hide
latency and costs of dynamic analysis

@ Decouples mapping decisions from correctness
@ Enables efficient porting and (auto) tuning

e

|)
NVIDIA. - Los Alamos [EETIFYS] 0

Results

AAAAAAAAAAAAAAAAAA
—————— EST.1943 —————

41

S3D: Combustion Simulation

@ Simulates chemical reactions
@ DME (30 species)
@ Heptane (52 species)
@ PRF (116 species)

@ Two parts
@ Physics

@ Nearest neighbor
communication

@ Data parallel

@ Chemistry
@ Local

@ Complex task parallelism Recent 3D DNS of auto-ignition with 30-species
Q Large Working sets/task DME chemistry (Bansal et al. 2011)

42

Weak Scaling: PRF on Titan
[Pl D114

60000

)
=
2

=
=

=
2

=
8

Throughput Per Node (Points/s

2
8
¥

@@ Leglon S3D 5 5 - T:'v._"\'
| ¥ ¥ MPI Fortran S3D § 5 - :
4 16 64 256 1024 2006 13824
Nodes

™
Ej SANVIDIA. fo?Alamos

AAAAAAAAAAAAAAAAAA

Fast Graph Analytics. [VLDB17]

@ Conventional wisdom:

@ Graph processing has trouble taking advantage of
distributed memory

@ High performance graph processing systems are
dominated by shared-memory CPU-based systems

@ Observation: Current GPUs provide much higher
memory bandwidth than current CPUs.

44

200

150

100

Elapsed time (ms)

o

Fast Graph Processing

211

[MapGraph

@ Groute

== Lux|

160

|: CuSha

400

3996

3797

2150

350

140

CF (1 iteration

11410
i 75 82
60
143 46
= é " Bo@obe10 - = § 500pB40 370
‘ ‘ S oLL. - S S LB
HW KR IN HW KR IN HW KR IN HW KR IN AM
PR (1 iteration) CC SSSP BC
[Best of (Ligra, Galois, Polymer) [Best of (PowerGraph, GraphX) [Medusa @ Groute B Lux
42 22 29 20 41 12 11 13

12 15 39 22 94 44
T T

28 15
T

29 11 39 13
T T

10

55 16
T

10

1080

had

RE=

ML

24

=
o
Q

Zb.oM

F

~

20

10

Elapsed time (ms)

10

5.23

.

RM UK GS TW RM UK
PR (1 iteration) CC

| AN

'NVIDIA. - LosAlamos

NATIONAL LABORATORY
EST.1943

T 10

05 ===
SEEE
[e]e]n]e)

RM UK
SSSP

0
TW GS

TW RM

UK
BC

GS

(1 iteratio

S é 0.0.M

45

Deep Neural Networks [ICML18]

@ In CNNs, data is commonly organized as 4D tensors.
@ tensor = [image, height, width, channel]

@ Existing tools parallelize the image dimension.

@ Ildea
@ Explore other parallelizable dimensions
@ Allow each layer to be parallelized differently
@ Automate the search over possible parallelizations

A

e ~)
ZINVIDIA. - Los Alamos [ETIIVS) 46

Results

(1) (1) (1) (2) (4) (1) (1) (1) (2) (4) (1) (1) (1) (2) (4)
AlexNet VGG-16 Inception-v3

o

g mmm Model Parallelism Data Parallelism mmm OWT Parallelism Layer-wise Parallelism
0

»n 12000 3000 3000
—

9]

% 10000 2500 2500
)

% 8000 2000 2000
£

— 6000 1500 1500
>

s

S, 4000 1000 1000
3

£ 2000 500 500
|_

2 o ° ;
= 1GPU 2GPUs 4GPUs 8GPUs 16 GPUs 1GPU 2GPUs 4GPUs 8GPUs 16 GPUs 1GPU 2GPUs 4 GPUs 8GPUs 16 GPUs
©

—

|_

-~

V1 of fitenes 41
NATIONAL LABORATORY
EST.1943

DLRM Training Performance

4-Data Parallelism -A-Model Parallelism -@-FlexFlow
200000

180000
efmad
= T 160000
3t
g’ o 140000 g—
3 9 120000 B
£ T inooto o
0 o
';, 2 80000 -
£g =
S £ 60000 -
© 0
Z 3 40000 l
20000

1 2 6 12 24 48 96

Number of GPUs
facebook

3
<2 NVIDIA. @Alamos B

Exploiting Multiple Partitions

.
~

Data parallelism

— -Q%

\—/'\'III(

ple

Sam

A faster strategy using multiple partltlons

49

Legate NumPy [SC19]

@ Legate NumPy is a drop-in replacement for NumPy
@ Implemented on top of Legion

@ One line change to use Legate
@ “import legate” instead of “import numpy”

@ Now cuNumeric ...

A

5) NVIDIA. -LosAlamos TS

50

Legate Results

103 T i i ! 1 I ! T T

o1 A ‘ '

Throughput (lterations/s)

=

TRt pesassn o o brssn cwnancers o ssanenm, 0 o

V:—V Legate Clé’U ©X0) I:\lumPy
A-A Legate GPU)< Intel (MKL) NumPy

> > Dask Auto {1 CuPy
< <{ Dask Tuned

-1 1 : 1 1 B 1 1 2 1 1 3 | 1
4 13860 19600 27566 39204 55696 78766 111392 157532 222784
(1 Sockets) (2 Sockets) (4 Sockets) (8 Sockets) (16 Sockets) (32 Sockets) (64 Sockets) (128 Sockets) (256 Sockets)
Matrix Dimension

VA
Vi

L Fa—

2
<ANVIDIA. ﬁZAlamos

EST.1943

Perspectives

= A
) <YNVIDIA. -'Los Alamos %

AAAAAAAAAAAAAAAAAA
—————— EST.1943 —————

52

Separating Concerns

@ Current practice entangles functionality, scheduling,
and mapping
@ Heuristics hidden in the runtime system
@ Or exposed ala MPI + OpenMP + CUDA

@ Alternative
@ Specify functionality and dependencies first
@ Then focus on mapping and scheduling for a machine

A

<)
ZANVIDIA. - LosAlamos [ETIFYS]

53

Programmer Productivity

@ In the end, it’s all about productivity

@ How much work is needed to achieve a desired level
of performance?

@ Legion philosophy
@ Expressive data model, compositionality
@ Requires more initial work from the programmer

@ But makes later stages easier & more flexible
@ E.g., allows easy exploration of alternative mappings

A

e ~)
ZINVIDIA. - Los Alamos [ETIIVS) 54

Legion

Legion website: http://legion.stanford.edu

55

