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Modern Supercomputers
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@ Heterogeneity
@ Processor kinds
¢ Performance

@ Distributed Memory

@ Non-uniformin
size & speed
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How should we program these machines?
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Principle

Data, not compute, matters most.
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Legion Programming Model Highlights

@ Data partitioning
@ Partitioning primitives
@ Mapping interface

@ Control replication




Partitioning
@ Partitioning data is necessary for parallelism

@ How should data be partitioned?




Partitioning
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Partitioning
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Hierarchical Partitioning
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Multiple Partitions
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Legion Example

task distribute charge(rpn, rsn, rgn : region(node),
rw : region(wij




Legion Example

task distribute charge(rpn, rsn, rgn : region(node),
rw : region(wire))
where
reads(rw.{in_ptr, out_ptr, current})
reduces +(rpn.charge, rsn.charge, rgn.charge)

{

1
Uses both views of the shared
nodes simultaneously.

12



Lesson 1: Compositionality

Multiple partitions of the same data are needed for
scalable software composition

@ Programs use multiple partitions of the same data

@ Consider two libraries
@ Written independently
@ Using different partitioning strategies
@ How can they be composed?

@ Examples
@ A simulation, a solver, and a visualization library
o A dgjta analysis pipeline
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Partitioning Operators

@ Legion has a rich subsystem of partitioning
primitives

@ Each primitive is designed for efficient, scalable
parallel implementation

@ Combinations of primitives express sophisticated
partitioning strategies
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Partitioning by Field

PartitionByField(nodes, nodes.SorP)

Nodes
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Independent Partitions

@ Partitioning by field is an independent partition
@ A partitioning that depends on no other partitions
@ Another example: PartitionEqual(Region,5)

@ Legion also has dependent partitioning primitives
@ Compute new partitions from existing partitions
@ Allows regions to be co-partitioned easily
@ Set operations (union, intersection, difference of partitions)
¢ Image and preimage computations
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Partition By Image

@ Treat a pointer field
as a function Region1  Region 2

@ Construct
compatible partition
of destination
region
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Partition By Prelmage

@ Again treat a pointer
field as a function

@ Construct a compatible
partition of the source
region

Region 1

Region 2
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Nodes and Edges

Nodes Edges
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Dependent Partitioning Example

@ Goal: Compute the ghost node
partitions

@ For each piece

@ Start with the shared nodes of
that piece

@ Add adjacent shared nodes

@ Subtract out the shared nodes
of that piece

@ Computing adjacent nodes of
a piece requires an edge
partition




Dependent Partitioning Example

NP = PartitionByField(nodes, nodes.SorP)
Pri
Share

N

Partitions — arrays of subregions — are first
class entities in Legion

i 4 i
PrivatePa artitionByFie rivateNodes, nodes.piece)
SharedPart = PartitionByField(SharedNodes, nodes.piece)

EdgePartSrc = Prelmage(edges, SharedPart, edges.src_node)
EdgePartDst = Prelmage(edges, SharedPart, edges.dst_node)
EdgePart = EdgePartSrc .. EdgePartDst

SrcNodes = Image(SharedNodes, EdgePart, edges.src_node)
DstNodes = Image(SharedNodes, EdgePart, edges.dst_node)
» CGhostPart = (SrcNodes i DstNodes) - SharedPart
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Lesson 2: Partitioning Primitives

@ Using partitioning primitives is much better than
constructing partitions “by hand”
@ More maintainable
@ More performant
@ More scalable

@ Requires allowing multiple partitions of data
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Legion Tasks

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{

calc_currents(
calc_currents(| p, |

subtasks

task calc_currents(...) :

task distribute_charge(...) :

P
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Execution Model

task simulate_circuit(Region[Node] N, Region[Wires] W) :

{

calc_currents(
calc_currents(| p, |

Tasks are issued in program order.
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Execution Model

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{

calc_currents(
calc_currents(| p, |

Tasks without dependences may
execute in parallel. Dependence

analysis is done dynamically.
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Mapping Interface

@ Application selects:
@ Where tasks run
@ Where regions are placed

@ Mapping computed dynamically

@ Decouples correctness from
performance




Lesson 3: Mapping

@ Separation of mapping from program helps
enormously with portability

@ But also enables rapid experimentation and
autotuning even on a single machine
@ E.g., for different size inputs

@ Experience shows it is difficult to guess the best
mapping

@ Late binding of mapping saves recoding

A
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Legion Tasks

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{

while (not done) {

distribute_charge( | p,
distribute_charge(| o, |,

Who launches the subtasks?
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Two Answers

@ Parent task running on one node
@ A centralized controller
@ And a scalability bottleneck

@ Parent task replicated across multiple nodes

@ N copies of parent task each do 1/Nth of the work
@ Launch 1/Nth of the subtasks
@ Keeps launch overhead constant in weak scaling

@ Replicas must still implement single task semantics
@ Dependences between different replicas must be preserved
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Lesson 4: Control Replication

@ Task launch overhead of centralized controller
grows rapidly with scale
@ Often cannot scale past 16 or 32 nodes

@ Control replication
@ Scales to 1,000’s of nodes
@ Does not change programming model

A
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Legion Programming Model Summary

@ Region-based data model
@ Similar to dataframes, relations, other collections
@ First-class partitioning
@ Allow arbitrary number of views (partitions) of the daa

@ Implicit task parallelism
@ Task may have arbitrary subtasks
@ Tasks declare privileges on regions

@ Tasks appear to execute in program order
@ Execute in parallel when data dependences permit

@ Portability by separating mapping from function
/A
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Legion Runtime System
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Legion Runtime System

T
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- A DIStrIb;LtEd Hierarchical Out-of-Order Task Processor
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Dependence Analysis
disjoint
task simulate_circuit(Region[Node] N, Regiol [Wires] W) :
ReadWrite(N,W)

‘ read only

—) ;:.;alc_cu rrents(piece[0], ) ) 0));

memp calc_currents(piece[1] ) 0))
distribute_charge(piece[0] DDU
distribute_charge(piece[1] DD s

}

task calc_currents(Piece p) :
ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :
Read(p.wires), Reduce(p.private, p.shared, p.ghost)
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task simulate_circuit(Region[Node] N, Region[Wires] W) :

{

Dependence Analysis

ReadWrite(N,W)

;:.:alc_cu rrents(piece[0], ) ) 0));
calc_currents(piece[1], Q) )
distribute_charge(piece[O],DDD)

distribute_charge(piece[l],DDD);

}

task calc_currents(Piece p) :

ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :

Read(p.wires), Reduce(p.private, p.shared, p.ghost)
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Mapping Interface

@ Application selects:
@ Where tasks run
@ Where regions are placed

@ Mapping computed dynamically

@ Decouple correctness from
performance
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Correctness Independent of Mapping

task simulate_circuit(Region[Node] N, Region[Wires] W) :
ReadWrite(N,W)
{

;:.:alc_cu rrents(piece[0], ) ) 0));

calc_currents(piece[1], Q) )
E— distribute_charge(piece[O],D 0 D);

distribute_charge(piece[l],DDD);

}

task calc_currents(Piece p) :
ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :

ReadOnly(p.wires), Reduce(p.private, p.shared, p.ghost)
DCI0] CCI[1] CCIO]
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Distribution

After tasks are mapped
they are distributed to
their target nodes

Node O Node 1

Dep. Resolve _
AnalyssI I Distribute I ExecuteI Spec. ICompleteI Commit
38
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Execution Wavefront
Mapping Wavefront

&  Executed
@® Ready
Mapping

GC Wavefront

Dep. Resolve _
AnalysmI I Distribute I ExecuteI Spec. ICompleteI Commit
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Runtime Summary

@ A distributed hierarchical out-of-order task processor
@ Analogous to hardware processors

@ Can exploit parallelism implicitly:
@ Task-, data-, and nested-parallelism

@ Runtime builds task graph ahead of execution to hide
latency and costs of dynamic analysis

@ Decouples mapping decisions from correctness
@ Enables efficient porting and (auto) tuning

e
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Results
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S3D: Combustion Simulation

@ Simulates chemical reactions
@ DME (30 species)
@ Heptane (52 species)
@ PRF (116 species)

@ Two parts
@ Physics

@ Nearest neighbor
communication

@ Data parallel

@ Chemistry
@ Local

@ Complex task parallelism Recent 3D DNS of auto-ignition with 30-species
Q Large Working sets/task DME chemistry (Bansal et al. 2011)

42




Weak Scaling: PRF on Titan
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Fast Graph Analytics. [VLDB17]

@ Conventional wisdom:

@ Graph processing has trouble taking advantage of
distributed memory

@ High performance graph processing systems are
dominated by shared-memory CPU-based systems

@ Observation: Current GPUs provide much higher
memory bandwidth than current CPUs.
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Fast Graph Processing
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Deep Neural Networks [ICML18]

@ In CNNs, data is commonly organized as 4D tensors.
@ tensor = [image, height, width, channel]

@ Existing tools parallelize the image dimension.

@ Ildea
@ Explore other parallelizable dimensions
@ Allow each layer to be parallelized differently
@ Automate the search over possible parallelizations

A

e ~ )
ZINVIDIA. - Los Alamos [ETIIVS) 46



Results
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DLRM Training Performance
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Exploiting Multiple Partitions
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Data parallelism
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A faster strategy using multiple partltlons
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Legate NumPy [SC19]

@ Legate NumPy is a drop-in replacement for NumPy
@ Implemented on top of Legion

@ One line change to use Legate
@ “import legate” instead of “import numpy”

@ Now cuNumeric ...

A

5) NVIDIA. -LosAlamos TS

50



Legate Results
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Perspectives
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Separating Concerns

@ Current practice entangles functionality, scheduling,
and mapping
@ Heuristics hidden in the runtime system
@ Or exposed ala MPI + OpenMP + CUDA

@ Alternative
@ Specify functionality and dependencies first
@ Then focus on mapping and scheduling for a machine

A
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Programmer Productivity

@ In the end, it’s all about productivity

@ How much work is needed to achieve a desired level
of performance?

@ Legion philosophy
@ Expressive data model, compositionality
@ Requires more initial work from the programmer

@ But makes later stages easier & more flexible
@ E.g., allows easy exploration of alternative mappings

A
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Legion

Legion website: http://legion.stanford.edu
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