
1

Alex Aiken
Stanford

Legion: Programming Distributed,
Heterogeneous Architectures

Joint work involving Stanford, NVIDIA, LANL & SLAC

2

Modern Supercomputers

Heterogeneity
Processor kinds
Performance

Distributed Memory
Non-uniform in
size & speed

3

How should we program these machines?

4

Principle

Data, not compute, matters most.

5

Legion Programming Model Highlights

Data partitioning

Partitioning primitives

Mapping interface

Control replication

6

Partitioning

Partitioning data is necessary for parallelism

How should data be partitioned?

7

Partitioning

8

Partitioning

SP

N

9

Hierarchical Partitioning

N

s1 s3…

SP

p1 p3…

10

g1 g3…

Multiple Partitions

N

s1 s3…

SP

p1 p3…

11

Legion Example

task distribute_charge(rpn, rsn, rgn : region(node),
rw : region(wire))

where
reads(rw.{in_ptr, out_ptr, current})
reduces +(rpn.charge, rsn.charge, rgn.charge)

{

…

}

Tasks are the unit of
parallel execution.

Regions are n-
dimensional tables
(tensors) with typed

columns (fields).

Privileges declare how a task
will use its region arguments.

12

Legion Example

task distribute_charge(rpn, rsn, rgn : region(node),
rw : region(wire))

where
reads(rw.{in_ptr, out_ptr, current})
reduces +(rpn.charge, rsn.charge, rgn.charge)

{

…

}

Uses both views of the shared
nodes simultaneously.

g1 g3…

N

s1 s3…

SP

p1 p3…

13

Lesson 1: Compositionality

Multiple partitions of the same data are needed for
scalable software composition

Programs use multiple partitions of the same data

Consider two libraries
Written independently
Using different partitioning strategies
How can they be composed?

Examples
A simulation, a solver, and a visualization library
A data analysis pipeline

14

Partitioning Operators

Legion has a rich subsystem of partitioning
primitives

Each primitive is designed for efficient, scalable
parallel implementation

Combinations of primitives express sophisticated
partitioning strategies

15

Index Voltage SorP
1 1.4 shared
2 2.5 private
3 0.3 shared
4 6.2 shared
5 1.4 private
6 0.0 shared
… … …

Index Voltage SorP
1 1.4
2 2.5
3 0.3
4 6.2
5 1.4
6 0.0
… …

Partitioning by Field

Nodes

PartitionByField(nodes, nodes.SorP)

16

Independent Partitions

Partitioning by field is an independent partition
A partitioning that depends on no other partitions
Another example: PartitionEqual(Region,5)

Legion also has dependent partitioning primitives
Compute new partitions from existing partitions
Allows regions to be co-partitioned easily
Set operations (union, intersection, difference of partitions)
Image and preimage computations

17

Partition By Image

Treat a pointer field
as a function

Construct
compatible partition
of destination
region

Region 1 Region 2

18

Partition By PreImage

Again treat a pointer
field as a function

Construct a compatible
partition of the source
region

Region 1 Region 2

19

Index Voltage SorP
1 1.4 shared
2 2.5 private
3 0.3 shared
4 6.2 shared
5 1.4 private
6 0.0 shared
… … …

Index Voltage SorP
1 1.4
2 2.5
3 0.3
4 6.2
5 1.4
6 0.0
… …

Nodes and Edges

Nodes

Index Src Dst
1
2
3
4
5
6

Edges

20

Dependent Partitioning Example

Goal: Compute the ghost node
partitions

For each piece
Start with the shared nodes of
that piece
Add adjacent shared nodes
Subtract out the shared nodes
of that piece

Computing adjacent nodes of
a piece requires an edge
partition

21

Dependent Partitioning Example

NP = PartitionByField(nodes, nodes.SorP)
PrivateNodes = NP[private]
SharedNodes = NP[shared]

PrivatePart = PartitionByField(PrivateNodes, nodes.piece)
SharedPart = PartitionByField(SharedNodes, nodes.piece)

EdgePartSrc = PreImage(edges, SharedPart, edges.src_node)
EdgePartDst = PreImage(edges, SharedPart, edges.dst_node)
EdgePart = EdgePartSrc ⌴ EdgePartDst

SrcNodes = Image(SharedNodes, EdgePart, edges.src_node)
DstNodes = Image(SharedNodes, EdgePart, edges.dst_node)
GhostPart = (SrcNodes ⌴ DstNodes) - SharedPart

Partitions – arrays of subregions – are first
class entities in Legion

22

Lesson 2: Partitioning Primitives

Using partitioning primitives is much better than
constructing partitions “by hand”

More maintainable
More performant
More scalable

Requires allowing multiple partitions of data

23

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{

…
calc_currents(, ,);
calc_currents(, ,);
distribute_charge(, ,);
distribute_charge(, ,);
…

}

Legion Tasks

p0

p1 s1

s0 g0

g1

p0 s0 g0

p1 s1 g1

task calc_currents(…) :

task distribute_charge(…) :

subtasks

24

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{

…
calc_currents(, ,);
calc_currents(, ,);
distribute_charge(, ,);
distribute_charge(, ,);
…

}

Execution Model

Tasks are issued in program order.

p0

p1 s1

s0 g0

g1

p0 s0 g0

p1 s1 g1

25

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{

…
calc_currents(, ,);
calc_currents(, ,);
distribute_charge(, ,);
distribute_charge(, ,);
…

}

Execution Model

Tasks without dependences may
execute in parallel. Dependence

analysis is done dynamically.

p0

p1 s1

s0 g0

g1

p0 s0 g0

p1 s1 g1

26

Mapping Interface
Application selects:

Where tasks run
Where regions are placed

Mapping computed dynamically

Decouples correctness from
performance

26

t1

t2

t3

t4
t5

rc

rw

rw1 rw2

rn

rn1 rn2

$

$

$

$

N
U
M
A

N
U
M
A

FB

D
R
A
M

x86

CUDA

x86

x86

x86

27

Lesson 3: Mapping

Separation of mapping from program helps
enormously with portability

But also enables rapid experimentation and
autotuning even on a single machine

E.g., for different size inputs

Experience shows it is difficult to guess the best
mapping

Late binding of mapping saves recoding

28

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{
while (not done) {

…
calc_currents(, ,);
calc_currents(, ,);
distribute_charge(, ,);
distribute_charge(, ,);
…

}
}

Legion Tasks

p0

p1 s1

s0 g0

g1

p0 s0 g0

p1 s1 g1

Who launches the subtasks?

29

Two Answers

Parent task running on one node
A centralized controller
And a scalability bottleneck

Parent task replicated across multiple nodes
N copies of parent task each do 1/Nth of the work

Launch 1/Nth of the subtasks
Keeps launch overhead constant in weak scaling
Replicas must still implement single task semantics

Dependences between different replicas must be preserved

30

Lesson 4: Control Replication

Task launch overhead of centralized controller
grows rapidly with scale

Often cannot scale past 16 or 32 nodes

Control replication
Scales to 1,000’s of nodes
Does not change programming model

31

Legion Programming Model Summary
Region-based data model

Similar to dataframes, relations, other collections
First-class partitioning
Allow arbitrary number of views (partitions) of the daa

Implicit task parallelism
Task may have arbitrary subtasks
Tasks declare privileges on regions

Tasks appear to execute in program order
Execute in parallel when data dependences permit

Portability by separating mapping from function

32

33

Legion Runtime System

t0:: r5, r7
t1: r0, r2
t2: r1, r2
t3: r4, r6

Legion Runtime
Parallel

Distributed
Execution

Tasks : Regions :: Instructions : Registers

Dep.
Analysis DistributeMap Execute Resolve

Spec. Complete Commit

A Distributed Hierarchical Out-of-Order Task Processor

T

T T T

T T T T

Parent
Task

34

Dependence Analysis

CC[0]CC[1]

task simulate_circuit(Region[Node] N, Region[Wires] W) :
ReadWrite(N,W)

{
…
calc_currents(piece[0],);
calc_currents(piece[1]);
distribute_charge(piece[0]);
distribute_charge(piece[1]);
…

}

task calc_currents(Piece p) :
ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :
Read(p.wires), Reduce(p.private, p.shared, p.ghost)

N

SP

p0 p1 s0 s1 g0 g1

disjoint

read only

35

Dependence Analysis

DC[0]

task simulate_circuit(Region[Node] N, Region[Wires] W) :
ReadWrite(N,W)

{
…
calc_currents(piece[0],);
calc_currents(piece[1],);
distribute_charge(piece[0],);
distribute_charge(piece[1],);
…

}

task calc_currents(Piece p) :
ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :
Read(p.wires), Reduce(p.private, p.shared, p.ghost)

N

SP

p0 p1 s0 s1 g0 g1

WAR w/CC[1]

CC[1] CC[0]

36

Mapping Interface
Application selects:

Where tasks run
Where regions are placed

Mapping computed dynamically

Decouple correctness from
performance

36

t1

t2

t3

t4
t5

rc

rw

rw1 rw2

rn

rn1 rn2

$

$

$

$

N
U
M
A

N
U
M
A

FB

D
R
A
M

x86

CUDA

x86

x86

x86
Dep.

Analysis DistributeMap Execute Resolve
Spec. Complete Commit

37

Correctness Independent of Mapping
N

SP

p0 p1 s0 s1 g0 g1

Node 1 Node 0

CC[1] CC[0]DC[0]

copy

task simulate_circuit(Region[Node] N, Region[Wires] W) :
ReadWrite(N,W)

{
…
calc_currents(piece[0],);
calc_currents(piece[1],);
distribute_charge(piece[0],);
distribute_charge(piece[1],);
…

}

task calc_currents(Piece p) :
ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :
ReadOnly(p.wires), Reduce(p.private, p.shared, p.ghost)

38

Distribution

Dep.
Analysis DistributeMap Execute Resolve

Spec. Complete Commit

Node 0 Node 1

T1 T2After tasks are mapped
they are distributed to
their target nodes

39

¸
ˇ

Executed

Ready

Mapping
¸
ˇ

¸ˇ ¸
ˇ

GC Wavefront

Execution Wavefront
Mapping Wavefront

Dep.
Analysis DistributeMap Execute Resolve

Spec. Complete Commit

40

Runtime Summary

A distributed hierarchical out-of-order task processor
Analogous to hardware processors

Can exploit parallelism implicitly:
Task-, data-, and nested-parallelism

Runtime builds task graph ahead of execution to hide
latency and costs of dynamic analysis

Decouples mapping decisions from correctness
Enables efficient porting and (auto) tuning

41

42

S3D: Combustion Simulation
Simulates chemical reactions

DME (30 species)
Heptane (52 species)
PRF (116 species)

Two parts
Physics

Nearest neighbor
communication
Data parallel

Chemistry
Local
Complex task parallelism

Large working sets/task
5

Planning the science simulation

•  Recent 3D simulation on Jaguar
was used to extrapolate and plan
a target Titan simulation

•  Planned simulation will have more
grid points and/or larger chemistry

•  Will need a month on 12,000
hybrid nodes of Titan

Figure 5: Computational domain and grid to be used for simulations of the CRF HCCI engine.

Figure 6: Reaction and diffusion structures for OH radical during the third stage thermal explosion of a high-pressure
DME fueled autoignition process.Recent 3D DNS of auto-ignition with 30-species

DME chemistry (Bansal et al. 2011)

43

Weak Scaling: PRF on Titan
[PLDI14]

3X

7X

44

Fast Graph Analytics. [VLDB17]

Conventional wisdom:
Graph processing has trouble taking advantage of
distributed memory

High performance graph processing systems are
dominated by shared-memory CPU-based systems

Observation: Current GPUs provide much higher
memory bandwidth than current CPUs.

45

Fast Graph Processing

Performance comparison on a single GPU (lower is better).

Performance comparison among different graph processing frameworks (lower is better).

Competitive with state-of-the-art single-GPU
graph processing engines.

Orders of magnitude speedup compared to state-of-
the-art distributed/shared memory CPU systems.

46

In CNNs, data is commonly organized as 4D tensors.
tensor = [image, height, width, channel]

Existing tools parallelize the image dimension.

Idea
Explore other parallelizable dimensions
Allow each layer to be parallelized differently
Automate the search over possible parallelizations

Deep Neural Networks [ICML18]

47

Results

Figure 1: Training throughput
(images/second) on 16 GPUs.

Figure 2: Data transfers in each step
on 16 GPUs with a minibatch size of

512.

48

DLRM Training Performance

49

Data parallelism

A faster strategy using multiple partitions

Parameter

Sa
m
pl
e GPU1

GPU2

GPU3

GPU4

49

Exploiting Multiple Partitions

50

Legate NumPy [SC19]

Legate NumPy is a drop-in replacement for NumPy
Implemented on top of Legion

One line change to use Legate
“import legate” instead of “import numpy”

Now cuNumeric …

51

Legate Results

52

53

Separating Concerns

Current practice entangles functionality, scheduling,
and mapping

Heuristics hidden in the runtime system
Or exposed ala MPI + OpenMP + CUDA

Alternative
Specify functionality and dependencies first
Then focus on mapping and scheduling for a machine

54

Programmer Productivity

In the end, it’s all about productivity

How much work is needed to achieve a desired level
of performance?

Legion philosophy
Expressive data model, compositionality
Requires more initial work from the programmer
But makes later stages easier & more flexible

E.g., allows easy exploration of alternative mappings

55

Legion

Legion website: http://legion.stanford.edu

