
Automating Finite Element Simulation by Generating

Tensor Computations from Vector Calculus

David A. Ham1 and the Firedrake team

January 2022

1Department of Mathematics, Imperial College London

1

Current Firedrake Team

• Lawrence Mitchell, Durham: Solvers, preconditioners, funny elements, data

structures, the kitchen sink . . .

• Koki Sagiyama, Imperial: Multidomain, coupling and I/O

• Jack Betteridge, Imperial: Everything HPC

• Nacime Bouziani, Imperial: External operators

• Sophia Vorderwuelbecke, Imperial: High order methods, SLATE, vectorisation

• Reuben Nixon-Hill, Imperial: Interpolation and data assimilation

• Connor Ward, Imperial: Code generation infrastructure and performance

• Robert Kirby, Baylor: Weird elements

2

So you want to solve a PDE using finite elements

1. Write down a residual, boundary/initial conditions, forcings, parametrisations.

2. Choose suitable finite element paces and quadrature rules.

3. Choose a suitable (non)-linear solver and preconditioning strategy.

4. Derive and implement the loops over elements, facets, basis functions, and

quadrature points.

5. Implement parallel communication.

6. Implement and compose solvers and preconditioners.

7. Now do it all again for the adjoint.

8. . . .

3

So you want to solve a PDE using finite elements

1. Write down a residual, boundary/initial conditions, forcings, parametrisations.

2. Choose suitable finite element paces and quadrature rules.

3. Choose a suitable (non)-linear solver and preconditioning strategy.

4. Derive and implement the loops over elements, facets, basis functions, and

quadrature points.

5. Implement parallel communication.

6. Implement and compose solvers and preconditioners.

7. Now do it all again for the adjoint.

8. . . .

You specify the maths, and Firedrake does the rest. But how?

4

We’ll need a PDE then

Burgers Equation:

∂u

∂t
+ (u · ∇)u − ν∇2u = 0 (1)

(n · ∇)u = 0 on Γ (2)

in weak form: find u ∈ V such that∫
Ω

∂u

∂t
· v + ((u · ∇)u) · v + ν∇u · ∇v dx = 0 ∀v ∈ V0. (3)

For simplicity, use backward Euler in time. At each timestep find un+1 ∈ V0 such that:∫
Ω

un+1 − un

dt
· v + ((un+1 · ∇)un+1) · v + ν∇un+1 · ∇v dx = 0 ∀v ∈ V0. (4)

5

It’s all about the composable abstractions

Abstract Define symbolic representations for numerical objects and algorithms.

Compose Form larger algorithms by plugging together smaller ones.

6

Burgers Equation in code

1 from firedrake import *

2 n = 30

3 mesh = UnitSquareMesh(n, n)

4 V = VectorFunctionSpace(mesh, "CG", 2)

5 u_ = Function(V, name="Velocity")

6 u = Function(V, name="VelocityNext")

7 v = TestFunction(V)

8 x = SpatialCoordinate(mesh)

9 ic = project(as_vector([sin(pi*x[0]), 0]), V)

10 u_.assign(ic)

11 u.assign(ic)

12 nu = 0.0001

13 timestep = 1.0/n

14 F = (inner((u - u_)/timestep, v) + inner(dot(u,nabla_grad(u)), v) + nu*inner(grad(u), grad(v)))*dx

15 t = 0.0

16 end = 0.5

17 while (t <= end):

18 solve(F == 0, u) # <= all the magic happens here.

19 u_.assign(u)

20 t += timestep

7

How does the automation work?

We solve PDEs with Newton-like methods:

unext = ucur −
(
∂F (ucur)

∂u

)−1

F (ucur)

So our solver is the composition of a Newton-like algorithm with functions that

assemble the residual F and the Jacobian ∂F/∂u.

8

Firedrake does the symbolic maths you would do. . .

We need to differentiate our residual, F with respect to u. How does a computer do

that? Take the nonlinear term from Burgers’ equation as an example. You write:

inner(dot(u,nabla_grad(u)), v)

But the computer sees: inner

dot v

∇

u

9

A little algorithmic differentiation

∂(u · ∇u) · v
∂u

· ũ =?

inner

dot v

∇

u ũ

10

A little algorithmic differentiation

inner

dot v

∇

u

∇

ũ

11

A little algorithmic differentiation

inner

dot v

∇

u

+

dotdot

∇

u

∇

ũ

12

A little algorithmic differentiation

inner

dot v

∇

u

0+

dotdot

∇

u

∇

ũ

13

A little algorithmic differentiation

inner

dot v

∇

u

inner

v+

dotdot

∇

u

∇

ũ

∂(u · ∇u) · v
∂u

· ũ = (ũ · ∇u + u · ∇ũ) · v

14

Operator evaluation

We now have F (u) and ∂F (u)/∂u as symbolic objects, but we need to evaluate those

integrals.

Same principles: visit the expression tree node by node.

15

Operator evaluation

Evaluate integrals element-wise:∫
Ω
∇φi · ∇φj dx =

∑
c

∫
c
∇φi · ∇φj dx

Transform to the reference cell:∫
c
∇φi · ∇φj dx =

∫
c0

J−T∇Φî · J
−T∇Φĵ |J|dX

where capital letters indicate quantities in reference cell coordinates.

16

Operator evaluation

Evaluate integrals element-wise:∫
Ω
∇φi · ∇φj dx =

∑
c

∫
c
∇φi · ∇φj dx

Transform to the reference cell:∫
c
∇φi · ∇φj dx =

∫
c0

J−T∇Φî · J
−T∇Φĵ |J|dX

where capital letters indicate quantities in reference cell coordinates.

16

Firedrake does what you would do. . .

Then we replace the integrals with suitable quadrature:∑
q

J−T
q ∇Φî (Xq) · J−T

q ∇Φĵ(Xq)|Jq|wq

with:

Jq =
∑
k̂

xk̂∇Ψk̂(Xq)

where xk̂ are the nodal values of the coordinate field and Ψk̂ is the local basis for the

coordinate space.

17

Operator evaluation

Evaluating integrals by quadrature requires tabulations of the finite element bases, and

their derivatives. Happily FIAT (Kirby, 2004) + FInAT provides exactly this

functionality for a huge range of elements.

The local operation therefore reduces to a tensor contraction:∫
c
∇φi · ∇φj dx =

∑
αβ γ q

(
J−1
q

)
β α

Pî β q

(
J−1
q

)
γ α

Pĵ γ q|Jq|wq

with:

Jq αβ =
∑
k̂

xk̂Qk̂ αβ q

and tabulation matrices:

Pî α q =
∂Φî (Xq)

∂Xα
Qî αβ q =

∂Ψαî (Xq)

∂Xβ

18

So how do we do that fast?

∫
c
∇φi · ∇φj dx =

∑
αβ γ q

(
J−1
q

)
β α

Pî β q

(
J−1
q

)
γ α

Pĵ γ q|Jq|wq

The order in which this sum occurs radically affects the number of operations and size

of temporaries: which is a constrained ILP!

19

Sum factorisation - the hard version

Suppose now I do this on hexahedral elements:

∫
c
∇φi · ∇φj dx =

∑
αβ γ î0 î1,î2,ĵ0 ĵ1 ĵ2 q0 q1 q2

(
J−1
q

)
β α

dPî0 q0
Pî1 q1

Pî2 q2

Pî0 q0
dPî1 q1

Pî2 q2

Pî1 q0
Pî1 q1

dPî2 q2

β

(
J−1
q

)
γ α

dPĵ0 q0
Pĵ1 q1

Pĵ2 q2

Pĵ0 q0
dPĵ1 q1

Pĵ2 q2

Pĵ1 q0
Pĵ1 q1

dPĵ2 q2

γ

|Jq|wq0wq1wq2 (5)

FIAT can give us P or dP, and FInAT can give us the expressions in those terms which

we then factorise.

The näıve implementation is O(p9)!

If you do everything right (including in the solvers) it’s O(p4).

20

The proof of the pudding:

21

Programmable solvers

Our nonlinear PDE looks like:

F (u; v) = 0 ∀v ∈ V

Which we solve with a Newton-like iteration over linear solves:

N(F , J,K)

Where F (u) is the function which assembles the residual, J(u) is the function which

assembles ∂F (u)/∂u and K is a linear solver.

Work by Thomas Gibson, now being taken forward by Sophia Vorderwuelbecke and all

building on the PETSc composable solver framework.

22

Linear solvers

PETSc represents linear solvers as a preconditioned Krylov subspace method:

P(K (J,F))

Where the preconditioner P takes K (J,F) to another (hopefully more tractable)

solver. A classical left preconditioner is given by:

Pl(K̂ ,A)(K (J,F)) = K (K̂ (A, J), K̂ (A,F))

Where A is another matrix operator, and K̂ is another Krylov subspace method. Now

it’s preconditioners all the way down!

23

Composable preconditioners for GFD

Linear rotating shallow water equations:

ut + fu⊥ + g∇D = 0,

Dt + H∇ · u = 0

Compatible FE formulation:
Find (u,D) ∈ V1 × V2 such that

〈w , ut〉Ωh
+ f

〈
w , u⊥

〉
Ωh

+ g 〈∇ · w ,D〉Ωh
= 0,

〈φ,H∇ · u〉Ωh
+ 〈φ,Dt〉Ωh

= 0

for all (w , φ) ∈ V1 × V2.

Discretizing in time and space yields the

indefinite linear operator:(
A B
C D

)

24

Computational challenges

Schur complement approach
Schur complement precondtioners seek to approximate

P ≈
(

I −A−1B
0 I

)(
A−1 0

0 S−1

)(
I 0

−CA−1 I

)

where S = D − CA−1B is the Schur complement of the orignal operator with respect

to A.

The main source of trouble: A−1

(since functions in V1 have continuous normals across boundaries).

25

Hybrid-Mixed methods (Arnold & Brezzi 1985)

We can reformulate the problem in terms of globally discontinuous functions.

• Ṽ1 is the space of velocities with discontinuous normals.

• T(V1) = T is the space of approximate traces.

Now we discretise in time and space:

〈w , ũt〉Ωh
+ f

〈
w , ũ⊥〉

Ωh
+ g 〈∇ · w ,D〉Ωh

−
∑

K∈Ωh

⟪w · n, λ⟫∂K\∂Ω = 0

〈φ,H∇ · ũ〉Ωh
+ 〈φ,Dt〉Ωh

= 0∑
K∈Ωh

⟪γ, ũ · n⟫∂K\∂Ω = 0

for all (w , φ, γ) ∈ Ṽ1 × V2 × T.

26

Schur complement revisited

The global system for the hybridised equations:Ã B KT

C D 0

K 0 0

ũ
D
λ

 =

Rw

Rφ

0

 .
We can directly compute the Schur complement system in a cell-local manner:

(
K 0

)(Ã B
C D

)−1(
KT

0

)
λ =

(
K 0

)(Ã B
C D

)−1{
Rw

Rφ

}

ũ and D can be reconstructed from λ element-wise.

27

A framework for linear algebra on local element tensors

The Slate Language
Slate is a DSL for expressing localised linear algebra on finite element tensors. Each

elemental tensor is associated with a UFL form.

[...] # Define test and trial functions £w, u, \phi, D£

Define the Slate tensor corresponding to the mixed ("broken") operator

M = Tensor((dot(w, u) + div(w)*D + phi*D + phi*div(u)) * dx)

Lagrange multipliers on interior facets (test functions £\gamma£)

K = Tensor(gammar('+')*dot(u, n) * dS)

S = assemble(K * M.inv * K.T, bcs=[...])

28

Hybridization as a preconditioner

• PETSc already provides a highly runtime-configurable library for algebraically

composing solvers (Brown et al. 2012).

• Firedrake makes it straightforward to build auxiliary operators (Lawrence Mitchell

& Rob Kirby).

• Slate provides a linear algebra context for local operators.

• Combining these, we can automate the hybridization process in the form of a

custom python preconditioner: firedrake.HybridizationPC

29

Williamson mountain test case

Topography for the Williamson mountain test case

(Peak approx. 2000m)

class ShallowWaterSolver(TimesteppingSolver):

def _setup_solver(self):

[...] # Set up constants/coefficients and parameters

w, phi = TestFunctions(W)

u, D = TrialFunctions(W)

eqn = (inner(w, u) - beta*g*div(w)*D - inner(w, u_in)

+ phi*D + beta*H*phi*div(u) - phi*D_in) * dx

a = lhs(eqn)

L = rhs(eqn)

Set up the variational problem and a hybridised solver

x = self.state.dy

problem = LinearVariationalProblem(a, L, x)

params = {'ksp_type': 'preonly',

'mat_type': 'matfree',

'pc_type': 'python',

'pc_python_type': 'firedrake.HybridizationPC',

'hybridization': {'ksp_type': 'cg',

'pc_type': 'gamg'}}

solver = LinearVariationalSolver(problem, params)

self.solver = solver

def solve(self):

self.solver.solve()

30

Performance comparison

2M DoFs on 32 cores.

Stage Hybridization Schur Comp

Avg Time (s) % Total Avg Time (s) % Total

Apply forcing: 1.9009e+02 17.3% 1.9175e+02 4.2%

Advection: 3.6147e+02 32.8% 3.6120e+02 7.9%

Implicit solve:
4.6381e+02 42.1% 3.9335e+03 85.9%

Implicit solve Hybridization Schur Comp

Iterations Iterations

Outer solve (GMRES) 0 11

Inner solve (CG) 4 5

Table 1: PETSc performance summary for a 15min computational time run (above) and iterations to reach

convergence for implicit solve (below).

31

Other composable abstraction layers in and around Firedrake:

Adjoint Automated inverse problems.

Deflated continuation Finding multiple solutions to nonlinear PDEs (Patrick Farrell,

Oxford)

External operator interface Plug in neural nets and other non-PDE operators

(Nacime Bouziani)

Point data operators Interact with real data (Reuben Nixon-Hill)

32

Some of the Firedrake applications

• Quasigeostrophic turbulence (Waterloo)

• Numerical schemes for atmospheric flow (Imperial, Exeter, Met Office)

• Improving prediction of fronts (Imperial)

• Estuarine and coastal flows (Finnish Met. Institute)

• Optimal location of marine power resources (Imperial)

• Fluid structure interaction (Leeds)

• Multiphase flow in porous media (Aachen)

• Shape optimisation (Leicester)

• Liquid crystal structure (Oxford, Memorial University)

• Ice sheet and glacier flows (University of Washington)

• Seismic imaging (University of São Paulo)

• Earth mantle dynamics (Australian National University)

Known users on 6 continents.

33

Shameless plug. . .

Object-oriented Programming
in Python for Mathematicians

David A. Ham

O
bject-oriented Program

m
ing in Python for M

athem
aticians

D
avid A

. H
am

This book is for mathematicians, scientists, and engineers
who have learned the very basics of programming in
Python, and who would like to become more capable
programmers. In addition to covering higher level
programming concepts such as objects, inheritance, and
abstract data types, emphasis is placed on programming
skills such as interpreting and debugging errors. If you find
yourself baffled by the pages of error messages that Python
emits, and would like to make sense of them, then this
book is for you.

The book takes a mathematician's view of programming,
introducing higher level programming abstractions by
analogy with the abstract objects that make up
higher mathematics. Examples and exercises are chosen
from across mathematics, though the actual mathematical
knowledge required to understand this book is limited to
differentiating functions of one variable.

Dr David Ham is a Reader in Computational Mathematics
at Imperial College London. He teaches the object-oriented
programming course for undergraduate mathematicians on
which this book is based, as well as an advanced course on
the finite element method. His research focuses on high
level abstractions and code generation for forward and
inverse finite element simulation.

Out now.

34

Firedrake is likely to be hiring one or more postdocs shortly. Please talk to me if

interested.

35

