Tensor Comprehensions in SaC

Seminar on Tensor Computation 4.Feb.2022, Oxford

Sven-Bodo Scholz

Heriot-Watt University, Edinburgh Radboud University Nijmegen

Array Programming as a tool for enabling HPC³ for everyone

Tensors, Tensor Notation, Einstein Notation, Ricci Calculus,... and their applications

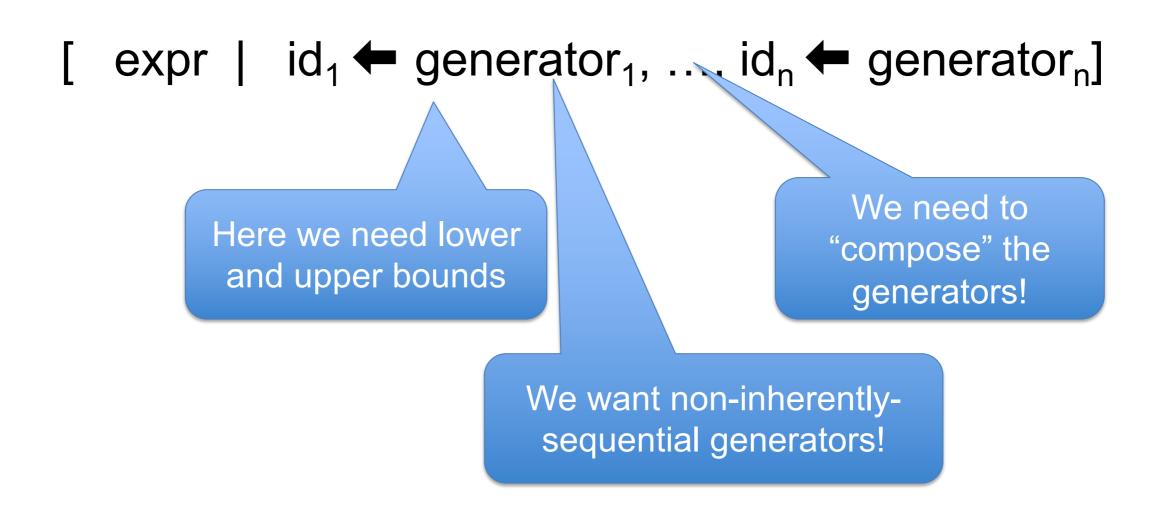
- > N-dimensional index spaces for data and operations on them
- Notation omits ranges and boundaries whenever "obvious"
- Typically nested!
 - · General Activation Formula: $a_j^{[l]} = g^{[l]}(\sum_k w_{jk}^{[l]}a_k^{[l-1]} + b_j^{[l]}) = g^{[l]}(z_j^{[l]})$

· J(x, W, b, y) or $J(\hat{y}, y)$ denote the cost function.

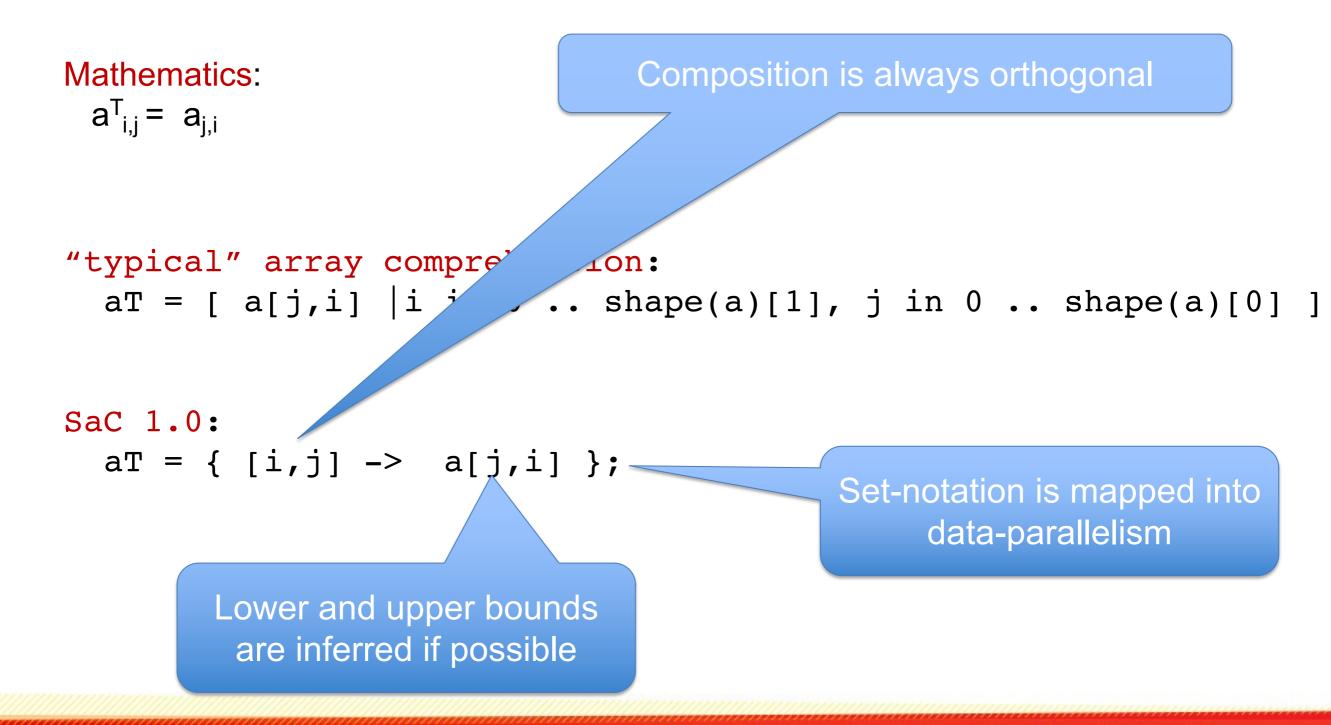
Examples of cost function:

- · $J_{CE}(\hat{y}, y) = -\sum_{i=0}^{m} y^{(i)} \log \hat{y}^{(i)}$
- · $J_1(\hat{y}, y) = \sum_{i=0}^m |y^{(i)} \hat{y}^{(i)}|$

Isn't that just array comprehensions? --- or getting to the point?



Transposition



Element-wise addition scalar addition! Mathematics: c₊ = a₊ + b₊ recursive call ! "typical" array comprehension: c = [a[i] + b[i] | i in 0 .. shape(a)[0]]scalar addition! SaC 1.0: c = { iv -> a[iv] + b[iv] }; vector of indices! c = { [i] -> a[i] + b[i]}; recursive call !

Our physics example

$$a_j^{[l]} = g^{[l]} \left(\sum_k w_{jk}^{[l]} a_k^{[l-1]} + b_j^{[l]} \right)$$

in SaC 1.0:

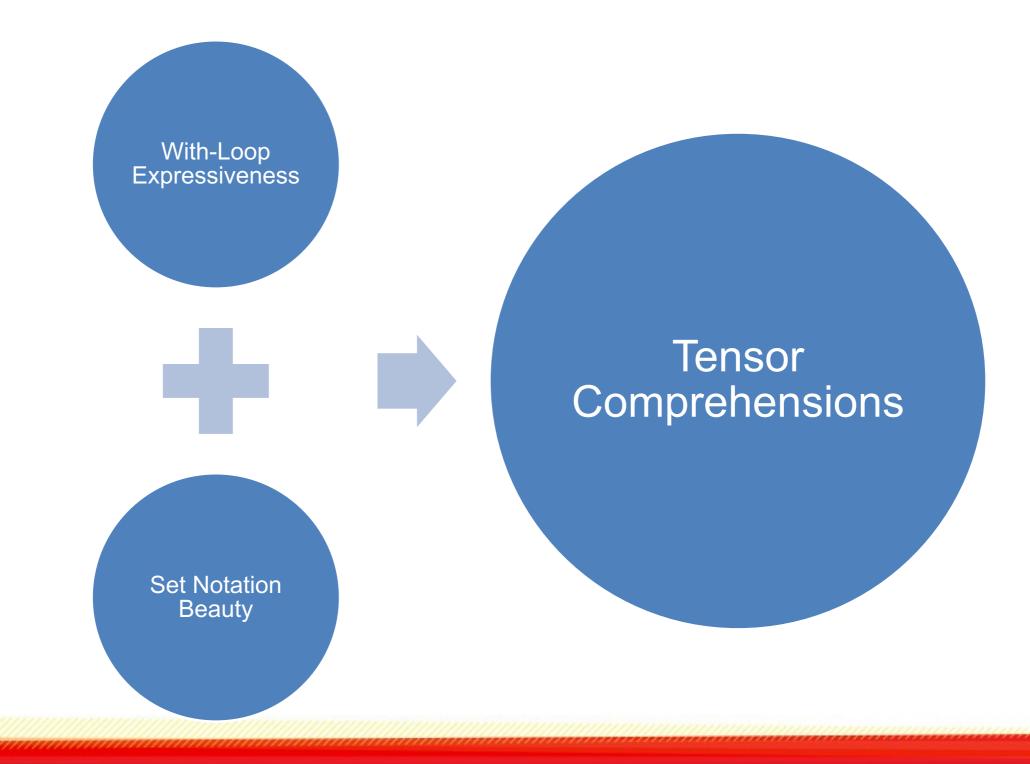
a = { [j] -> g * (sum({[k] -> w[j,k]*a[k]}) + b[j]) };

Concatenation

c = { [i] -> (i < len(a) ? a[i] : b[i-len(a)]) };</pre>

Conditional is ugly!

SaC 1.4, Tensor Comprehensions!

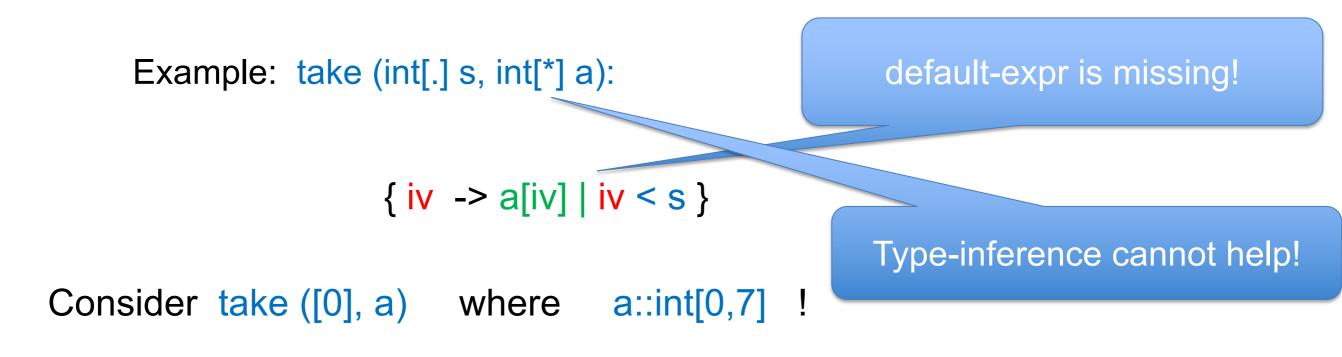


Tensor Comprehensions: Full With-Loop expressiveness in Set Notation! with { $(lb \le [i_1, ..., i_n] \le ub) : expr;$ $(lb <= [i_1, ..., i_n] < ub) : expr;$ }: genarray(shape, default-expr) { $[i_1,...,i_n] \rightarrow expr | lb <= [i_1,...,i_n] < ub;$ $[i_1,...,i_n] \rightarrow expr | lb <= [i_1,...,i_n] < ub;$ $[i_1, \dots, i_n] \rightarrow default-expr | [i_1, \dots, i_n] < shape \}$

Beauty Measure #1: Make some parts optional & use the Set Notation inference

$$\{ [i_{1},...,i_{n}] \rightarrow expr \ | \ |b <= [i_{1},...,i_{n}] < ub;$$

Beauty Measure #2: Extend the Inference



New Inference:

{ iv -> a[iv] | iv < s;
 iv -> genarray (drop (shape (s), shape (a)), 0) }

Key Idea of the Inference

{ iv -> a[iv] | iv < s }
Generate default from one expression
{ iv -> a[iv] | iv < s;
 iv -> genarray (shape (a[0*s]), zero (a[0*s]) }
Rewrite to manifest some laziness
{ iv -> a[iv] | iv < s;
 iv -> genarray (drop (shape (s), shape (a)), 0) }

Leveraging Demand Analysis

genarray (shape (a[0*s]), zero (a[0*s])

- => Analysis of selection yields: in order to compute the shape of a[0*s], we only need to know the shape of a and the shape of s! (for details see "A Binding Scope Analysis for Generic Programs on Arrays", IFL'05)
- => A systematic rewrite of the definition of selection yields that shape (a[0*s]) = sel_s(shape(s), shape(a)) = drop(shape(s), shape(a)) (for details see "Tensor Comprehensions in SaC", IFL'19)

Hence, we get overall:

```
genarray (drop (shape (s), shape (a)), 0)
```


Conclusions

- Array Comprehensions in the context of ndimensional arrays / arbitrary tensors with homogeneous nesting is surprisingly challenging!
 - Full Expressiveness leads to very extensive specifications.
 - Range inference is non-trivial.
 - Default element inference is even harder.
- The Tensor Comprehensions presented here offer:
 - Full expressiveness
 - Flexibility in the degree of specificational demand
 - Novel default element inference that is independent of the type system
- Leads to a mechanism for manifesting laziness with an eager execution mechanism

