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Array Programming as a tool for enabling
HPC3 for everyone
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Tensors, Tensor Notation, Einstein Notation, Ricci 
Calculus,… and their applications

Ø N-dimensional index spaces for data and operations on them
Ø Notation omits ranges and boundaries whenever “obvious”
Ø Typically nested!



Isn’t that just array comprehensions?
--- or …. getting to the point?
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Here we need lower 
and upper bounds

We want non-inherently-
sequential generators!

We need to 
“compose” the 

generators!



Transposition

Mathematics: 
aTi,j =  aj,i

“typical” array comprehension:
aT = [ a[j,i] |i in 0 .. shape(a)[1], j in 0 .. shape(a)[0] ]

SaC 1.0:
aT = { [i,j] ->  a[j,i] };

Lower and upper bounds 
are inferred if possible

Set-notation is mapped into 
data-parallelism

Composition is always orthogonal 



Element-wise addition

Mathematics: 
c i =  a i +  b i

“typical” array comprehension:
c = [ a[i] + b[i] |i in 0 .. shape(a)[0] ]

SaC 1.0:
c = { iv ->  a[iv] + b[iv] };

c = { [i] -> a[i] + b[i]};

scalar addition!

recursive call !

vector of indices!

scalar addition!

recursive call !



Our physics example

in SaC 1.0:

a = { [j] ->  g * (sum({[k] -> w[j,k]*a[k]}) + b[j]) };



Concatenation

c = { [i] -> ( i < len(a) ? a[i] : b[i-len(a)]) };

SaC 1.4, Tensor Comprehensions!

c = { [i] -> a[i]         ;
[i] -> b[i-len(a)] | [i] < shape(a) + shape(b) };

Conditional is ugly!

Bound inference fails !



Aim

With-Loop 
Expressiveness

Set Notation 
Beauty

Tensor 
Comprehensions



Tensor Comprehensions:
Full With-Loop expressiveness in Set Notation!

with {
( lb <= [i1,…,in] < ub) : expr;
…
( lb <= [i1,…,in] < ub) : expr;

} : genarray( shape, default-expr)

{ [i1,…,in]  -> expr | lb <= [i1,…,in] < ub;
…
[i1,…,in]  -> expr | lb <= [i1,…,in] < ub;
[i1,…,in] -> default-expr | [i1,…,in] < shape }



Beauty Measure #1: Make some parts optional 
& use the Set Notation inference

{ [i1,…,in]  -> expr | lb <= [i1,…,in] < ub;
…
[i1,…,in]  -> expr | lb <= [i1,…,in] < ub;

[i1,…,in] -> default-expr | [i1,…,in] < shape }

Optional parts!



Beauty Measure #2: Extend the Inference

{ iv -> a[iv] | iv < s }

Example:  take (int[.] s, int[*] a): default-expr is missing!

Type-inference cannot help!
Consider  take ([0], a) where     a::int[0,7]   ! 

{ iv -> a[iv] | iv < s;
iv -> genarray (drop (shape (s), shape (a)), 0) }

New Inference:



Key Idea of the Inference

{ iv -> a[iv] | iv < s }

{ iv -> a[iv] | iv < s;
iv -> genarray (shape (a[0*s]), zero (a[0*s]) }

{ iv -> a[iv] | iv < s;
iv -> genarray (drop (shape (s), shape (a)), 0) }

Generate default from one expression

Rewrite to manifest some laziness



Leveraging Demand Analysis

genarray (shape (a[0*s]), zero (a[0*s])

=> Analysis of selection yields: in order to compute the shape of a[0*s],

we only need to know the shape of a and the shape of s!

(for details see “A Binding Scope Analysis for Generic Programs on Arrays”, IFL’05)

=> A systematic rewrite of the definition of selection yields that

shape (a[0*s])  =  sel_s( shape(s), shape(a))  =  drop(shape(s), shape(a))

(for details see “Tensor Comprehensions in SaC”, IFL’19)

Hence, we get overall:

genarray (drop (shape (s), shape (a)), 0)



Conclusions

• Array Comprehensions in the context of n-
dimensional arrays / arbitrary tensors with 
homogeneous nesting is surprisingly challenging!
- Full Expressiveness leads to very extensive 

specifications.
- Range inference is non-trivial.
- Default element inference is even harder.

• The Tensor Comprehensions presented here offer:
- Full expressiveness 
- Flexibility in the degree of specificational demand
- Novel default element inference that is 

independent of the type system
• Leads to a mechanism for manifesting laziness with 

an eager execution mechanism


