
Getting to the Point.
Safe Parallel Programming for Scientific Applications



Background: the success of first-order array libraries

Accelerators Autodiff

Autodiff only sees and outputs a sequential composition of opaque parallel programs.

🤯 Standard sequential autodiff gives us efficient parallel programs out of the box!



👀 What users see



Function types, dually
Function Array

Potential deja'vu if you've heard of representable functors

Domain Arbitrary Finite (ordered)

Application Expensive Cheap

Construction Cheap Expensive

Reduction (\x. e) u ↦ e[x/u] (for x:ty. e).u ↦ e[x/u]

Elimination f expr f.expr

Introduction \x:ty. expr for x:ty. expr

Type a -> b a=>b



Quick examples

3d     : (Fin 3)=>Float

vector : (Fin n)=>Float (assuming n:Int in scope)

matrix : (Fin n)=>(Fin m)=>Float (assuming n:Int and m:Int in scope)

sum    : n:Type ?-> n=>Float -> Float

intIndexed : Int=>Float
> Type error! Couldn't synthesize (Ix Int)!



Syntax benchmark: matrix multiply

Dex
for i:(Fin n). for j:(Fin m). sum (for k:(Fin q). x.i.k * y.k.j)

for i:(Fin n) j:(Fin m). sum (for q:(Fin k). x.i.k * y.k.j)

for i j. sum (for q. x.i.k * y.k.j)

for i j. sum for q. x.i.k * y.k.j

SaC { [i,j] -> sum ({ [k] -> A[i,k]* B[k,j] }) }

NumPy matmul = lambda x, y: np.einsum('ik,kj->ij', x, y)

SOAC
combinator_matrix_multiply = \x y.

  yt = transpose y

  dot = \x y. sum (map (uncurry (*)) (zip x y))

  map (\xr. map (\yc. dot xr yc) yt) x



By the way: you can be as pointfree as you'd like!

def uncurry {a b c} (f:a -> b -> c) : (a & b) -> c = \(x, y). f x y

def zip {n a b} (x:n=>a) (y:n=>b) : n=>(a & b) = for i. (x.i, y.i)

def map {n a b} (f:a -> b) (x:n=>a) : n=>b = for i. f x.i

def transpose {n m a} (x:n=>m=>a) : m=>n=>a = for i j. x.j.i

def combinator_matrix_multiply {n k m}

    (x:n=>k=>Float) (y:k=>m=>Float) : n=>m=>Float =

  yt = transpose y

  dot = \x y. sum (map (uncurry (*)) (zip x y))

  map (\xr. map (\yc. dot xr yc) yt) x

A pointful foundation doesn't make pointfree programming harder!



Rank polymorphism

Not supported!

In the vast majority of cases used for batching.

Have a larger collection? Use a loop!

Some rank polymorphism possible to recover using typeclasses.

interface Add a

  (+) : a -> a -> a

instance Add Int …
instance {n a} [Add a] Add (n=>a) 

  (+) = \x y. for i. x.i + y.i

matrix : n=>m=>Int = …
matrix + matrix  -- well typed!



Type system
Loop bound inferred 
from return type 
annotation

Very limited normalization 
applied to types

But not entirely trivial!

-- in lib/prelude.dx

def Fin   (n:Int) : Type = Range 0 n

def Range (low:Int) (high:Int) = …

x : (Fin 5) = …

i5  = 2 + 3

i5' = 2 + 3

broadcast 2.0 (Fin i5) + broadcast 2.0 (Fin i5')

> Type error! Expected (Fin i5)=>Float, but got (Fin i5')=>Float!

def broadcast {a} (v:a) (n: Type) [Ix n]: n=>a = for i. v

broadcast 2.0 (Fin 5)

> [2.0, 2.0, 2.0, 2.0, 2.0]



A quick look under the hood
data Atom = Var Name
          | …
          | Pair     Atom Atom
          | PairType Type Type
          | …
          | TypeKind
          | …
          | Lambda Name Type Expr

type Type = Atom  -- statically unchecked invariant: should be of TypeKind
       

data Expr = BinOp BinOpKind Atom Atom
          | For Atom
          | …



Sum and (dependent) product types

data Maybe a =
  Just a
  Nothing

data List a =
  MkList (length:Int) (elements:(Fin length)=>a)

def filter {n a} (f:a -> Bool) (x:n=>a) : List a = …

MkList _ validData = filter isValid data
sum validData



🤑 What does this buy us?



Can tensor programming be liberated from integer indices?

Arrays are predominantly indexed by integers, but:
● static reasoning about integers is difficult;
● integers erase lots of structure that's often useful.

1https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

"Parse, don't validate.1"

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/


Rich index sets

interface Ix n where

  size n            : Int

  toOrdinal         : n -> Int

  unsafeFromOrdinal : Int -> n

def fromOrdinal {n} [Ix n] (o:Int) : n =

  case 0 <= o && o < size n of

    True  -> unsafeFromOrdinal o

    False -> error …

In Dex, any type conforming to Ix can be an array index:

Basic shape arithmetic can be done using standard type constructors:

Products (n & m)
Sums (n | m)
Exponentials   (n=>m)

size

& isomorphism with a 
prefix of natural numbers



Basic examples

Boundary 
conditions

x: (Fin (1 + n))=>a
x[0] vs x[1 + i]

x: (Unit|n)=>a
x.(Left ()) vs x.(Right i)

Named axes image[h, w] or image[w, h]? image.{height=h, width=w}
image.{width=w, height=h}

Concatenation concatenate x y
for ci. case ci of
  Left  xi -> x.xi
  Right yi -> y.yi

Reshapes reshape (2, -1, 4) x for i (j, k) l. x.i.j.k.l

(n & m)-typed binder

(n | m)-typed binder



Index sets for compilers

Integer-based indexing

nmp = n + m + p

for i in range(nmp).

  if i < n

    then x[i]

    else if i - n < m

      then y[i - n]

      else z[i - n - m]

  

Sum-type-based indexing

for i in (n|(m|p)).

  case i of

    Left ni -> x.ni

    Right i' -> case i' of

      Left  mi -> y.mi

      Right pi -> z.pi

A loop with a sum-typed index set either never inspects the 
index, or is a very good candidate for loop splitting!



Indexing lemmas

sequence : (Fin s)=>Int = …
for i in range(len(sequence)).
  sequence[len(sequence) - 1 - i]

def reflect {n} (i:n) : n =
  unsafeFromOrdinal n (size n - 1 - ordinal i)

sequence : n=>Int = …
for i.
  sequence.(reflect i)

Array reversal

x : (Fin s)=>Int = …
sumWithPrev = for i in range(len(x)).
  if i == 0
    then x[i]
    else x[i - 1] + x[i]

def prev (i:n) : (Unit|n) =
  unsafeFromOrdinal _ (ordinal i)

x : (Unit|n)=>Int = …
sumWithPrev = for i.
  case i of
    Left  () -> x.i
    Right i' -> x.(prev i') + x.i

Dynamic programming
Correctness 
reasoning requires 
non-local context 
(e.g. range of i)

Easy to forget about 
the base case and 
read out of bounds!



Index sets are user-definable
data RGB = Red | Green | Blue

instance Ix RGB 

  size = 3

  toOrdinal = \x. case x of

    Red   -> 0

    Green -> 1

    Blue  -> 2

  unsafeFromOrdinal = …

data HSV = Hue | Saturation | Value

instance Ix HSV …

Image = \h w colorSpace. { height: (Fin h) & width: (Fin w) }=>colorSpace=>UInt8

imgRGB : Image 200 200 RGB = loadKnownSizeJPG "doggo.jpg"

imgHSV : Image _   _   HSV = RGBtoHSV imgHSV

hues = for h w. imgHSV.{height=h, width=w}.Hue Arrays can function as named tuples



Array type zoo

Array kind Example type

Static (Fin 10)=>(Fin 20)=>Float

Dynamic (Fin n)=>(Fin m)=>Float

Structured ragged (i:Fin 10)=>(...i)=>Float

Ragged (i:Fin 10)=>(Fin lengths.i)=>Float

Jagged (Fin 10)=>List Float

Homogeneous

Heterogeneous

Pushing the limits of
our type system here

🤔 If we have dependent functions… why don't we try dependent arrays?

Also:
Position-dependent arrays and their application for high performance code generation, F. Pizzuti et al.

Generating High Performance Code for Irregular Data Structures using Dependent Types, F. Pizzuti et al.



🤫 What users don't see



Going deeper

Untyped surface syntax

Type inference 

Normalization to first-order

Optimizations

Automatic differentiation

Parallelization

Code generation

Our focus 
for now

Also: High-Performance Defunctionalisation in Futhark, A. K. Hovgaard et al.



Zooming into AD

reverse-mode AD = linearize + transpose1

1Decomposing reverse-mode automatic differentiation, R. Frostig et al.

transpose : (a -o b)      -> (b -o a)

But, we often want a representation of the derivative mapping.

If a is a high-dimensional vector space, then this evaluation is expensive!

But, we also know that every linear transform has a transpose.

linearize : (a -> b) -> a -> (b, a -o b)

forward-mode AD ≈ linearize



Implementing linearization

linearize \x. x * y          ↦     \x. (x * y,
                                        \xt. x * xt + xt * y)

Multiplication

linearize \x. f (g x)        ↦     \x. (t, glin) = linearize g x
                                       (y, flin) = linearize f t
                                       (y, \xt. flin (glin xt))

Composition

linearize \x. for i. f x i   ↦     ???For loops

                                    \x. (for i. f (x, i),
                                         \xt. for i.
                                                snd (linearize f (x, i)) xt.i)

(rematerialize)

                                    \x. (ys, flins) = unzip (for i. linearize f (x, i))
                                        (ys, \xt. for i. flins.i xt.i)

(arrays of functions)



Normalizing arrays of functions

toFirstOrder : Nest Decl -> (Nest Decl, Substitution Name Atom)

Similar trick also works (and is needed!) for case expressions

↦

x = for i.
  v1 = …
  …
  vn = …
  atom

tmp = for i.
  fo1 = …
  …
  fom = …
  (a1, …, ak)

x ->
  view i.
    atom[reconSubst][a1,…,an/tmp.i]

toFirstOrder( ) )( ,
((fo1 = …; …; fom = …), reconSubst) = toFirstOrder (v1 = …; …; vn = …)

(a1, …, ak) = intersect (freeVars atom[reconSubst]) (fo1, …, fom)

Normalize block

Find first-order variables
sufficient for reconstruction

Can only:
(1) reference functions defined outside of for, or
(2) lambda expressions with body FVs.

Lambda for table type

Arbitrary atoms (incl. lambdas!)
First-order context



Going deeper

Untyped surface syntax

Type inference 

Normalization to first-order

Optimizations

Automatic differentiation

Parallelization

Code generation

This is why we have 
to loop here



Efficiency issues loom

???"xt[i] += zt"

\xt      . zt = xt * c
           zt

\zt. xt = zt * c
     xt

Scaling ↦

\(xt, yt). zt = xt + yt
           zt

\zt. xt = zt
     yt = zt
     (xt, yt)

Addition ↦

\xt      . zt = (xt, xt)
           zt

\zt. xt = fst zt
     xt = xt + snd zt
     xt

Duplication ↦

\xt      . zt = for i. xt
           zt

\zt. xt = sum zt
     xt

Broadcast ↦

\xt      . xt.iIndexing ↦



FP's unstated cost model: indexing is aliasing

We need to alias writes like we alias reads!

mat

vec = mat[i]

x = vec[i]

mat_ct

vec_ct = mat_ct[i]

vec[i] += x_ct



Transposition of indexing

1⃣ Imperative AD
store x_ct[i] ((load x_ct[i]) + y_ct)

2⃣ Dense updates
x_ct2 = x_ct + one_hot(y_ct, i)

3⃣ Sparse updates
x_ct2 = x_ct + sparse_one_hot(y_ct, i)

3⃣ Functional in-place (linear) updates
x_ct2 = consume_and_update(x_ct, i, y_ct)

❌ Unconstrained heap mutation

❌ Lots of wasted work, wrong asymptotics

❌ Unacceptable constant factors, difficult on GPUs

❌ Sequentializes code

5⃣ Associative accumulation effect
accumulate y_ct into x_ct[i]



Solution: effects

def sum {n} (x:n=>Float) : Float =
  (_, total) = withAccum \acc.
    for i.
      acc += x.i
  total

1Parallelism-preserving automatic differentiation for second-order array languages, A. Paszke et al.

Differentiation through reductions over arbitrary monoids is non-trivial!1

def reduce {n a} (m:Monoid a) (x:n=>a) : a =
  (_, total) = withAccum m \acc.
    for i.
      acc o= x.i
  total

Arbitrary monoidal reductions

(Basic) Accumulation

def scan {n i o s eff}
    (f:i -> s -> {|eff} (o, s)) (init:s)
    (x:n=>i) : {|eff} n=>o =
  (result, final) = withState init \ref.
    for i.
      ref := f x.i (get ref)
  result

State

Accumulator cannot be read

Final value obtained once the 
accumulator cannot be 
modified



Efficient AD as a language design benchmark

1⃣ Closure under partial evaluation

2⃣ Closure under data-flow duality

Good reverse-mode autodiff support requires:

For example, reverse-mode AD of (parallel associative) scan is inefficient!1

1Parallelism-preserving automatic differentiation for second-order array languages, A. Paszke et al.

There exists a constant c such that for every program P the cost of 
evaluating P' (P' being derived using forward- or reverse-mode AD from P)

is at most c times larger than the cost of evaluating P.



Current / future work

● User-extensible (parallel-friendly) algebraic effects (see PEPM paper1)

● Scope-correctness of compiler implementation

● Monomorphization without complete inlining

● Typeclass system rework (embracing overlap!)

● Nested data parallelism (see Conal Elliot's earlier presentation2)

● Make Dex fast!

● …

1Parallel Algebraic Effect Handlers, N. Xie, D. J. Johnson et al.
2Can Tensor Programming Be Liberated from the Fortran Data Paradigm?



Thank you!
apaszke@google.com


