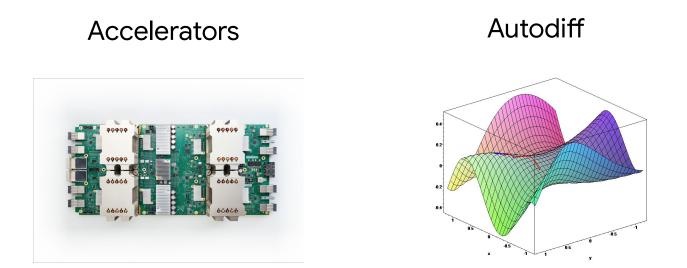
Getting to the Point.

Safe Parallel Programming for Scientific Applications

Background: the success of first-order array libraries



Autodiff only sees and outputs a sequential composition of opaque parallel programs.

The box!

• What users see

Function types, dually

	Function	Array
Туре	a -> b	a=>b
Introduction	\x:ty. expr	for x:ty. expr
Elimination	f expr	f.expr
Reduction	(\x. e) u → e[x/u]	(for x:ty. e).u \mapsto e[x/u]
Construction	Cheap	Expensive
Application	Expensive	Cheap
Domain	Arbitrary	Finite (ordered)

Potential deja'vu if you've heard of representable functors

Quick examples

- 3d : (Fin 3)=>Float
- vector : (Fin n)=>Float
- matrix : (Fin n)=>(Fin m)=>Float
- sum : n:Type ?-> n=>Float -> Float

```
intIndexed : Int=>Float
> Type error! Couldn't synthesize (Ix Int)!
```

(assuming n:Int in scope)

(assuming n:Int and m:Int in scope)

Syntax benchmark: matrix multiply

SOAC	combinator_matrix_multiply = \x y. yt = transpose y dot = \x y. sum (map (uncurry (*)) (zip x y)) map (\xr. map (\yc. dot xr yc) yt) x
NumPy	matmul = lambda x, y: np.einsum('ik,kj->ij', x, y)
SaC	{ [i,j] -> sum ({ [k] -> A[i,k]* B[k,j] }) }
Dex	for i:(Fin n). for j:(Fin m). sum (for k:(Fin q). x.i.k * y.k.j) for i:(Fin n) j:(Fin m). sum (for q:(Fin k). x.i.k * y.k.j) for i j. sum (for q. x.i.k * y.k.j) for i j. sum for q. x.i.k * y.k.j

By the way: you can be as pointfree as you'd like!

```
def uncurry {a b c} (f:a -> b -> c) : (a & b) -> c = \(x, y). f x y
def zip {n a b} (x:n=>a) (y:n=>b) : n=>(a & b) = for i. (x.i, y.i)
def map {n a b} (f:a -> b) (x:n=>a) : n=>b = for i. f x.i
def transpose {n m a} (x:n=>m=>a) : m=>n=>a = for i j. x.j.i
```

```
def combinator_matrix_multiply {n k m}
  (x:n=>k=>Float) (y:k=>m=>Float) : n=>m=>Float =
  yt = transpose y
  dot = \x y. sum (map (uncurry (*)) (zip x y))
  map (\xr. map (\yc. dot xr yc) yt) x
```

A pointful foundation doesn't make pointfree programming harder!

Rank polymorphism

Not supported!

In the vast majority of cases used for batching.

Have a larger collection? Use a loop!

Some rank polymorphism possible to recover using typeclasses.

```
interface Add a
  (+) : a -> a -> a
instance Add Int ...
instance {n a} [Add a] Add (n=>a)
  (+) = \x y. for i. x.i + y.i
```

```
matrix : n=>m=>Int = ...
matrix + matrix -- well typed!
```

Type system

```
def broadcast {a} (v:a) (n: Type) [Ix n]: n=>a = for i. v
broadcast 2.0 (Fin 5)
> [2.0, 2.0, 2.0, 2.0, 2.0]
i5 = 2 + 3
i5' = 2 + 3
broadcast 2.0 (Fin i5) + broadcast 2.0 (Fin i5')
> Type error! Expected (Fin i5)=>Float, but got (Fin i5')=>Float!
```

```
-- in lib/prelude.dx
def Fin (n:Int) : Type = Range 0 n
def Range (low:Int) (high:Int) = ...
```

x : (Fin 5) = ...

Loop bound inferred from return type annotation

Very limited normalization applied to types

But not entirely trivial!

A quick look under the hood

Sum and (dependent) product types

```
data Maybe a =
  Just a
  Nothing
```

```
data List a =
    MkList (length:Int) (elements:(Fin length)=>a)
```

```
def filter {n a} (f:a -> Bool) (x:n=>a) : List a = ...
```

MkList _ validData = filter isValid data
sum validData

Can tensor programming be liberated from integer indices?

Arrays are predominantly indexed by integers, but:

- static reasoning about integers is difficult;
- integers erase lots of structure that's often useful.

"Parse, don't validate.¹"

Every time you see *numbers*, remember that Nat = List 1, and ask yourself what it is that the 1 has forgotten. Differences between numbers are often hacker-level proxies for differences between entities whose pertinence has become invisible. Numbers are a code smell. 19/01/2022, 23:18

Rich index sets

In Dex, any type conforming to Ix can be an array index:

```
interface Ix n where
size n : Int size
toOrdinal : n -> Int & isomorphism with a
unsafeFromOrdinal : Int -> n prefix of natural numbers
def fromOrdinal {n} [Ix n] (o:Int) : n =
case 0 <= o && o < size n of
True -> unsafeFromOrdinal o
```

False -> error ...

Basic shape arithmetic can be done using standard type constructors:

Products	(n & m)
Sums	(n m)
Exponentials	(n=>m)

Basic examples

Reshapes	reshape (2, -1, 4) x	(n & m)-typed binder for i (j, k) l. x.i.j.k.l
Concatenation	concatenate x y	(n m)-typed binder for ci. case ci of Left xi -> x.xi Right yi -> y.yi
Named axes	<pre>image[h, w] or image[w, h]?</pre>	image.{height=h, width=w} image.{width=w, height=h}
Boundary conditions	x: (Fin (1 + n))=>a x[0] vs x[1 + i]	x: (Unit n)=>a x.(Left ()) vs x.(Right i)

Index sets for compilers

```
Integer-based indexing
```

```
nmp = n + m + p
for i in range(nmp).
if i < n
   then x[i]
   else if i - n < m
     then y[i - n]
     else z[i - n - m]</pre>
```

Sum-type-based indexing

```
for i in (n|(m|p)).
  case i of
   Left ni -> x.ni
   Right i' -> case i' of
   Left mi -> y.mi
   Right pi -> z.pi
```

A loop with a sum-typed index set either never inspects the index, or is a very good candidate for loop splitting!

Indexing lemmas

Array reversal

```
def reflect {n} (i:n) : n =
    unsafeFromOrdinal n (size n - 1 - ordinal i)
```

```
sequence : (Fin s)=>Int = ...
for i in range(len(sequence)).
   sequence[len(sequence) - 1 - i]
```

```
Correctness
reasoning requires
non-local context
(e.g. range of i)
```

```
sequence : n=>Int = ...
for i.
    sequence.(reflect i)
```

```
Dynamic programming
```

```
def prev (i:n) : (Unit|n) =
    unsafeFromOrdinal _ (ordinal i)
```

```
x : (Fin s)=>Int = ...
sumWithPrev = for i in range(len(x)).
if i == 0
    then x[i]
    else x[i - 1] + x[i] Easy to forget about
    the base case and
    read out of bounds!
```

```
x : (Unit|n)=>Int = ...
sumWithPrev = for i.
case i of
Left () -> x.i
Right i' -> x.(prev i') + x.i
```

Index sets are user-definable

```
data RGB = Red | Green | Blue
instance Ix RGB
size = 3
toOrdinal = \x. case x of
Red -> 0
Green -> 1
Blue -> 2
unsafeFromOrdinal = ...
data HSV = Hue | Saturation | Value
instance Ix HSV ...
```

Image = \h w colorSpace. { height: (Fin h) & width: (Fin w) }=>colorSpace=>UInt8

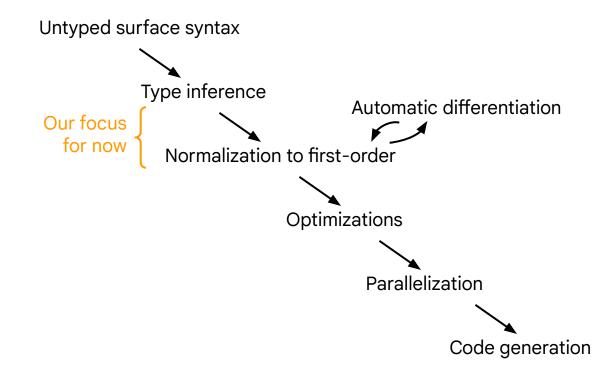
```
imgRGB : Image 200 200 RGB = loadKnownSizeJPG "doggo.jpg"
imgHSV : Image _ _ HSV = RGBtoHSV imgHSV
hues = for h w. imgHSV.{height=h, width=w}.Hue
```

Array type zoo

If we have dependent functions... why don't we try dependent arrays?

	Array kind	Example type	
Homogeneous	Static	(Fin 10)=>(Fin 20)=>Float	
Î	Dynamic	(Fin n)=>(Fin m)=>Float	
	Structured ragged	(i:Fin 10)=>(i)=>Float	
	Ragged	<pre>(i:Fin 10)=>(Fin lengths.i)=>Float</pre>	Pushing the limits of our type system here
• Heterogeneous	Jagged	(Fin 10)=>List Float	

Going deeper



Also: High-Performance Defunctionalisation in Futhark, A. K. Hovgaard et al.

Zooming into AD

forward-mode AD \approx linearize

linearize : $(a \rightarrow b) \rightarrow a \rightarrow (b, a - o b)$

But, we often want a *representation* of the derivative mapping.

If a is a high-dimensional vector space, then this evaluation is expensive!

But, we also know that every linear transform has a *transpose*.

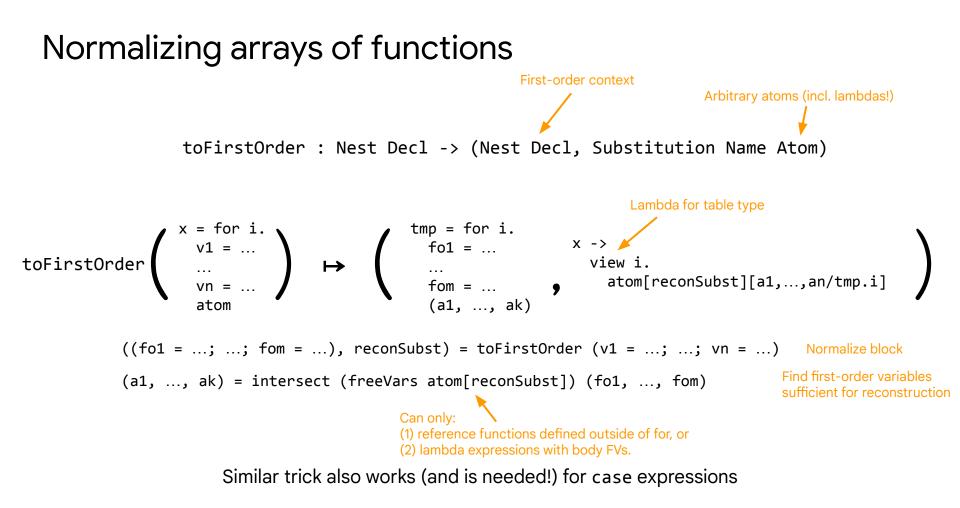
transpose : (a -o b) -> (b -o a)

reverse-mode AD = linearize + transpose¹

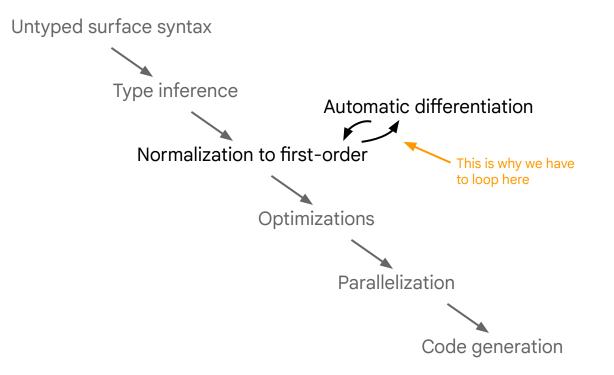
¹Decomposing reverse-mode automatic differentiation, R. Frostig et al.

Implementing linearization

Multiplication linearize \x. x * y xt. x * xt + xt * yComposition linearize \x . f (g x) x. (t, glin) = linearize g x ↦ (y, flin) = linearize f t $(y, \xt. flin (glin xt))$ For loops linearize x. for i. f x i ??? → x. (for i. f (x, i), \xt. for i. (rematerialize) snd (linearize f (x, i)) xt.i) x. (ys, flins) = unzip (for i. linearize f (x, i)) (arrays of functions) (ys, \xt. for i. flins.i xt.i)



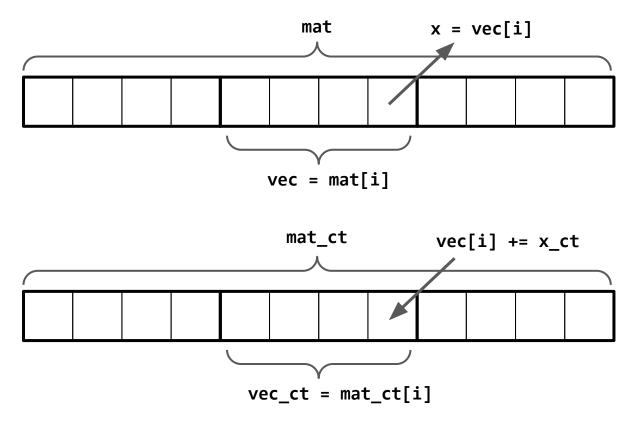
Going deeper



Efficiency issues loom

Scaling	\xt .	zt = xt * c zt	↦	<pre>\zt. xt = zt * c xt</pre>
Addition	\(xt, yt).	zt = xt + yt zt	↦	<pre>\zt. xt = zt yt = zt (xt, yt)</pre>
Duplication	\xt .	zt = (xt, xt) zt	₽	<pre>\zt. xt = fst zt xt = xt + snd zt xt</pre>
Broadcast	\xt .	zt = for i. xt zt	↦	\zt. xt = sum zt xt
Indexing	\xt .	xt.i	↦	?%≹ [i] += zt"

FP's unstated cost model: indexing is aliasing



We need to alias writes like we alias reads!

Transposition of indexing

```
Imperative AD
store x_ct[i] ((load x_ct[i]) + y_ct)
```

```
2 Dense updates
x_ct2 = x_ct + one_hot(y_ct, i)
```

```
③Sparse updates
x_ct2 = x_ct + sparse_one_hot(y_ct, i)
```

```
③Functional in-place (linear) updates
x_ct2 = consume_and_update(x_ct, i, y_ct)
```

```
⑤Associative accumulation effect
accumulate y_ct into x_ct[i]
```

 \mathbf{X} Unconstrained heap mutation

 \mathbf{X} Lots of wasted work, wrong asymptotics

 \mathbf{X} Unacceptable constant factors, difficult on GPUs

Solution: effects

(Basic) Accumulation

def sum {n} (x:n=>Float) : Float = (_, total) = withAccum \acc. for i. acc += x.i Accumulator cannot be read total Final value obtained once the accumulator cannot be modified def scan {n i o s eff} (f:i -> s -> {|eff} (o, s)) (init:s) (x:n=>i) : {|eff} n=>o = (result, final) = withState init \ref. for i. ref := f x.i (get ref) result resul

Arbitrary monoidal reductions

State

```
def reduce {n a} (m:Monoid a) (x:n=>a) : a =
  (_, total) = withAccum m \acc.
    for i.
        acc o= x.i
        total
```

Differentiation through reductions over arbitrary monoids is non-trivial!¹

¹Parallelism-preserving automatic differentiation for second-order array languages, A. Paszke et al.

Efficient AD as a language design benchmark

There exists a constant c such that for every program P the cost of evaluating P' (P' being derived using forward- or reverse-mode AD from P) is at most c times larger than the cost of evaluating P.

Good reverse-mode autodiff support requires:

1)Closure under partial evaluation

2 Closure under data-flow duality

For example, reverse-mode AD of (parallel associative) scan is inefficient!¹

Current / future work

- User-extensible (parallel-friendly) algebraic effects (see PEPM paper¹)
- Scope-correctness of compiler implementation
- Monomorphization without complete inlining
- Typeclass system rework (embracing overlap!)
- Nested data parallelism (see Conal Elliot's earlier presentation²)
- Make Dex fast!
- ...

Thank you!

apaszke@google.com