Communication-Avoiding Algorithms
for Linear Algebra, ML and Beyond,;
Integration into Compilers

Jim Demmel, EECS & Math Depts., UC Berkeley
And many, many others ...

Why avoid communication? (1/2)

Algorithms have two costs (measured in time or energy):
1. Arithmetic (FLOPS)
2. Communication: moving data between

— levels of a memory hierarchy (sequential case)
— processors over a network (parallel case).

iof

Why avoid communication? (2/2)

* Running time of an algorithm is sum of 3 terms:
— #flops * time_per_flop
— # words moved / bandwidth
— # messages * latency

Time_per_flop (y) << 1/ bandwidth () << latency (a)

} communication

Hardware Speed Trends
T T T T

102 { I] ’
e e |- Data from
103 3 s ' alpha (DRAM) | 3
; T | |Thueem i Patterson &
107 "+ ¢ Hennessey, 2019
10®]
2 10
& 10 Same story for
- saving energy
107®
10“°é

1 0—1 1 1 | | | | | |
1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

Goals

* Redesign algorithms to avoid communication
e Between all memory hierarchy levels
e [1 <— L2 < DRAM < network, etc

e Attain lower bounds if possible
e Classical algorithms often far from lower bounds
e Large speedups and energy savings possible

e Automate implementation of
communication-avoiding (CA) algorithms

Sample Speedups

* Doing same operations, just in a different order
— Up to 12x faster for 2.5D dense matmul on 64K core IBM BG/P

— Up to 100x faster for 1.5D sparse-dense matmul on 1536 core Cray XC30
— Up to 6.2x faster for 2.5D All-Pairs-Shortest-Path on 24K core Cray XE6
— Up to 11.8x faster for direct N-body on 32K core IBM BG/P

« Mathematically identical answer, but different algorithm
— Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU

— Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
— Up to 4.2x faster for BiCGStab (MiniGMG bottom solver) on 24K core Cray XE6
— Up to 5.1x faster for coordinate descent LASSO on 3K core Cray XC30

 Different algorithm, different approximate answer

— Up to 16x faster for SVM on a 1536 core Cray XC30
— Up to 135x faster for ImageNet training on 2K Intel KNL nodes

Sample Speedups

* Doing same operations, just in a different order

Ideas adopted by Nervana, “deep learning” startup,
acquired by Intel in August 2016

Kwasniewski, Hoefler, et al (Best Student Paper, SC’19)
« Mathematically identical answer, but different algorithm
SIAG on Supercomputing Best Paper Prize, 2016

(D., Grigori, Hoemmen, Langou)

Released in LAPACK 3.7, 2016

LAPACK 3.10: Householder Reconstruction, 2021
 Different algorithm, different approximate answer

IPDPS 2015 Best Pa per Prize (You, D. Czechowski, Song, Vuduc)

ICPP 2018 Best Pa per Prize (You, Zhang, Hsieh, D., Keutzer)
2019: Idea (LARS) adopted by industry standard benchmark MLPerf

Outline

Linear Algebra

— Communication Lower Bounds for classical direct linear algebra
— CA 2.5D Matmul

— TSQR - Tall-Skinny QR

— lterative Methods for linear algebra

Machine Learning

— Training Neural Nets — “ImageNet training in minutes”

— Convolutional Neural Nets

And Beyond

— Extending communication lower bounds and
optimal algorithms to general loop nests

— Dealing with variable precision
Toward Integration into Compilers

Outline

* Linear Algebra
— Communication Lower Bounds for classical direct linear algebra
— CA 2.5D Matmul
— TSQR - Tall-Skinny QR
— lterative Methods for linear algebra
 Machine Learning
— Training Neural Nets — “ImageNet training in minutes”
— Convolutional Neural Nets

 And Beyond

— Extending communication lower bounds and
optimal algorithms to general loop nests

— Dealing with variable precision
 Toward Integration into Compilers

10

Summary of CA Linear Algebra

 “Direct” Linear Algebra

 Lower bounds on communication for linear algebra
problems like Ax=Db, least squares, Ax = Ax, SVD, etc

* Mostly not attained by algorithms in standard libraries
* LAPACK, ScalLAPACK, ...
* New algorithms needed to attain these lower bounds

* New numerical properties, ways to encode answers,
data structures, not just loop transformations

e Autotuning to find optimal implementation (eg GPTune)
e Sparse matrices: depends on sparsity structure

e Ditto for “Iterative” Linear Algebra

Lower bound for all “n3-like” linear algebra

e Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M1/2)

 Parallel case: assume either load or memory balanced

e Holds for
— Matmul

Lower bound for all “n3-like” linear algebra

e Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M1/2)

#fmessages_sent > #words_moved / largest_message_size

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg A¥)

— Dense and sparse matrices (where #flops << n3)
— Sequential and parallel algorithms
— Some graph-theoretic algorithms (eg Floyd-Warshall)

Lower bound for all “n3-like” linear algebra

e Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M1/2)

#messages_sent (per processor) = Q(#flops (per processor) / M3/2)

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg A¥)

SIAM SIAG/Linear Algebra Prize, 2012

(Ballard, D., Holtz, Schwartz)

Outline

Linear Algebra

— Communication Lower Bounds for classical direct linear algebra
— CA 2.5D Matmul

— TSQR - Tall-Skinny QR

— lterative Methods for linear algebra

Machine Learning

— Training Neural Nets — “ImageNet training in minutes”

— Convolutional Neural Nets

And Beyond

— Extending communication lower bounds and
optimal algorithms to general loop nests

— Dealing with variable precision
Toward Integration into Compilers

16

SUMMA- n x n matmul on P¥2x P1/2grid
(nearly) optimal using minimum memory M=0(n?/P)

k j Blkj)
Mk
N * l - <— Brow
i ZT\ \

P P (i
A(i,k) /] T
Acol

For k=0 to n/b-1 ... b = block size = #cols in A(i,k) = #rows in B(k,j)
for alli=1 to P12

owner of A(i,k) broadcasts it to whole processor row (using binary tree)
forallj=1to P12

owner of B(k,j) broadcasts it to whole processor column (using bin. tree)
Receive A(i,k) into Acol
Receive B(k,j) into Brow

C_myproc = C_myproc + Acol * Brow
18

Summary of dense parallel algorithms
attaining communication lower bounds

Assume nxn matrices on P processors
* Minimum Memory per processor = M = 0(n?/ P)

 Recall lower bounds:
#words_moved = Q((n3/P) /MY2) = Q(n?2/ PY2)
#messages = Q((n3/P) /M32) = Q(PY2)

« SUMMA attains this lower bound

* Does ScalAPACK attain these bounds?
For #words_moved: mostly, except nonsym. Eigenproblem

* For #messages: asymptotically worse, except Cholesky
New algorithms attain all bounds, up to polylog(P) factors
* Cholesky, LU, QR, Sym. and Nonsym eigenproblems, SVD

Can we do Better?

Can we do better?

Aren’t we already optimal?

Why assume M = O(n?/p), i.e. minimal?

— Lower bound still true if more memory

— Can we attain it?

Special case: “3D Matmul”

— Uses M = O(n?/p?/3)

— Dekel, Nassimi, Sahni [81], Bernsten [89],

Agarwal, Chandra, Snir [90], Johnson [93],
Agarwal, Balle, Gustavson, Joshi, Palkar [95]

Not always pY/3 times as much memory available...

2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, ¢ > 1
* Processors form (P/c)2 x (P/c)Y? x c grid
(P/c)/2

A\ >
QA
\ Example: P= 32, c=2

|

2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, ¢ > 1
* Processors form (P/c)2 x (P/c)Y? x c grid

J

Initially P(i,j,0) owns A(i,j) and B(i,j)
each of size n(c/P)2 x n(c/P)/2

|

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of X, A(i,m)*B(m,j)
(3) Sum-reduce partial sums 2, A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,j)

2.5D Matmul on BG/P, 16K nodes / 64K cores

c = 16 copies
Matrix multiplication on 16,384 nodes of BG/P

s 1.4 ¢ | | 1 .
N - communication = -
& 12F idle =
5 - 95% reduction in comm computation ==
N 1 =
© X .
E o08F 3
Q - .
O 6 F -
g 2.7x faster
- 04 :_ X 1aster -
ks :
3 -
n :
0
2N 2N
8, N8, 7 oy
9{) - 9&3 {-) 6’70){3 ‘970){J
0 5 ' Ve

%)
Distinguished Paper Award, EuroPar’11 (solomonik, D.)

Kwasniewski, Hoefler, et al (Best Student Paper, SC’19)

Outline

Linear Algebra

— Communication Lower Bounds for classical direct linear algebra
— CA 2.5D Matmul

— TSQR - Tall-Skinny QR

— lterative Methods for linear algebra

Machine Learning

— Training Neural Nets — “ImageNet training in minutes”

— Convolutional Neural Nets

And Beyond

— Extending communication lower bounds and
optimal algorithms to general loop nests

— Dealing with variable precision
Toward Integration into Compilers

24

TSQR: QR of a Tall, Skinny matrix

TSQR: QR of a Tall, Skinny matrix

.
Wo | (QuoReo
Wl _ C110 RlO
WZ C120 RZO
W3 y \Q30 R3O /
a N
ROO
Ryo | {Qm Ros
Rao | | Qui Ry
g R3O /

|

/QOO \ ROO
QlO RlO
O~20 RZO

\ O~30 / L R30 P

J- o] 2

Eji} - [Qoz Ro2]

|

Output = { QOO: Q1o; on; ng; Q()l; Q11; Qoz; Roz }

27

TSQR: An Architecture-Dependent Algorithm

— Ffo g,
Parallel: =] W1 | =~ Ruw T
W, | & Ry — / 0
R
W | > Ry 11
i WO | —> ROO
Sequential: =| W: T = R, i
=l w, d OZ\AR{B
W;
i WO | —> ROO
\
Dual Core: W = W, > Ry —— Ros T R
w — 02
2 Rll \Rog
W5 Ri —

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

Can choose reduction tree dynamically

TSQR Performance Results

Parallel
— Intel Clovertown
— Up to 8x speedup (8 core, dual socket, 10M x 10)
— Pentium Il cluster, Dolphin Interconnect, MPICH
 Up to 6.7x speedup (16 procs, 100K x 200)
— BlueGene/L
* Up to 4x speedup (32 procs, 1M x 50)
— Tesla C 2050 / Fermi
e Upto13x(110,592 x 100)
— Grid — 4x on 4 cities vs 1 city (Dongarra, Langou et al)
— Cloud — 1.6x slower than just accessing data twice (Gleich and Benson)
Sequential
— “Infinite speedup” for out-of-core on PowerPC laptop
e As little as 2x slowdown vs (predicted) infinite DRAM
* LAPACK with virtual memory never finished
SVD costs about the same
Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others

TSQR Performance Results

e Parallel
— Intel Clovertown
— Up to 8x speedup (8 core, dual socket, 10M x 10)
— Pentium Il cluster, Dolphin Interconnect, MPICH
 Up to 6.7x speedup (16 procs, 100K x 200)
— BlueGene/L
* Up to 4x speedup (32 procs, 1M x 50)
— Tesla C 2050 / Fermi
e Upto13x(110,592 x 100)
— Grid — 4x on 4 cities vs 1 city (Dongarra, Langou et al)
— Cloud — 1.6x slower than just accessing data twice (Gleich and Benson)

SIAG on Supercomputing Best Paper Prize, 2016

(D., Grigori, Hoemmen, Langou)

In LAPACK 3.7.0, 2016
LAPACK 3.10: Householder Reconstruction, 2021

Outline

Linear Algebra

— Communication Lower Bounds for classical direct linear algebra
— CA 2.5D Matmul

— TSQR - Tall-Skinny QR

— Iterative Methods for linear algebra

Machine Learning

— Training Neural Nets — “ImageNet training in minutes”

— Convolutional Neural Nets

And Beyond

— Extending communication lower bounds and
optimal algorithms to general loop nests

— Dealing with variable precision
Toward Integration into Compilers

31

Avoiding Communication in Iterative Linear Algebra

e k-steps of iterative solver for sparse Ax=b or Ax=Ax
— Does k SpMVs with A and starting vector
— Many such “Krylov Subspace Methods”
* Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, ...
* Goal: minimize communication

— Assume matrix “well-partitioned”

— Serial implementation
e Conventional: O(k) moves of data from slow to fast memory
* New: O(1) moves of data — optimal

— Parallel implementation on p processors
* Conventional: O(k log p) messages (k SpMV calls, dot prods)
* New: O(log p) messages - optimal
e Lots of speed up possible (modeled and measured)
— Price: some redundant computation
— Challenges: Poor partitioning, Preconditioning, Num. Stability

Minimizing Communication of GMRES to solve Ax=b

* GMRES: find x in span{b,Ab,...,Akb} minimizing | | Ax-b | |,

Standard GMRES Communication-avoiding GMRES
fori=1to k W =[v Ay, A2y, ..., Aky]
w=A-v(i-1) .. SpMV [Q,R] = TSQR(W)
MGS(w, v(0),...,v(i-1)) .. “Tall Skinny QR ”
update v(i), H build H from R
endfor solve LSQ problem with H

solve LSQ problem with H

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

eOops — W from power method, precision lost!

eFix: replace W by [v, p1(A)v, p5(A)v, ..., pr(A)V] Hoemmen)
eUp to 2.3x speedup for GMRES on 8 core Intel Clovertown
eUp to 4.2x speedup for BiCGStab on 24K core CraYCXEG 34

arson)

Compute 79 = b — Axg. Choose r) arbitrary.

Set po =710, ¢—1 = O0nx1.
For k=0.1..... until convergence, Do

= [Dsky ADsks - - -y A*Dsk]
= {[gep s Ast i @ g 2 ks]
[Tsk, ATSk, SO ASTSk]
/ Compute the 1 X (354 3) Gram vector.
g=(%)" [P, Q, Rl
//Compute the (3s+ 3) X

(3s+ 3) Gram matrix

[P Q R]
For /=0 to s,

bty = [Bu . 0T L 0T, OZ+1]T

For\j = 01 . unl convergence Do
= (71170)/ Ap; Jro)

X T — (v ; AD;
: (As 8;)/(As;, As;)
Tjt1 I:JL'J-}—(,IJ])J-f-wJ

—~S 0 O NAAUA LN~
£
<

—

EndDo

CA-BiCGStab

For j =0 to Lﬁj—l, Do

2

_ Hadh...>
Xsk+j = Zg01,, >

' Usk+3
sk+j = Tsk+j — Qsk+j [P Q R]bsk-f—J
For E:O to s—254+1, Do

/+1
ek—f—] dsk—f—j o O“/Qk?‘f‘jbek—i—]—l

//such that [P, Q, R]ct Coktj = Aeqskﬂ

L = <C<k+j+1 Gelpyjy1>
SK P T
S k+1+1 Gy jp1>
Tsk+j+1 = Tsk+j + Usk+jDsk+j T Wsk+5qsk+j
_ 1
Tsk+j+1 = Qsk+j — Wsk+j [P @, RlCgpy i1
For { =0 to s—2j, Do
d* ct _ _C€+1
sk+j+1 = Csktj+1 Qk‘f‘J sk+j+1

//such that [P, Q,

0
] sk—{—]—}—l =A Tsk+j+1

Bloa o= <9’d0k+1+1> &
Psk+j+1 = rsk+j+1 + Bapasbgmrs =
Fer i =0 t6 §— 23, D6

bt

69k+] Qk+J[P Q’]5k+J

Bl
sk+j+1 = dek+g+1+5ﬂkﬂ skerg — Pokjw *k+3b<k+1

Ti41 =8 —*wj:‘lsj //such that [P, @,] LR = = A* Dsk+j+1
B; = 7('(1;:.';%(;) X :—J EndDo
Pj+1 :=Tj41 + Bj(p; — w; Ap;) EndDo

35

Outline

Linear Algebra

— Communication Lower Bounds for classical direct linear algebra
— CA 2.5D Matmul

— TSQR - Tall-Skinny QR

— lterative Methods for linear algebra

Machine Learning

— Training Neural Nets — “ImageNet training in minutes”

— Convolutional Neural Nets

And Beyond

— Extending communication lower bounds and
optimal algorithms to general loop nests

— Dealing with variable precision
Toward Integration into Compilers

36

Training Neural Nets by
Mini-Batch Stochastic Gradient Descent (SGD)

(You, Zhang, Hsieh, D., Keutzer, IPDPS 18)
* |terate:
— Pick a mini-batch of B data points
— Update weights W =W — n - VL(W)
* 1 =learning rate
« VL(W) = gradient
e Data parallel version on P processors
— Data partitioned, each processor gets B/P points
— W; replicated
— Each processor computes VL(W); wrt its data
— All-reduce: each processor computes

W;=W;-(n/P) - Zi_; VL(W);

SGD: Wi = Wi - (T]/P)) Zf=1 VL(W)l

* Increase P to go faster: What are the bottlenecks?

* B/P decreases = less work per processor
— Small matrix operations = locally communication bound

* Cost of each reduction X;VL(W); grows

* Solution: increase B along with P
— Maintain B/P = maintain processor efficiency
— Try to converge in same #epochs (passes over data)
 Same overall work, fewer reductions

* Oops: Convergence can be much worse
— Convergence rate, test accuracy

Improving SGD convergence as B grows

* Facebook’s strategy: adjust learning rate n
— Increase B to kB = increase 1 to kn
— Warmup rule: Start with smaller n, then increase
* Only worked up to B=1K for AlexNet (tried lots of
tuning)
* Fix: Add Layer-wise Adaptive Rate Scaling (LARS)
— I W /Il VL(W) |l can vary by 233x between AlexNet
layers
— Let 1 be proportional to || W || /Il VL(W) ||
— (You, Gitman, Ginsburg, 2017)
— Also need momentum, weight decay

ImageNet Training in Minutes
Speedup for AlexNet (for batchsize = 32K, changed LRN to BN)

Batch Size Epochs Top-1 Accuracy Platform Time
256 100 58.7% 8-core + K20 GPU 144 hrs
512 100 58.8% DGX-1 station 6h 10m
4096 100 58.4% DGX-1 station 2h 19m
32k 100 58.6% 512 KNLs 24m
32k 100 58.6% 1024 CPUs 11m

Speedup for ResNet50
Batch Size Epochs Top-1 Accuracy Platform Time
32 90 75.3% CPU + M40 GPU 336h
256 90 75.3% 16 KNLs 45h-|
32K 90 75.4% 512 KNLs 60m
32K 90 75.4% 1600 CPUs 32m l—135x
32K 90 75.4% 2048 KNLS 20m-

ImageNet Training in Minutes

Best Paper Prize at ICPP 2018

Open Source in Caffe, NVIDIA Caffe,
Facebook Caffe 2 (PyTorch)

Media coverage by CACM, EureKalert, Intel,
NSF, Science Daily, Science NewslLine, etc.

Su
LA

osequent work at Tencent reached 4 minutes

RS adopted by industry standard benchmark

MLPerf in 2019

Outline

Linear Algebra

— Communication Lower Bounds for classical direct linear algebra
— CA 2.5D Matmul

— TSQR - Tall-Skinny QR

— lterative Methods for linear algebra

Machine Learning

— Training Neural Nets — “ImageNet training in minutes”

— Convolutional Neural Nets

And Beyond

— Extending communication lower bounds and
optimal algorithms to general loop nests

— Dealing with variable precision
Toward Integration into Compilers

46

What CNNs compute

4

Image

What CNNs compute

Vy R/éR/@

Image Filter

4

What CNNs compute

<> < >
S
S S W
B R s /
K
X <> = K$
]
Image Filter Out

4

What CNNs compute

B copies B copies
H H
<> <>

S

e RS RS Vy
K
X <> = K$
]

Image Filter Out

What CNNs compute

B copies B copies
H

W <« < H

S

S S W
/ 7S R R /
K —
X ﬁ - Kit
|]
Image Filter Out

for k=1:K, for h=1:H, forw=1:W, forr=1:R,
fors=1:S, forc=1:C, for b=1:B
Out(k, h, w, b) += Image(r+w, s+h, c, b) * Filter(k, r, s, c)

What CNNs compute

B copies B copies
ow 7 raes R R V4
c) o

Image Filter Out

for k=1:K, for h=1:H, forw=1:W, forr=1:R,
fors=1:S, forc=1:C, for b=1:B

Out(k, h, w, b) += Image(r+o,w, s+o,h, ¢, b) * Filter(k, r, s, ¢)

Communication Lower Bound for CNNs
Let N = #iterations = KHWRSCB, M = cache size
#words moved = Q(max(...5 terms

BKHW, ... Size of Out

oyowBCWH, ... size of Image

CKRS, ... Size of Filter

N/M, ... lower bound for large loop bounds

N/(MY2 (RS/(opow))Y2) ... lower bound for small filters)
Any one of 5 terms may be largest

Bottommost bound beats matmul by factor (RS/(c,0,))"/?

— Applies in common case when data does not fit in cache, but one RxS
filter does

— Tile needed to attain N/M too big to fit in loop bounds
Thm: Always attainable! (computer generated proof)
— Beats im2col in data movement for various practical sizes
Improved constants to appear in PASC22

Chen/Han/Wang (arxiv:1911.05662v3): HW accelerator

Outline

Linear Algebra

— Communication Lower Bounds for classical direct linear algebra
— CA 2.5D Matmul

— TSQR - Tall-Skinny QR

— lterative Methods for linear algebra

Machine Learning

— Training Neural Nets — “ImageNet training in minutes”

— Convolutional Neural Nets

And Beyond

— Extending communication lower bounds and
optimal algorithms to general loop nests

— Dealing with variable precision
Toward Integration into Compilers

54

Communication lower bounds and

optimal algorithms for general loop nests

fori=1:n, forj=1:n, fork=1:n
C(i,j) = C(i,j) + A(i,k)*B(k,j)
#Words moved between main memory and cache
of size M = Q(n3/ M1/?2), attainable
For (iy,i,,...i;) € S € Z¥, do something with
— A(iy), Bli,, is+ia), Clis-iy, i,+3%i5- 5%, +2, ...), ...
Thm: #Words moved = Q(|S| / M€us)

(Christ, D., Knight, Scanlon, Yelick)
— HBL = Holder / Brascamp / Lieb

— Uses results by Christ, Tao, others

Thm: There exists an optimal tiling that attains
this lower bound (p., Rusciano)

What’s left?

Dealing with small loop bounds
— Ex: Matvec special case of Matmul, not optimizable
— Special cases: CNNs

— Thm: If all subscripts like (i),(i,j), etc, and S = parallelepiped,
3 tighter, attainable lower bound (p., binh)

Dealing with dependencies

— Special cases: Linear algebra outside matmul, Floyd-
Warshall, ...

More realistic performance models than a, 5,y
— Variable precision

— Heterogeneous processors, accelerators, network
topologies, differing costs of read and writes, ...

Need to automate! (i.e. compilers)

Outline

Linear Algebra

— Communication Lower Bounds for classical direct linear algebra
— CA 2.5D Matmul

— TSQR - Tall-Skinny QR

— lterative Methods for linear algebra

Machine Learning

— Training Neural Nets — “ImageNet training in minutes”

— Convolutional Neural Nets

And Beyond

— Extending communication lower bounds and
optimal algorithms to general loop nests

— Dealing with variable precision
Toward Integration into Compilers

58

Dealing with Variable Precision

What is the optimal tiling for C=A*B if we
compute C using H-fold precision?

Ex: H=2 for double precision accumulation
Ex: H=6 for reproducible accumulation

— Uses new instruction in [EEE 754-2019

Thm: Optimal tiling not square: (sharadwaj, 0.)
— Lower bound = 2n3 (H/M)1/2

— Optimal tiling:

e (M/H)Y2 x (M/H)Y2 for C
e (M/H)Y2x (MH)Y/2 for A and BT

Outline

Linear Algebra

— Communication Lower Bounds for classical direct linear algebra
— CA 2.5D Matmul

— TSQR - Tall-Skinny QR

— lterative Methods for linear algebra

Machine Learning

— Training Neural Nets — “ImageNet training in minutes”

— Convolutional Neural Nets

And Beyond

— Extending communication lower bounds and
optimal algorithms to general loop nests

— Dealing with variable precision
Toward Integration into Compilers
60

Toward Integration into Compilers

Related work by Olivry et al (PLDI’20 and 21)
Motivation: Extend HBL results to deal with
dependencies, automate their generation, use
heuristics to improve them, get constants, not
just asymptotic results

Applied to all PolyBench benchmarks, close to
best known “manual” lower bounds
Automatic generation of lower bounds and
algorithms: IOLB and 100pt

CoSA: Scheduling by Constrained
Optimization for Spatial Accelerators (1/2)

° |SCA’21, Huang, Kang, Dinh, Norell, Kalaiah, D., Wawrzynek, Shao

« Motivation: “Optimally” map multilayer DNNs to
accelerators

« Challenge: many parameters to choose to map
multiple layers (spatially and temporally) to
accelerator, which has multiple memories

o Formulate as MIP (mixed-integer programming)
problem to minimize weighted average of memory
movement and compute cycles, subject to many
algorithmic and HW constraints

CoSA: Scheduling by Constrained
Optimization for Spatial Accelerators (2/2)

« Compared many schedulers, based on

- Brute force (Timeloop, Interstellar, ...)
- Feedback-based (AutoTVM, Halide, ...)
» Constrained optimization (Polly+Pluto, Tiramisu, ...)

« Compared on several benchmarks
- AlexNet, ResNet-50, DeepBench, ...

« Upto 2.5x speedup and 22% lower energy,
based on cycle-accurate simulation
« 90x shorter time to solution

Current Work winhetan

o MoST: Modular Scheduling Transforms
- Representation of instruction schedules that allows
easier manipulation, optimization
- Will map to EXO (formerly SySTL, inspired by Halide)

« Allows mapping to custom accelerators
- Other backends (eg TVM) in future

Collaborators and Supporters

James Demmel, Kathy Yelick, Vivek Bharadwaj, Grace Dinh, Tianyu Liang

Peter Ahrens, Michael Anderson, Grey Ballard, Austin Benson, Erin Carson, Maryam Dehnavi,
Aditya Devakonda, Michael Driscoll, David Eliahu, Andrew Gearhart, Evangelos Georganas,
Mark Hoemmen, Shoaib Kamil, , Nicholas Knight, Penporn Koanantakool, Ben Lipshitz,
Marghoob Mohiyuddin, Hong Diep Nguyen, Jason Riedy, Alex Rusciano, Oded Schwartz,
Edgar Solomonik, Omer Spillinger, Yang You

Abhinav Bhatele, Aydin Buluc, Michael Christ, loana Dumitriu, Kimon Fountoulakis, Armando
Fox, David Gleich, Ming Gu, Jeff Hommond, Mike Heroux, Olga Holtz, Kurt Keutzer, Julien
Langou, Xiaoye Li, Michael Mahoney, Devin Matthews, Tom Scanlon, Michelle Strout, Sam
Williams, Hua Xiang, Zhao Zhang, Cho-Jui Hsieh,

Jack Dongarra, Mark Gates, Jakub Kurzak, Dulceneia Becker, Ichitaro Yamazaki, ...
Sivan Toledo, Alex Druinsky, Inon Peled, Greg Henry, Peter Tang,

Laura Grigori, Sebastien Cayrols, Simplice Donfack, Mathias Jacquelin, Amal Khabou, Sophie
Moufawad, Mikolaj Szydlarski

Members of SLICE, ADEPT, ASPIRE, BEBOP, ParLab, CACHE, EASI, FASTMath, MAGMA, PLASMA

Thanks to DOE, NSF, UC Discovery, INRIA, Intel, Microsoft, Mathworks, National Instruments,
NEC, Nokia, NVIDIA, Samsung, Oracle

bebop.cs.berkeley.edu

For more details

* Bebop.cs.berkeley.edu
— 155 page linear algebra survey in Acta Numerica (2014)
— Book in progress (with Ballard, Carson, Grigori)

 (CS267 — Berkeley’s Parallel Computing Course
— Live broadcast in Spring 2021, now in 2022

 www.cs.berkeley.edu/~demmel
* All slides, video available

— Prerecorded version broadcast since Spring 2013
 www.xsede.org

* Free supercomputer accounts to do homework
* Free autograding of homework

http://www.cs.berkeley.edu/~demmel
http://www.xsede.org

Summary
Time to redesign all

linear algebra, machine learning, n-bodly, ...
algorithms and software, and compilers

Don’t Communic...

Backup slides

Architectural Trends: Time

time per flop << time per word << time per message

Petascale System™ Predicted Exascale Amazon EC2
(2017) System” c5.18XL (est.)
Node Flops Time 0.3 ps 0.1 —1ps > 1 ps
Node Memory
Bandwidth 132 GB/s 0.4—4TB/s < 100 GB/s
Node Interconnect
Bandwidth 16 GB/s 100 — 400 GB/s <3GB/s
Memory Latency ~100 ns 50 ns > 100 ns
Interconnect
Latency 1us 0.5 us > 10 us

* Sunway TaihuLight Report (Dongarra 2016)
A Source P. Beckman (ANL), J. Shalf (LBL), D. Unat (LBL)

Architectural Trends: Energy

Intra-node Inter-node
Nt Communication Communication

1000

100 -

PicoJoules/Operation

= V—J

