
Some reflections on

automated code generation

Mike Giles

Gihan Mudalige, Istvan Reguly and others

Oxford e-Research Centre

NAIS Workshop

July 1, 2014

Mike Giles (Oxford) Automated code generation July 1, 2014 1 / 28

Outline

Motivation

Approaches

5 Oxford code generation projects (2009 – now)
◮ OP2
◮ StochSimGPU
◮ HMMingbird
◮ OPS
◮ Computational finance

Details of all of the projects are available online – I will concentrate on the
main ideas, some of the pros and cons, and some of the differences from
other research in the literature.

Mike Giles (Oxford) Automated code generation July 1, 2014 2 / 28

Motivation

I come from engineering/maths application domains, so I approach
this subject from the perspective of a “user” who wants two things:

high performance on a range of different hardware, today and
tomorrow (up to 10 years?) – “future proofing” is a key buzzword
these days

ease of software development – i.e. high performance without
needing to become an expert in new technologies

DARPA HPC2:

High Performance Computing – High Productivity Computing

Mike Giles (Oxford) Automated code generation July 1, 2014 3 / 28

Performance

Good news:

performance continues to double every 18 months or so

Bad news:

increased performance is coming through massive parallelism

increasing variety in the high-end computing hardware platforms

also increasing diversity in the corresponding software platforms:

◮ CPUs: OpenMP 4.0, MPI, TBB, Cilk Plus, OpenCL, vector intrinsics

◮ GPUs: CUDA, OpenCL, OpenACC

Mike Giles (Oxford) Automated code generation July 1, 2014 4 / 28

Our approach

Our approach is motivated by applications:

first, work out how to achieve good performance on a variety of
hardware platforms

◮ this can lead to demo codes which are helpful to others as an
illustration of various tips/“tricks”/techniques

◮ often involves careful consideration of data placement and movement
– often the main performance bottleneck these days, and can require
different treatments on different platforms

second, think about how we can deliver this performance to
application developers, without them needing to become HPC experts

◮ this can lead to the development of either library software or
a new code generation project

Mike Giles (Oxford) Automated code generation July 1, 2014 5 / 28

Libraries

For relatively simple well-defined tasks, libraries are often (usually?)
the best way of delivering high performance and simplicity to
application developers.

In Oxford, we have contributed to NVIDIA’s GPU libraries:

random number generation and associated special functions
(e.g. inverse error function)

sparse matrix-vector multiplication

batched tridiagonal solvers

Mike Giles (Oxford) Automated code generation July 1, 2014 6 / 28

Libraries

For larger, less well-defined tasks, libraries are less appropriate:

unable to hide complexities of GPU programming and still achieve
good performance?

unable to hide complexities of distributed-memory programming?

performance suffers from conditional branching needed to handle
lots of different capabilities?

performance suffers from (lots of) dynamic memory allocation since
array sizes not known a priori?

Mike Giles (Oxford) Automated code generation July 1, 2014 7 / 28

Alternatives?

The US DoE labs use C++ meta-programming extensively

I don’t know/understand the details

my impression is that the approach is very powerful

they’re clearly happy with the application performance and ease-of-use

I’ve heard that debugging the meta-programming is very difficult
– errors generate strange cryptic compiler error messages which are
very hard to interpret

my impression is that it needs guru-standard C++ developers to
develop the meta-programming

Mike Giles (Oxford) Automated code generation July 1, 2014 8 / 28

Alternatives?

The other big alternative is automated code generation – the reason we
are here today.

This can be sub-divided into three approaches:

DSL (domain-specific languages)

◮ defines a “new” language for a specific class of applications

— will application developers be happy to use a new language?
— what about porting existing applications?

◮ usually built on an open-source compiler system (e.g. LLVM)
or perhaps a special-purpose underlying language (e.g. Scala)

— this third-party dependence might be viewed as a weakness

◮ usually proposed by computer scientists with compiler expertise;
application scientists may lack the knowledge to develop this approach

Mike Giles (Oxford) Automated code generation July 1, 2014 9 / 28

Alternatives?

DSA (domain-specific abstraction/API)
◮ also referred to as an embedded-DSL, or high-level framework

◮ defines new capabilities within an existing language

◮ could be either an API or pragmas/directives in code

◮ does not necessarily require parsing of the entire user code,
so does not necessarily require an open-source compiler such as LLVM

◮ a viable approach for both application and computer scientists

dynamically-generated libraries
◮ takes a specification (in what format?) and produces code to perform

some task

◮ a viable approach for both application and computer scientists

Mike Giles (Oxford) Automated code generation July 1, 2014 10 / 28

Our approach

First, we start with a particular motivating application and determine

the target set of hardware platforms (usually include GPUs)

how to achieve good performance on these using hand-coded
implementations

Next, we think about an easy-to-use generalisation:

library or DSA?

API design?

user-supplied specification file, or parsing (some of) the user’s code?

language for the code generator (e.g. MATLAB, Python, C/C++) ?

any benefits from run-time JIT compilation?

Will address these points in discussing 5 projects over the past 5 years.

Mike Giles (Oxford) Automated code generation July 1, 2014 11 / 28

OP2

Joint project with Paul Kelly and David Ham at Imperial College, with
funding from Rolls-Royce and EPSRC

aimed at finite volume / finite element applications on
unstructured grids

an update to the Oxford OPlus library for Rolls-Royce’s HYDRA
CFD code

OPlus was a classic library developed in 1995 for distributed-memory
clusters with single core processors

OP2 was designed to keep distributed-memory support, and add
support for GPUs and multi-core CPUs (and maybe Xeon Phi)
as basis for HYDRA for next decade

the new capabilities required code generation, and a new API

also added support for both FORTRAN90 and C++

Mike Giles (Oxford) Automated code generation July 1, 2014 12 / 28

OP2 Abstraction

sets (e.g. nodes, edges, faces)

datasets (e.g. flow variables)

mappings (e.g. from edges to nodes)

parallel loops
◮ operate over all members of one set
◮ datasets have at most one level of indirection
◮ user specifies how data is used

(e.g. read-only, write-only, increment)

Restrictions:

set elements can be processed in any order, doesn’t affect result to
machine precision

◮ explicit time-marching, or multigrid with an explicit smoother is OK
◮ Gauss-Seidel or ILU preconditioning is not

static sets and mappings (no dynamic grid adaptation)

Mike Giles (Oxford) Automated code generation July 1, 2014 13 / 28

OP2 API

void op init(int argc, char **argv)

op set op decl set(int size, char *name)

op map op decl map(op set from, op set to,

int dim, int *imap, char *name)

op dat op decl dat(op set set, int dim,

char *type, T *dat, char *name)

void op decl const(int dim, char *type, T *dat)

void op exit()

Mike Giles (Oxford) Automated code generation July 1, 2014 14 / 28

OP2 API

Example of parallel loop syntax for a sparse matrix-vector product:

op par loop(res,"res", edges,

op arg dat(A,-1,OP ID, 1,"float",OP READ),

op arg dat(u, 0,col,1,"float",OP READ),

op arg dat(du,0,row,1,"float",OP INC));

This is equivalent to the C code:

for (e=0; e<nedges; e++)

du[row[e]] += A[e] * u[col[e]];

where each “edge” corresponds to a non-zero element in the matrix A,
and row, col give the corresponding row and column indices.

Mike Giles (Oxford) Automated code generation July 1, 2014 15 / 28

OP2

Notes:

the parallelism is inherent in the specification of the parallel loops

the data handles are opaque to the user (can’t be touched/used) and
the loop specification says how the data is being used

OP2 has complete freedom in how the data is distributed across
multiple nodes, and how it is stored (SoA or AoS) – can be stored
differently on different platforms, with OP2 doing the required data
transformations internally

data access information enables OP2 to decide when “halo” data
needs to be exchanged

Mike Giles (Oxford) Automated code generation July 1, 2014 16 / 28

OP2

OP2’s execution has two components:

user code for “command and control”

OP2 execution of parallel loops

This gives us a lot of flexibility which we are not yet fully exploiting:

automatic checkpointing – since OP2 knows about all of the principal
distributed datasets, and how they are used/changed, it can decide
what to store, and when

normally, parallel loops are executed one after the other, but OP2 has
the flexibility to use “lazy execution”, record the fact that certain
loop calculations have to be performed, but do them later – opens up
new optimisation possibilities, such as tiling

Mike Giles (Oxford) Automated code generation July 1, 2014 17 / 28

OP2

I developed initial GPU implementation by hand for a simple test
application (2D airfoil code)

for development/debugging purposes, developed a header file which
can be used for single-threaded execution without code generation

Paul Kelly is a computer scientist, so plan was for his group to develop
a compiler-based code generator using third-party ROSE system

however, I simplified the API design to the point where I was able to
implement a simple prototype in MATLAB for C/C++ applications
— key was that only the API calls had to be parsed

the ROSE-based code generator processed the entire user code,
which enabled the API to be simplified – however, it could not cope
with complexity of code in HYDRA, so we dropped it

instead, we switched from MATLAB to Python – a better
open-source solution, especially for companies like Rolls-Royce

Mike Giles (Oxford) Automated code generation July 1, 2014 18 / 28

OP2

Final status:

Python-based generator handles all of HYDRA, only parsing
the API calls

GPU performance is great for a 2D tsunami code from UCL, but
not so good for HYDRA which uses too many registers

OpenMP backend works well for HYDRA

still more work to do on CPU vectorisation

the distributed-memory MPI layer works on top of any of the
low-level backends

http://www.oerc.ox.ac.uk/projects/op2

Paul & David have developed a Python variant, PyOP2, for FEniCS,
a flexible FE solver written in Python — this exploits JIT for a
cleaner API

Mike Giles (Oxford) Automated code generation July 1, 2014 19 / 28

StochSimGPU

Part of PhD project in Maths – Guido Klingbeil:

http://people.maths.ox.ac.uk/klingbeil/STOCHSIMGPU/

Guido had combined maths/computer science background

very specific application area – stochastic biochemical reaction
simulations

motivated by desire for GPU performance and MATLAB interface
for ease-of-use for users

Mike Giles (Oxford) Automated code generation July 1, 2014 20 / 28

StochSimGPU

Approach:

API is a simple MATLAB function which specifies the reactants
and reactions

MATLAB code then
◮ generates CUDA code
◮ compiles it
◮ executes it
◮ gets the output for further MATLAB processing

all of the internal operation is hidden from the user

all of this was fairly straightforward to accomplish – main effort was
in the initial hand-coding to achieve the best GPU performance

Mike Giles (Oxford) Automated code generation July 1, 2014 21 / 28

StochSimGPU

Benefits over a classic library approach:

in a classic library, the code would loop over an arbitrary number of
reactions, each involving an arbitrary number of reactants specified
through indirect addressing

with code generation, the generated code handles each reaction
individually, with almost no conditional code

great for GPU execution – static allocation of all variables in registers,
and almost no conditional branching

Guido’s found a 10× improvement in performance

Mike Giles (Oxford) Automated code generation July 1, 2014 22 / 28

HMMingbird

PhD project in Computer Science by Luke Cartey
(supervised by Oege de Moor):

http://www.hmmingbird.co.uk/

Hidden Markov Model compiler for bioinformatics applications

requirements developed with users in Statistics

approach was to construct a simple DSL

polyhedral code generator written in ClooG
(http://www.cloog.org/) within Java

good performance achieved for a few applications, compared to
other single-application codes

Mike Giles (Oxford) Automated code generation July 1, 2014 23 / 28

OPS

New EPSRC-funded project
(http://www.oerc.ox.ac.uk/projects/ops)

similar to OP2, but extending the domain to block-structured grids

each grid block is structured (typically 2D or 3D), but blocks have
fairly arbitrary connectivity

approach and methodology is essentially the same as OP2

initial work has achieved great performance for a AWE test code,
Cloverleaf – a single simple user code achieves performance
comparable to a number of hand-coded versions developed by others

one key future objective is tiling through lazy execution

Mike Giles (Oxford) Automated code generation July 1, 2014 24 / 28

Tiling

Consider explicit time-marching: un+1
j = a unj−1 + b unj + c unj+1

Usually, start with n=0, then do n=1, then n=2, etc

Instead can do whole “tiles” at a time – much greater cache re-use:

✲

✻n

j

A B C D
❞ ❞

❞ ❞

❞ ❞

❞ ❞

❞ ❞

t t t t

t t t t t

t t t t t t

t t t t t t t

t t t t t t t t

t t t t t t t t

t t t t t t t t

t t t t t t t t

t t t t t t t t

t t t t t t t t

Potentially large savings in the future, as memory bandwidth is increasingly
the bottleneck. Coding this manually would be painful – we think
automating it through a DSL is preferable to using compiler techniques.

Mike Giles (Oxford) Automated code generation July 1, 2014 25 / 28

New computational finance project

Financial modelling:

multi-dimensional SDEs (stochastic differential equations)
◮ Monte Carlo simulation with lots of independent paths
◮ naturally-parallel application, executes well on GPUs using NVIDIA

random number generation library

multi-dimensional PDEs (typically dimension 1-4)
◮ Monte Carlo simulation with lots of independent paths
◮ either explicit or implicit time-marching
◮ implicit uses ADI splitting, involving solution of tridiagonal equations

in each coordinate direction
◮ over last year, have worked on very efficient implementations on

GPUs and CPUs
◮ http://people.maths.ox.ac.uk/gilesm/codes/BS 1D/

http://people.maths.ox.ac.uk/gilesm/codes/BS 3D/

Mike Giles (Oxford) Automated code generation July 1, 2014 26 / 28

New computational finance project

Code generation:

new project by Saurabh Pethe, a visiting student from IISc Bombay

background in material science, with a little knowledge of Python
and CUDA

wrote code generator in Python to generate 1D code with lots of
options (e.g. uniform grid or grid supplied, same or different volatility
for each financial derivative, . . .)

generates CUDA code for GPUs, or OpenMP/vector code for CPUs

specification taken from an XML file – Python package

alternatively, comes from a simple GUI – Python package

Mike Giles (Oxford) Automated code generation July 1, 2014 27 / 28

Reflections
After 5 years, what do I think about code generation?

code generation is not difficult – any computational scientist can do it

hard thing is code parsing/analysis – I would avoid it as far as possible

code generation can do things which regular libraries can’t – often
essential for new architectures

with a general package, can justify putting extra effort into difficult
optimisations and extensive error-checking

Python is now my default choice for writing a generator, but you can
really use whatever you are comfortable with

in the future, may want to move to JIT compilation

I think DSLs/DSAs have proven their potential to provide a
future-proof approach for application programmers

one concern is long-term support – who will fund this?

Mike Giles (Oxford) Automated code generation July 1, 2014 28 / 28

