
Accelerate
High Performance Computing in Haskell

Gabriele Keller 
Trevor McDonell, Ivo Gabe de Wolff, David van Balen, Josh Meredith 

many others: Robbert  van der Helm, Tom Smeding, Bart Wijgers, Nara Prasetya, Rick van Hoef, Hugo Peters, Tijn Janssen, Jason van den Hurk 



What is Accelerate?

What’s currently happening

Where we want to take it



Accelerate

Started as a spin-off project of DPH (Data Parallel Haskell) at UNSW, Sydney 
with Manuel Chakravarty, Sean Lee,Trevor McDonell 

Now most team members based in Utrecht 

DPH:  

based on a generalisation of NESL’s irregular, nested model, trying to map it 
efficiently to concrete architectures via GHC



Accelerate

Accelerate supports a fairly simple model (nested regular data parallelism)  

Idea is to generalise it for certain forms of irregular parallelism  

Initial aim:  

give Haskell programmers a low overhead way to exploit the available hardware 
(GPU, multiple cores on the their desktop/laptop) to achieve performance 

Don’t want to depend on GHC for the performance critical part 

deeply embedded in Haskell



Compile and run 
on 

the CPU/GPU 
Reify and optimise 

Accelerate program

GHC

Haskell/Accelerate 
executable

Target code

Copy result back 
to Haskell

Haskell/Accelerate 
program

Accelerate



Accelerate

Data-parallel computations are expressed via 
operations on multi-dimensonal arrays 



Continuing Adam’s Syntax benchmark:

def matmul_i32 [n] [p] (A: [n][m] i32) 
                       (B: [m][p] i32) =
    map (\A_row ->
      map (\B_col -> reduce (+) 0 (map2 (*) A_row B_col))
          (transpose B))
      A) 

Futhark

NumPy matmul = lambda x, y: np.einsum (‘ik,kj->ij’, x,y)

SaC { [i,j] -> sum ({ [k] -> A[i,k] * B[k,j] }) }

Dex for i j. sum for k. x.i.k * y.k.j



Matrix multiplication in Accelerate

mmx1 arr brr 
  = sum (generate
           (\(I3 i j k) -> arr!(I2 i k) * brr!(I2 k j)))

   

mmx1  ::  Num a  
      =>  Acc  (Matrix a) ->  
          Acc  (Matrix a) ->  Acc (Matrix a)

mmx2 arr brr 
  = sum (zipWith (*) arrRepl brrRepl)
  

where
      (I2 cA rA) = shape arr
      (I2 cB rB) = shape brr

mmx3 arr brr = arr <> brr

(I3 cA rB rA) 

 where
      arrRepl = replicate (S3 All cB  All) arr
      brrRepl = replicate (S3 rA  All All) trr
      trr     = transpose brr      
      (I2 cA rA) = shape arr
      (I2 cB rB) = shape brr



Index-based vs point-free 
Accelerate offers a set of second order array operations 

maps, zipWiths 

stencil (convolution matrix) operations 

scans, folds 

permutations and backpermutations/scatter and gathers 

conditionals, while loops and such on the array and scalar level



Index-based vs point-free 
Many of the specialised functions in Accelerate can be expressed via 
generate (zipWith, replicate, transpose)

generate shapeOfResult indexToValueFn  

if possible, specialised functions should be used  

Accelerate doesn’t try to detect access patterns in generate



mmx2 arr brr 
  = sum (zipWith (*) arrRepl brrRepl)
    where
      trr     = transpose brr
      arrRepl = replicate (S3 All cB  All) arr
      brrRepl = replicate (S3 rA  All All) trr
      (I2 cA rA) = shape arr
      (I2 cB rB) = shape brr

intermediate structures are ‘fused away’

as long as the data of an array is only used once  
 work is never copied as a result of fusion

memory access patterns are more explicit



A closer look at the types

   
 sum = fold (+) 0

  
fold :: (Shape sh, Elt a) 
        => (Exp a -> Exp a -> Exp a) 
        -> Exp a 
        -> Acc (Array (sh :. Int) a) 
        -> Acc (Array sh a)

mmx2 arr brr 
  = sum (zipWith (*) arrRepl brrRepl)
    …

https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Prelude.html#sum
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Language.html#fold


Shape (Rank) polymorphism 

type DIM0     = Z 
type DIM1     = DIM0 :. Int
…  
type Scalar a = Array DIM0 a
type Vector a = Array DIM1 a
type Matrix a = Array DIM2 a

  
data Z = Z

infixl :.
data tail :. head = tail :. head

Members of type class Shape have the form

The Shape type describes shapes of and indices to multi-dimensional 
arrays: 

Z :. Int :. Int :. … 

In the matrix multiplication program: (I3 i j k)



Slices

slice :: (Slice slix, Elt e) 
      => Acc (Array (FullShape slix) e) 
      -> Exp slix 
      -> Acc (Array (SliceShape slix) e)

replicate :: (Slice slix, Elt e) 
          => Exp slix 
          -> Acc (Array (SliceShape slix) e) 
          -> Acc (Array (FullShape slix) e)

Similar to Shape, but components include Any, All 



arrRepl = replicate (S3 All cB  All) arr
brrRepl = replicate (S3 rA  All All) trr



   
 sum = fold (+) 0

   fold :: (Shape sh, Elt a) 
        => (Exp a -> Exp a -> Exp a) 
        -> Exp a 
        -> Acc (Array (sh :. Int) a) 
        -> Acc (Array sh a)

The Elt type class

https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Prelude.html#sum
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Language.html#fold


All the usual base types are members of this class 

floating points, ints of various sizes, char, boolean, and so on 

shapes and indices 

n-tuples 

sum-types, like the Maybe type:

data Maybe a = Nothing | Just a

Elt a => Elt (Maybe a) 

The Elt type class



User-defined data types: 

Accelerate compiler needs to know 

how to represent these types efficiently as matrix elements

The Elt type class

class Elt a where
  type EltR a
  fromElt :: a -> EltR a
  toElt   :: EltR a -> a



Default implementations for non-recursive data types are provided 

product types (tuples, records) 

arrays of tuples represented as tuples of arrays 

sum types (alternatives) 

tuples of arrays of data, flags

The Elt type class



The Elt type class
Arrays are not in the Elt type class 

Ragged/irregular matrices are not directly supported 

Segmented operations can be used to express manually flattened 
computations

foldSeg :: forall sh e i. (Shape sh, Elt e, IsIntegral i) 
        => (Exp e -> Exp e -> Exp e) 
        -> Exp e 
        -> Acc (Array (sh :. Int) e) 
        -> Acc (Segments i) 
        -> Acc (Array (sh :. Int) e)



smvm :: Num a => 
        Acc (SparseMatrix a) -> Acc (Vector a) -> Acc (Vector a)
smvm smat vec = 
   let 
     (T2 segd (T2 inds vals)) = smat
     vecVals  = backpermute inds vec
     products = zipWith (*) vecVals vals
   in
     foldSeg (+) 0 products segd

The Elt type class



   
 sum = fold (+) 0

   fold :: (Shape sh, Elt a) 
        => (Exp a -> Exp a -> Exp a) 
        -> Exp a 
        -> Acc (Array (sh :. Int) a) 
        -> Acc (Array sh a)

The Exp and Acc type constructors

Exp a

Acc arr

sequential calculation resulting in value of scalar type a

parallel calculation resulting in value of array type arr

both just represent abstract syntax trees of the computations, not actual values 
of that type 

 

https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Prelude.html#sum
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Language.html#fold


To generate code and execute it on the CPUs or GPU, we need to 
call a version of run

The Exp and Acc type constructors

run :: Acc a -> a 

runQ :: (Acc a -> Acc b) -> a -> b 

runN :: (Acc a -> Acc b) -> a -> b

types 
    simplified



Lifting into the embedded language  can be done automatically for 
overloaded values:

The Exp and Acc type constructors

0    :: Num a => a
(+)  :: Num a => a -> a -> a 

instance Num a => Num (Exp a) where
   (+) expr1 expr2 = … 



Not so easy for non-overloaded values

The Exp and Acc type constructors

not :: Exp Bool -> Exp Bool
not False = True
not True  = False

(?) :: Elt t => Exp Bool -> (Exp t, Exp t) -> Exp t

lift :: a -> Exp a (simplified)

not :: Exp Bool -> Exp Bool
not False = lift True
not True  = lift False

not :: Exp Bool -> Exp Bool
not b = b ? (lift False, lift True)



How can we pattern match on 
embedded values?



Unlifting is not generally possible without evaluation

Pattern matching on embedded expressions

Exp a -> a

only possible it topmost constructor of a type is unique

Exp (a, b) -> (Exp a, Exp b)

swap:: Exp (a, b) -> Exp (b, a)
swap xy = 
  let 
    (x, y) = unlift xy
  in lift (y, x)



Haskell pattern synonyms and view patterns 

but this does not for types with multiple constructors - e.g. Bool

sum (generate (I3 cA rB rA) 
           (\(I3 i j k) -> arr!(I2 i k) * brr!(I2 k j)))

swap :: Exp (a, b) -> Exp (b, a)
swap (T2 x y) = T2 y x

Pattern matching on embedded expressions



data Either a b = Left a | Right b
  deriving (Generic, Elt)

mkPattern ‘’Either

swapE :: Exp (Either a b) -> Exp (Either b a)
swapE (Left_  a)  = Right_ a
swapE (Right_ b)  = Left_  b

match swapE

Pattern matching on embedded expressions



Current work



Rewrite of the compiler pipeline

Improved fusion 

Destructive updates 

Specification of different schedules on the user level

Ivo Gabe de Wolff & David van Balen



Improved Fusion
Currently  

intermediate arrays whose data is used only once are reliably fused 

work is never duplicated (even if that might be the right thing to do) 

In the new pipeline: 

horizontal, vertical and diagonal fusion 

takes estimated cost of operations into account 

using ILP solver to find more efficient schedules 



Destructive updates
When iterating over the whole array, Accelerate is pretty good at handling 
memory efficiently 

However, destructive updates are important for some classes of algorithms

permute
    :: forall sh sh' a. (Shape sh, Shape sh', Elt a)
    => (Exp a -> Exp a -> Exp a)        -- combination function
    -> Acc (Array sh' a)                -- default values
    -> (Exp sh -> Exp (Maybe sh'))      -- index permutation function
    -> Acc (Array sh  a)                -- source values to be permuted
    -> Acc (Array sh' a)

In the new pipeline, we can identify situations where arrays can and should be 
updated destructively



Specifying schedules on the user-level

Currently, user has to rely on Accelerate to pick the schedule 

No explicit representation of the schedule in the AST 

New pipeline will provide high-level constructs for the user to specify 
schedules and enable optimisations



Future Work



More sophisticated stencil computations
We’re working with researchers from Geoscience at UU and 
NIOZ on simulations of coastal developments 
Essentially, stencil computations:

Creative Commons Attribution-Share Alike 2.0 Generic, John Tushin

stencil:: (Stencil sh a stencil, Elt b)
       => (stencil -> Exp b)
       -> Boundary (Array sh a)
       -> Acc (Array sh a)
       -> Acc (Array sh b)

stencilFn ((_,t,_),
           (l,c,r),
           (_,b,_)) = t + l + c + r + b

More efficient scheduling on GPUs 
Language support for dynamic adaption of simulation speed 
Better interface for easy visualisation of data

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/2.0/deed.en


Automatic Differentiation
Tom Smeding’s work on reverse automatic differentiation 
for Accelerate identified some performance pain points 

generated code nothing like hand-written code 
Accelerate optimises for 

more sophisticated fusion required 

memory management issues need to be addressed 

Size inference?



acceleratehs.org
https://github.com/AccelerateHS/

Thank you!

http://acceleratehs.org
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/

