Accelerate
High Performance Computing in Haskell

Gabriele Keller
Trevor McDonell, Ivo Gabe de Wolff, David van Balen, Josh Meredith

3 E s

What Is Accelerate’/

What's currently happening

VWhere we want to take it

Accelerate

® Started as a spin-off project of DPH (Data Parallel Haskell) at UNSW, Sydney
with Manuel Chakravarty, Sean Lee, Irevor McDonell

x Now most team members based in Utrecht

x DPH.

®x pased on a general

C

isation of NESL's irregular, nested model, trying to map it

ficiently to concre

‘e architectures via GHGC

Accelerate

x Accelerate supports a fairly simple model (nested regular data parallelism)
® |dea Is to generalise it for certain forms of irregular parallelism
= |nitial aim:

® give Haskell programmers a low overhiead way to exploit the available hardware
(GPU, multiple cores on the their desktop/laptop) to achieve performance

= Don’t want to depend on GHC for the performance critical part

® deeply embedded in Haskell

Accelerate

Haskell/Accelerate

program

Copy result back
to Haskell

GHGC

Haskell/Accelerate

executable

Compile and run

Relfy and optimise on
Accelerate program Target code the CPU/GPU

Accelerate

® Data-parallel computations are expressed via
operations on multi-dimensonal arrays

Continuing Adam’s Syntax benchmark:

PJUHHFS/ matmul = lambda X, y: np.einsum (‘’1ik,kj->13', X,V)
SaC { [i,] == sumstiafkisssangaykiasapike gl by 3
Dex for i Joisumfor ki Staik gkt

Futhark def matmul i32 [n] [p] (A: [n][m] i32)
(B: [m][p] 132) =
map (\A row ->
map (\B col -> reduce (+) 0 (map2 (*) A row B col))
(transpose B))
A)

Viatrix multiplication in Accelerate

mmx1 -3 NUumsa
=> Acc (Matrix a) =>
Acc (Matrix a) => Acc (Matrix: a)
mmxl arr brr
= sum (generate (I3 cA rB rA)
NS T ke s a e e g e B T R ey
where
(I2Z cA rA) = shape arr
(I2 ¢cB rB) = shape brr

mmx2 arr brr
= sum (zipWith (*) arrRepl brrRepl)
where
arrRepl = replicate (S3 All cB All) arr
brrRepl = replicate (S3 rA All All) trr

trr = transpose brr
(I2 cA rA) = shape arr
(I2 ¢cB rB) = shape brr

mmxX3arr D —ral <Dy

INndex-based vs point-free

® Accelerate offers a set of second order array operations
® Maps, zIpWiths
® stencil (convolution matrix) operations
® scans, folds
®x permutations and backpermutations/scatter and gathers

® conditionals, while loops and such on the array and scalar level

INndex-based vs point-free

® Many of the specialised functions in Accelerate can be expressed via
generate (zipWith, replicate, transpose)

generate

» |f possible, specialised functions should be used

® Accelerate doesn't try to detect access patterns in generate

memory access patterns are more explicit

Intermediate structures are fused away’

mmx2 arr brr
= sum (zipWith (*) arrRepl brrRepl)
where
Ty = transpose brr
arrRepl = replicate (S3 All cB All) arr
brrRepl = replicate (S3 rA All All) trr
(I2 cA rA) = shape arr
(I2 ¢cB rB) = shape brr

as long as the data of an array 1S only used once
WOIK IS nhever copiled as a result of fusion

A closer |look at the types

mmx2 arr brr
= sum (zipWith (*) arrRepl brrRepl)

sum = fold (+) 0

fold :: (Shape sh) Elt a)

=> (EXpia => EXp a == EXp a)
e i, 4 ST

=>ACCH (AY LAY, (;;wmwm;;?B

=> AcCC (Arraysh"aa“

https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Prelude.html#sum
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Language.html#fold

Shape (Rank) polymorphism

®x [he Shape type describes shapes of and indices to multi-dimensional

dlfays. data Z2 = Z

intEistlses
data tail :. head = tail :. head

x Members of type class Shape have theform 2z :. Int :. Int :. ..

type DIMO =7
type DIMI = DIMO . Int

type Scalar:a Array DIMO a
type NVector a = Array DIMl a
type Matrix a = Array DIM2 a

® |n the matrix multiplication program: Cfa a9 k)

Slices

®x Similar to Shape, but components include Any, A11

slice 33 5 kicesrsiirx it e
=> Acc (Array (FullShape slix) e)
-> Exp slix
-> Acc (Array (SliceShape slix) e)

replicate :: (Slice slix, Elt e)
=> EXp slix
~> Acc (Array (SliceShape slix) e)
-> Acc (Array (FullShape slix) e)

A J/'Jﬁ‘ J J Rt)
JJJJT)_,,.»J),-
JJ)/;J,/J;
)J))JJJJJ)
J)J))JJ)J))
J))))JJ‘J.)) D = 7
J))JJJJJJJ)JJJJA
: JJJ)JJJJJ))JJ)))J;
JJJJ))JJJ) JJ)JJJ)JJJ
' J)J)JJJ)JJ _)JJJJ))J))JJ
JJJJ))JJJJJ))J)))J))J)JJ}
JJJJJJJJJJJ JJ)))J)J)JJJJ)JJ
J)JJJJjjJJ J)J)JJJ)JJ)J))JJJJ
JJJgJ J)JJ)JJJ)JJ)J))JJ))))JJ)J
)JJJ)JJJJJJJJ JJ))JJJJ)JJJ))J)J
JJJJJJJJJJJJJJJJJJJ)JJ)JJJJ))))JJ
$ P= JJJ&gJJJJjﬁ))JJJJJJJJJJJ)))J)))J
33JJJ JJJ) 33JJ333JJJJJJJJJ)JJJJJJ
JJJ)JJJJJJJ JJJJ)J)JJJJJ)JJ)J)J))JJ
3333 333933 JJggJJJJ))JJJJJ))))J
v‘,) JJJ)JJJ JJJJ)jjJJJJ)JJ)))J
| JJJ)JJJJJJJ) QJJ)JJJ)JJJ)J
S, JJJJJJA - 33JJJJJJJJJJJJJJJJJJJ
) - JJJjjJJJJJJJJJJJJJJ)J
;,‘, S) gyy) o JJJJJJJJJJJJJJJJ
',,,, . JJJ)JggngjJJjjJJJ)JJJ
. . , 3 JJ) _JJJJ 3 JJJJ))J)J
oo0 J JJJJ JJJJJJJJJJ)JJ)J
o ' fJJ@jﬂﬁﬁmﬁis’j’ﬁjJ
33 s® JQJJoogﬁjJJngﬁﬁjJJ
) _‘) .) . -
') JJJ JJJJJJJJ)J)
; : ,J' JJJJJJJ)JJ))J
- ¢) JJ)ggJJJJJJJ)J)J
JJ JJJjJJJJJJJ)J
®, JJjJJ J)J JJJ)J
33. Jjgjj)JJJJJ)J
) JjJJJJJJ))J
C JJJJ JJJJJ)JJ))J
D JJJJJJ JJJJJ)J
) ¢ JJggJJJJJJJJJ)JJ
J o> JJJ)JJJJJJJJJJ
) JJJJjg)JJJJ)JJJ
® ¥ JJJJ JJJJ)JJ)J)J
‘ j ‘)JJJJJJJJJ))JJ
) o 33)JJJ)JJJJJJJJJJ
", JJJngJ)J)JJJJ))J
) ~J)4J))33)J)JJJ)J))J
,JJ ®, JJJJJJ)J)))JJ
JJJJJJJQJJJJJJJJ)J))JJ
_ : JJJJgJJJJ)J))J))J)J
o e JJQ J)JJJ)J)JJ)J
o, JJJJJJJJJJJJ)J))J)J)J
JngJJJJJJJJ))J)JJJ
j'JJJ JJJJJJJJJJ)J)J)JJ/
) JJJJJJJJJJJJ)J))J)J)JJJJ,
m._‘ JJJJJJJJJJJ)J)JJ))),J
; JJJJJJJJJJJ))JJ))J),,
) JJJJJJJJ)J)JJJJ))J),J
JJJJJJ))J)JJ)))J)
O ‘ JJJJJJJJ)J))J)JJ
. jjJJJJ)JJ)JJ)JJJ
‘ JJ)JJJJJJ)JJ)J
‘ JJJJJJ)))J)))J
fJ_‘ JgJJJJJJJ)))J
: JJJgg)J)JJJ
.'SJJJ‘ JJJ)J
JJJJ)gJJ))J J
JJj*)JJJJ
_JJ JJngJ~
JJJ =5
JJJgng
JJJ LJ
..J: 33
%2
iices
® JJJ
_\.) - b ;)w) y=
) 33-)) »’ ,J-,/) o<)
\)J\)jJ '/‘J, J J
) Qg)jgd)-‘)JJ,)
5 < JJ’,) —)-."Jﬁ)
: 3JJJJJJ)J ‘JJJJ,.,,
OJJ JgJJJ)JJJJ,JJ,)
J JJJJJJ)J))J))J,
JJggJJJJJJJ)J)JJ)/
JJJJJ)JJJJ)))J)J,
QJJ 3JJJJJJJ)J)/)J
Jgg JJJJJJJJ)))J,),,
\3\) \)\)\)\)JJ.)J_)J.)JJJ))Jli
JJJJJJJJ)JJ))J),,,
.' JJJJJJJJJ))J)JJ;
) JJJJJJggJJ)JJJJJ))J/JJ
2 \)\)\)3\) ‘J_)J)J,)JJJ_)J,) P
)) JJJ)J JJJ)J))JJ))JJ),
' ‘ QJJJJ)JJ)J)JJ)J)J)JJ/
) ‘ JJJJJJJJ))JJ J))))JJ);
‘ JJ JJJJJJJJJJJ)J))JJJJJ
"fj JJggJJJJJJJJJ))J)J)-),
vf 33) JJ)J)JJJJ)J)JJJJ/J
JgJJJJJJJJJ)JJJJJJ)))JJ))J
‘ o JJJJJJJJ)J)))J))J})
) JgJJJJ))JJ)))JJJ)z)
) JJJJ))J)J)))«A—) D
JJJJJ)J))))J))J
: J)J)JJJ J))J}J
®, J_)J~) ')JJ)J))
¢ 32 JJJ))J
)JJJJJ
_,,)J,).,,.)
,1).: P at)
JJ‘JJ-./,)
J)J) ®
JJ 4‘J)
P J D .-
® o,)
)A,)
S) v
A)
S
))

|

J.) \
)JJJJJ
J.)JJJJ
_)'.)JJ.)q
qujjq)
' JJJJJ >
d ‘ Jo’i)v ‘
oS5 oge
v \: \v

)J
br
=0
»2?
> ::::
- s e
x ‘>.4 B P

i
JJJJJJ)JJ)
JJgJJJ)JJ
o 2
sEEssiets
<"‘ ». _

oo
sieasls:
.'_,Fgg%s

..,

(
ULE

<\
R
o\
N

.\«
CC
- .~
L&
Cx

-
A

(
WA
A -
’\;\
/A
<\

\

r‘
~7) |
v

A
A

o

J
))
)J 3
-

»

J
J

=
J
J

. ‘\:\

J
)JJ
)JJ
® 4
))
JJ
)JJJ
JJ)JJ
D 0% Sede2: o0
b e, 2
d 205’ 3> 6%0° ag
;50)JJ
596, JJ))J -
B)JJ ¢
® JJJ 'JJJJJJ
® o J)JJ ;
. 33)‘.
\)J)JJJ
oo o2
J JJJ \J)ggj
s)Jﬁ) 3 ‘ \))Jgg
S o, 25)J ®)
& 3 P o2
JJ) J JJ) -)JJJ
5 D o> JJJJJ
J)) & JJJJ
2 o, JJJ JJ)) ‘
e J)JJJ J)J JJ)
Jiﬁjﬁ) JJng) 539
J 52 32 L)
® o B o))J JJJ
B ® X J)) 9, JJJ
52)J) J)JJ)JJJ)
® J)J))JJJJJJ ®,
3 52 52 JJJ
))J JJJJ 52
))) 3 J)JJ)
shescaes $asss
)J) S '))JJ
<) 3))JJ
> 32 b g
@,

8! > c
)
P :
JJJ)
J)JJJ)' o,
JJﬁﬁﬁﬁﬁSﬁﬁj’JJ
)JJJJJJJ) :)
)JJJJJJJJ)JJJJ
)))))JJJJJ)JJJJ ©
JJJ)-)J)JJJJJJJJ) oo,
J)J)J))JJJJ)J J 23
)J)))JJ)JJJJJJJJJJJ)J
)JJJ)JJ)J =50 JJJJ °,
)JJ)JJ))JJ JJJJ)
J)) JJ)) 5 o2 v
=3 O JJ)J JJJJ JJJgH
@))J))J)» &> JJJ g'
®)J)))JJ)‘ J)JJ)));% ; .
®)JJ)))J)J JJJJ o ‘
® JﬁjﬁﬁjjﬁgjjJJjﬁjJJJJJ) :
) 3)
252)J))JJ ; JJJJJooggJJ
IJ)J)JJJJ)) JJJJJJJ ~)) :
\JJJ))J))) J)JJJJJJJJ o, JJJJJ
JJJ)J)JJJ) 33)33330 33 , ‘
)J;JﬁJﬁ)JJgJﬁﬁpy) '
Soeses)JiJngﬁ’JﬁﬁngﬁJa 3§§§g§3 3
g 0g8y =3 o oo o® ;
2 J B)J) JJJ JJJJ" vj"
))J))ﬁgﬂaggJﬁan JJggﬂggjg o '
)JJ))ﬁj)ﬁJ)JJJJJJ J§3§§§333 ~J)JJ§§-
50, JJ))JJ) - LI JJJJJJ o 95 ¢
b g)) o2 JJ)J JggggjngJ JJJJJ'JJ
) J J)JJ ~J)JJ)
) 5 J)JJ J)JJJJJ \)JJ 3
)Jfgj))ﬁa))Jﬂﬂﬂgojg Jgaaaaa '
))J 5 &> o JJJJJJ o
~ J)J) D o2 JJJJ)JJJJ
) b JJ) JJJ JJJJJJ)JJ_
5 I))J)J)JJ)JJJJJ
‘ B 5 5> J)JJ)JJJJJJJ
s 5 53333 Jﬁﬁjjjﬁf
Mv)_/ ®.
‘)JQJ 8 o '))J J'))
) D 3))J
) o _))J
o J J
b
D) © y

&
UL
S

9
9
@)
'®'
1

\

~
Mt
4_,\

\
(
5 &

Mt

\‘. \ L

1The E1Lt type class

sum = fold (+) 0

fold :: (Shape shf Elt a))
=S (Exp a -> Exp a -> Exp a)
—>BEXpia
ey i BYAT A ats WA o ettt ittt Bl i) eSS)
—> AcCc (Array - sh a)

https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Prelude.html#sum
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Language.html#fold

1The E1t type class

® All the usual base types are members of this class
x floating points, Ints of various sizes, char, boolean, and so on
® shapes and Indices
® N-tuples

® SuM-types, like the Maybe type:

data Maybe a = Nothing | Just a

Bl a == Ele (Maybe &)

1The E1t type class

® User-defined data types:
® Accelerate compiler needs to know

® Now to represent these types efficiently as matrix elements

class Elt a where
type ELlLtR a
fromElt :: a -> El1tR a
toElt c: E1tR a -> a

1The E1t type class

® Default implementations for non-recursive data types are provided
® product types (tuples, records)
® arrays of tuples represented as tuples of arrays
® sum types (alternatives)

® tuples of arrays of data, flags

1The E1t type class

® Arrays are not in the Elt type class
x Ragged/irregular matrices are not directly supported

x Segmented operations can be used to express manually flattened
computations

foldSeg :: forall sh e 1. (Shape sh, Elt e, IsIntegral 1)
=> (ExXp e == kEXpier —> 1 hEXp €)
= >l pre
=> Acc (Array (sh . Int) e)
-> Acc (Segments 1)
LRC AT Ta S s knt) e

1The E1t type class

smvm :: Num a ==>
Acc (SparseMatrix a) -> Acc (Vector a) => Acc (Vector a)
smvim smat vec =

let
(T2 segd (T2 i1nds vals)) = smat
vecVals = backpermute inds vec
products = zipWith (*) wvecVals vals
in

foldSeg (+) 0 products segd

1he Exp and Acc type constructors

sum = fold (+) 0

fold :: (Shape’ sh;, Elt a)

(Exp)a > Exp a => Exp a)

SO LEa (ol

EXp a seqguential calculation resulting in value of scalar type a

Acc arr parallel calculation resulting in value of array type arr

oboth just represent abstract syntax trees of the computations, not actual values
of that type

https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Prelude.html#sum
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/src/Data.Array.Accelerate.Language.html#fold

1he Exp and Acc type constructors

® [0 generate code and execute it on the CPUs or GPU, we need to
call a version of run

TUnN & RCE o =g

 runQ :: (Acc a —-> Acc b) -=> a -> Db
[YDES

= runN :: (Acc a -> Acc b) -> a -> b S/mP//ﬁed

1he Exp and Acc type constructors

® | [fting Into the embedded language can be done automatically for
overloaded values:

0 :: Num a => a
(+) s Num a —> a -> a —> a

instance Num a => Num (EXp a) where
(+) exprl expr2 = ..

1he Exp and Acc type constructors

® Not so easy for non-overloaded values

ExXp - Bool —> EXp Booil

not;;}é ru
not

lift :: a -> EXp a (simplified)
not :: EXp Bool -> EXp Bool
not‘iz}ée =-1i1ft True f
not e = lift False

(2) sl R B oodissssn R DTt S hX D) => 0 EXp t
not :: ExXp Bool -> Exp Bool

not b = b ? (lift False, lift True)

HOW can we pattern match on
embedded values?

Pattern matching on embedded expressions

x Unlifting Is not generally possible without evaluation

EXp a == a

® only possible it topmost constructor of a type Is unique

EXpirtassh)s =l oo b

swap:: ExXp i(a, b)== EXp (b; a)
swap Xy =
let
(X, y) = unlift Xy
rnaErE Ry 38

Pattern matching on embedded expressions

® Haskell pattern synonyms and view patterns

swap s EXpalar bRl o)
swap (T2 x y) = T2 y X

sum (generate (I3 cA rB rA)
EREESEr g rkesa s e o a kY ke brr 1 (I2 k j)))

but this does not for types with multiple constructors - €.g. Bool

Pattern matching on embedded expressions

data Either a b = Left a | Right b
deriving (Generic, Elt)

mkPattern ‘’'Either

swapE :: ExXp (Either a b) -> Exp (Either b a)
swapE (Left a) = Right a
swapE (Right ‘b)) = Left b

match swapE

Current work

Rewrite of the compller pipeline
lvo Gabe de Wolff & David van Balen

® [mproved fusion
® Destructive updates

® Specification of different schedules on the user level

Improved Fusion

x Currently
® ntermediate arrays whose data is used only once are reliably fused
® WOrk is never duplicated (even if that might be the right thing to do)
® |n the new pipeline:
® Nhorizontal, vertical and diagonal fusion
® takes estimated cost of operations into account

® using ILP solver to find more efficient schedules

Destructive updates

®x \\Vhen iterating over the whole array, Accelerate Is pretty good at handling
memory efficiently

® However, destructive updates are important for some classes of algorithms

permute
forall shish® ad (Shape: shy Shape ishi; Elt: a)
=> (Exp a =-> Exp a —-> Exp a) -~ combination function
-> Acc (Array sh' a) —~ default values
-> (Exp sh => Exp (Maybe sh')) —~—~ 1ndex permutation function
—> Acc (Array shia) ~— source values to be permuted

-> Acc (Array sh ' a)

® [N the new pipeline, we can identify situations where arrays can and should be
updated destructively

Specifying schedules on the user-level

® Currently, user has to rely on Accelerate to pick the schedule

® No explicit representation of the schedule In the AST

®x New pipeline will provide high-level constructs for the user to specify
schedules and enable optimisations

T e rm——ed i -;-t'«----.'({ P S wr S—yr—

vas ah "
= SO

"‘.:.- '-‘ "‘,‘1 -~

"’W‘.Q- &
e

T

Vlore sophisticated stencil computations

®x \We're working with researchers from Geoscience at UU and
NIOZ on simulations of coastal developments

®x [ssentially, stencil computations:

stencil:: (Stencil sh a stencil, Elt b)
=> (stencil => Exp b)
—> Boundary (Array. .sh a)
—> Acc (Array shia)
—> Acc (Array sh b)

stencilFn ((
CL
(57

i)
CrL)y
gRssetiey dsseisi nssis sttt R Sedr STt adte Rt o)

N

x More efficient scheduling on GPUS

® | anguage support for dynamic adaption of simulation speed

» Better interface for easy visualisation of data

Creative Commons Attribution-Share Alike 2.0 Generic, John Tushin

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/2.0/deed.en

Automatic Ditferentiation

®x Jom Smeding’s work on reverse automatic differentiation
for Accelerate identifled some performance pain points

® generated code nothing like hand-written code
Accelerate optimises for

® More sophisticated fusion required
x mMemory management issues need to be addressed

® Size inference?

Thank youl!

acceleratehs.org

http://acceleratehs.org
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/
https://github.com/AccelerateHS/accelerate/

